Stanford 2D Semiconductor (S2DS) Transistor Model 1.1.0

By Saurabh Vinayak Suryavanshi1, Eric Pop1

Stanford University

The Stanford 2D Semiconductor (S2DS) model is a physics-based, compact model for field-effect transistors (FETs) based on two-dimensional (2D) semiconductors such as MoS2.

Listed in Compact Models | publication by group NEEDS: New Era Electronic Devices and Systems

Additional materials available

Version 1.1.0 - published on 04 Apr 2016 doi:10.4231/D3ZC7RV9X - cite this Last public release: 1.2.0

Licensed under NEEDS Modified CMC License according to these terms

Stanford 2D Semiconductor (S2DS) Transistor Model 1.1.0  Verilog-A

Description

The Stanford 2D Semiconductor (S2DS) model is a physics-based, compact model for field-effect transistors (FETs) based on two-dimensional (2D) semiconductors such as MoS2. Version 1.0.0 represents the initial release. The model relies on the drift-diffusion approach, including quantum capacitance, simple band structure, velocity saturation, contact resistance and self-heating effects that are specific to 2D materials. The model has been developed for double-gate devices and employs approximations to simplify integrals and enable compact modeling of 2D-FETs. Caution should be taken while using the model for circuit simulation. This is the first attempt to develop a model for 2D semiconductors based on physics and experimental data with a minimum of fitting parameters. Future updates to the model are planned to make it more robust and accurate. As of now the model is stable for DC and limited AC simulations. For reference, please examine the sample circuit bench provided.

The equations and models used are outlined in the manual provided. The manual also contains details about the parameters and extraction method. Almost all parameters are physics-based and have been derived from experimental studies available at the time of this release. Some parameters will be updated in future versions of the model, as new data and other improvements become available.

Model Release Components ( Show bundle contents ) Bundle

Cite this work

Researchers should cite this work as follows:

Tags

Notes

Version 1.1.0 :

1) Improved convergence for transient simulations. (Tested for HSPICE 2013)

2) Additional flags to include gate field and high field dependencies on mobility.

3) Include effects of traps, impurities.