Find information on common issues.

Ask questions and find answers from other users.

Suggest a new site feature or improvement.

Check on status of your tickets.

nanoHUB-U: From Atoms to Materials: Predictive Theory and Simulations

MSE 270: Atomistic Materials Science

EAFIT-Purdue: online simulations in engineering and science education

Atomistic View of Materials: Modeling & Simulation

Introduction to Uncertainty Quantification

Top 5 shown

Electronic and Thermoelectric Characterization of Materials from Ab Initio Calculations

15 Aug 2017 | Online Presentations | Contributor(s): Gustavo Javier, David M Guzman, Austin Jacob Zadoks, Alejandro Strachan

We present the Optimized Workflow for Electronic and Thermoelectric Properties (OWETP) python notebook, which uses Density Functional Theory (DFT) as implemented in the Quantum Espresso code for electronic properties of materials. The OWETP python notebook also enables connecting to the Materials Project database, and the nanoHUB tool Landauer Transport Properties (LanTraP) for thermoelectric calculations.

Structure-Force Field Generator for Molecular Dynamics Simulations

07 Aug 2017 | Online Presentations | Contributor(s): Carlos Miguel Patiño, Lorena Alzate-Vargas, Alejandro Strachan

Atomistic and molecular simulations have become an important research field due to the progress made in computer performance and the necessity of new and improved materials. Despite this, first principle simulations of large molecules are still not possible because the high computational time and resources required. Other methods, such as molecular dynamics, allow the simplification of calculations by defining energy terms to describe multiple atom interactions without compromising accuracy...

Computational Helium

07 Jul 2017 | Tools | Contributor(s): Alejandro Strachan

Computational Hydrogen Notebook

0.0 out of 5 stars

09 May 2017 | Tools | Contributor(s): Martin Hunt, Alejandro Strachan

Computational Hydrogen

Top 5 shown | See more results

Purdue Workshop—Predictive materials modeling and simulations: nano- and micro-mechanics

site

Objectives This by-invitation-only workshop will focus on recent progress and current challenges in the area of experimentally validated, predictive modeling of mechanical properties of nano- or micro-engineered materials. Areas of interest include micro- and nano-electromechanical devices...

Learning Module: Atomic Picture of Plastic Deformation in Metals

The main goal of this learning module is to introduce students to the atomic-level processes responsible for plastic deformation in crystalline metals and help them develop a more intuitive understanding of how materials work at molecular scales. Image to the right shows plastic deformation of...

Molecular dynamics simulations of materials

What is MD? Molecular dynamics involves the numerical solution of the classical equations of motion (F=ma) for every single atom in material. The result is a very detailed description of the temporal evolution of the material: we obtain the position, velocity and force of every atom as a...

Resources for Materials Science and Engineering

Ab initio electronic structure simulation tools ABINIT :ABINIT is a package whose main program allows to find the total energy, charge density and electronic structure of systems made of electrons and nuclei (molecules and periodic solids) within Density Functional Theory, using...

Learning Module: Bonding and Band Structure in Silicon

The main goal of this learning module is to help students learn about the correlation between atomic structure and electronic properties, and help them develop a more intuitive understanding of the origin of electronic bands in a material via hand-on exploration using online electronic structure...