# University of Illinois at Urbana-Champaign

A User Guide on the

# Flexible Transition Metal Dichalcogenide Field-Effect Transistor (TMDFET) Verilog-A Model

Morteza Gholipour, and Deming Chen Dept. of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign All rights reserved.

3/29/2016

TMDFET model implementation based on the work of [1].

# INDEX

| 1. Model Files           | Pg. 3 |
|--------------------------|-------|
| 2. Scope of Model        | Pg. 4 |
| 3. Model Usage           | Pg. 5 |
| 4. Global Parameters     | Pg. 7 |
| 5. References            | Pg. 8 |
| 6. Contacts and Websites | Pg. 8 |

# 1. Model Files

|             |                         | V                                                                                                                                                                         |
|-------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Name   |                         | Description                                                                                                                                                               |
|             | tmdfetn_v_1_0_0.va      | N-type TMDFET Verilog-A model definition.                                                                                                                                 |
|             | tmdfetp_v_1_0_0.va      | P-type TMDFET Verilog-A model definition.                                                                                                                                 |
| benchmark/  | gates_mos2.lib          | Gates and circuits definition library.                                                                                                                                    |
|             | technology.lib          | Suggested design parameters.                                                                                                                                              |
|             | mos2_XXX_spice_delay.sp | <i>inv</i> , <i>nand</i> 2, <i>nor</i> 2, <i>nand</i> 3, <i>nor</i> 3, <i>nand</i> 4, <i>xor</i> 2, 7-stage FO4 buffer chain, and <i>c</i> 17 benchmark circuits netlist. |
| test/       | tmdfet_sample.sp        | Example HSPICE netlist using the above model.                                                                                                                             |
| references/ | TMDFET-ASPDAC16.pdf     | Publication the TMDFET model is based on.                                                                                                                                 |
| TMDFET_user | guide_v_1_0_0.pdf       | This file                                                                                                                                                                 |

#### **Table 1. Summary of Files**

This manual provides a basic outline of the TMDFET model and the input definitions needed for HSPICE simulations.

#### 2. Scope of the Model

| Table 2 below | summarizes | the scope | of the model. |  |
|---------------|------------|-----------|---------------|--|
|               |            |           |               |  |

| Table 2. Summary of the Scope of the TMDFET Model |        |  |
|---------------------------------------------------|--------|--|
| Device Types n-type/p-type TMDFI                  |        |  |
| Device Dimensions:                                |        |  |
| Channel Length (Minimum)                          | ~15nm  |  |
| Channel Length (Maximum)                          | ~100nm |  |
| Channel Width (Minimum)                           | ~15nm  |  |
| Channel Width (Maximum)                           | ~500nm |  |
| Top Oxide Thickness (Minimum)                     | 1nm    |  |
| Top Oxide Thickness (Maximum)                     | 20nm   |  |
| Bottom Oxide Thickness (Minimum)                  | 1nm    |  |
| Bottom Oxide Thickness (Maximum)                  | 100nm  |  |
| Strain (Minimum)                                  | 0%     |  |
| Strain (Maximum)                                  | 100%   |  |

This model was designed for TMDFET devices (See Figure 1). The minimum channel length is ~15nm, as various complex quantum mechanisms which describe the sub-15nm regime are not modeled here.



Figure 1. Illustration of Modeled TMDFET Device.

#### 3. Model Usage

This section illustrates how to instantiate the model in HSPICE.

#### 3.1 Model Instantiation

To instantiate the devices in the model, the library must be included at the beginning of the SPICE deck in the following way:

.hdl "tmdfetn\_v\_1\_0\_0.va"
.hdl "tmdfetp\_v\_1\_0\_0.va"

The above library files contains the following models:

| tmdfetnmos | n-type TMDFET model. |
|------------|----------------------|
| tmdfetpmos | p-type TMDFET model. |

Modifications should not be done in the model definition files (e.g.  $tmdfetn_v_1_0_0.va$ ). All changes in device and global parameters should be done in the "technology.lib".

The syntax to instantiate a TMDFET is given below.

\*Top level n-type TMDFET Standard Model: **XDevice** *Drain Gate Source Sub* **tmdfetnmos** < *W*=32*n L*=16*n Tox*=2.8*n Tox*2=2.8*n strain*=0 >

\*Top level p-type TMDFET Standard Model: **XDevice** *Drain Gate Source Sub* **tmdfetpmos** < *W*=32*n L*=16*n Tox*=2.8*n Tox*2=2.8*n strain*=0 >

The TMDFET model definitions *Drain*, *Gate*, *Source and Sub* are same as that of standard MOSFET HSPICE models and also Predictive Technology Models (PTM). *Drain* and *Source* port definition are not interchangeable due to the equation definitions in the model. The assumption is that the drain voltage  $V_D$  is always greater or equal to the source voltage  $V_S$ . The *Substrate (Sub)* can also be used as the second gate or back gate in transistor model. By default, we set the substrate oxide thickness *Tox2*=100nm for single-gate devices.

The model assumes default parameter values when the parameters are not defined during usage. Table 3 contains the default values of parameter and their definitions.

| Device<br>Parameter | Description                                                  | Default Value |
|---------------------|--------------------------------------------------------------|---------------|
| L                   | Physical channel length.                                     | 16nm          |
| W                   | Device width                                                 | 32nm          |
| Tox                 | The thickness of top gate dielectric material (planer gate). | 2.8nm         |
| Tox2                | Oxide Thickness between channel and substrate/bottom gate    | 100nm         |
| Strain              | Applied strain (percent)                                     | 0             |

## Table 3. Device Parameter Definitions and Default Values

### 4. Global Parameters

The definition and values of those global parameters are summarized in Table 4. These parameters are used for internal computations in the model and can be changed by the user if so desired. These parameters cannot be modified for each TMDFET defined in the circuit.

| Global<br>Parameters | Description                      | Default Value   |
|----------------------|----------------------------------|-----------------|
| Pq                   | Electron Charge in Coulomb       | 1.60217646e-19  |
| Ph                   | Planck's constant in J.s         | 6.62606896E-34  |
| Phbar                | Reduced Planck's constant in J.s | Ph/(2π)         |
| Pk                   | Boltzmann's constant in J/K      | 1.3806505E-23   |
| Ppi                  | Value of $\pi$                   | 3.14159265      |
| Peps                 | Permittivity in F/m              | 8.854187817E-12 |
| PT                   | Temperature in K                 | 300             |
| m0                   | Electron Mass in kg              | 9.10938291e-31  |

Table 4. Global Parameter Definitions and Values

#### 5. References

[1] Y-Y. Chen, M. Gholipour, and D. Chen, "Flexible Transition Metal Dichalcogenide Field-Effect Transistors: A Circuit-Level Simulation Study of Delay and Power under Bending, Process Variation, and Scaling," *IEEE/ACM Asia and South Pacific Design Automation Conference*, pp. 761-768, Jan. 2016.

#### 6. Contacts and Website

Please direct all inquiries and comments to:

Morteza Gholipour, Assistant Professor in Electrical and Computer Engineering Babol University of Technology E-mail: m.gholipour@nit.ac.ir

or

Deming Chen, Professor in Electrical and Computer Engineering, University of Illinois at Urbana-Champaign E-mail: dchen@illinois.edu

For the latest model file updates please visit: http://dchen.ece.illinois.edu/.

The SPICE version of this model is available in nanoHUB: https://nanohub.org/resources/23426. Please report any bugs to us. Suggestions and comments are also welcome. Thanks for downloading.