Publications: All

Search
  1. EPFL HEMT MODEL

    EPFL HEMT MODEL

    2019-08-29 04:18:54 | Compact Models | Contributor(s): Farzan Jazaeri, jean-michel sallese, Majid Shalchian, Matthias Bucher, Nikolaos Makris | doi:10.21981/GPPJ-VP68

    The EPFL HEMT Model is a design-oriented charge-based model for dc operation of AlGaAs/GaAs and AlGaN/GaN-based high-mobility field-effect transistors. The intrinsic model is physics-based and the central concept is based on charge linear approximation.

  2. Unimore Resistive Random Access Memory (RRAM) Verilog-A Model

    Unimore Resistive Random Access Memory (RRAM) Verilog-A Model

    2019-06-08 22:48:08 | Compact Models | Contributor(s): Francesco Maria Puglisi, Tommaso Zanotti, Paolo Pavan | doi:10.21981/15GF-KX29

    The Unimore RRAM Verilog-A model is a physics-based compact model of bipolar RRAM which includes cycle-to-cycle variability, thermal effects, self-heating, and multilevel Random Telegraph Noise (RTN).

  3. Stanford 2D Semiconductor (S2DS) Transistor Model

    Stanford 2D Semiconductor (S2DS) Transistor Model

    2018-08-15 02:33:34 | Compact Models | Contributor(s): Saurabh Vinayak Suryavanshi, Eric Pop | doi:10.4231/D39882Q1F

    The Stanford 2D Semiconductor (S2DS) model is a physics-based, compact model for field-effect transistors (FETs) based on two-dimensional (2D) semiconductors such as MoS2.

  4. CNRS - Carbon Nanotube Interconnect RC Model

    CNRS - Carbon Nanotube Interconnect RC Model

    2017-11-09 16:25:31 | Compact Models | Contributor(s): Jie LIANG, Aida Todri | doi:10.4231/D3SJ19T14

    This CNT Interconnect Compact Model includes a solid physics understanding and electrical modeling for pristine and doped SWCNT as Interconnect applications. SWCNT resistance and capacitance are modeled in Verilog-A.

  5. Purdue Solar Cell Model (PSM) - Perovskite/a-Si (p-i-n)

    Purdue Solar Cell Model (PSM) - Perovskite/a-Si (p-i-n)

    2018-04-16 17:56:34 | Compact Models | Contributor(s): Xingshu Sun, Raghu Vamsi Krishna Chavali, Sourabh Dongaonkar, Suhas Venkat Baddela, Mark Lundstrom, Muhammad Ashraful Alam | doi:10.4231/D3862BC8C

    Purdue Solar Cell Model (PSM), previously known as the TAG (technology agnostic) model, is a suite of compact models developed for solar cells of c-Si, a-Si, perovskites, CIGS, CdTe, and HIT. This package is for perovskite and a-Si solar cells.

  6. Purdue Solar Cell Model (PSM) - HIT

    Purdue Solar Cell Model (PSM) - HIT

    2018-04-16 18:09:10 | Compact Models | Contributor(s): Xingshu Sun, Raghu Vamsi Krishna Chavali, Sourabh Dongaonkar, Suhas Venkat Baddela, Mark Lundstrom, Muhammad Ashraful Alam | doi:10.4231/D3CV4BS80

    Purdue Solar Cell Model (PSM), previously known as the TAG (technology agnostic) model, is a suite of compact models developed for solar cells of c-Si, a-Si, perovskites, CIGS, CdTe, and HIT. This package is for perovskite and a-Si solar cells.

  7. Purdue Solar Cell Model (PSM) - Si

    Purdue Solar Cell Model (PSM) - Si

    2018-04-16 18:09:34 | Compact Models | Contributor(s): Mark Lundstrom, Muhammad Ashraful Alam, Raghu Vamsi Krishna Chavali, Sourabh Dongaonkar, Suhas Venkat Baddela, Xingshu Sun | doi:10.4231/D3HM52M18

    Purdue Solar Cell Model (PSM), previously known as the TAG (technology agnostic) model, is a suite of compact models developed for solar cells of c-Si, a-Si, perovskites, CIGS, CdTe, and HIT. This package is for c-Si solar cells.

  8. Purdue Solar Cell Model (PSM) - CIGS/CdTe

    Purdue Solar Cell Model (PSM) - CIGS/CdTe

    2018-04-16 18:09:56 | Compact Models | Contributor(s): Xingshu Sun, Sourabh Dongaonkar, Raghu Vamsi Krishna Chavali, Suhas Venkat Baddela, Mark Lundstrom, Muhammad Ashraful Alam | doi:10.4231/D3NC5SD6H

    Purdue Solar Cell Model (PSM), previously known as the TAG (technology agnostic) model, is a suite of compact models developed for solar cells of c-Si, a-Si, perovskites, CIGS, CdTe, and HIT. This package is for CIGS/CdTe.

  9. Physics-Based Compact Model for Dual-Gate Bilayer Graphene FETs

    Physics-Based Compact Model for Dual-Gate Bilayer Graphene FETs

    2016-04-07 19:19:34 | Compact Models | Contributor(s): Jorge-Daniel Aguirre Morales, Sébastien Frégonèse, Chhandak Mukherjee, Cristell Maneux, Thomas Zimmer | doi:10.4231/D30C4SM1H

    A compact model for simulation of Dual-Gate Bilayer Graphene FETs based on physical equations.

  10. MVS Nanotransistor Model (Silicon)

    MVS Nanotransistor Model (Silicon)

    2015-12-02 17:03:59 | Compact Models | Contributor(s): Shaloo Rakheja, Dimitri Antoniadis | doi:10.4231/D3RR1PN6M

    The MIT Virtual Source (MVS) model is a semi-empirical compact model for nanoscale transistors that accurately describes the physics of quasi-ballistic transistors with only a few physical parameters.

  11. MVS III-V HEMT model

    MVS III-V HEMT model

    2015-12-01 16:40:24 | Compact Models | Contributor(s): Shaloo Rakheja, Dimitri Antoniadis | doi:10.4231/D37S7HT39

    The MIT Virtual Source (MVS) model is a semi-empirical compact model for nanoscale transistors that accurately describes the physics of quasi-ballistic transistors with only a few physical parameters. This model is designed for HEMT.

  12. MIT Virtual Source GaN HEMT-High Voltage  (MVSG-HV) compact model

    MIT Virtual Source GaN HEMT-High Voltage (MVSG-HV) compact model

    2015-08-31 13:49:15 | Compact Models | Contributor(s): Ujwal Radhakrishna, Dimitri Antoniadis | doi:10.4231/D3086365H

    MIT Virtual Source GaN HEMT-High Voltage (MVSG-HV) model is a charge based physical model for HV-GaN HEMTs suitable for power switching applications.

  13. Verilog-A implementation of the compact model for organic thin-film transistors oTFT

    Verilog-A implementation of the compact model for organic thin-film transistors oTFT

    2015-06-16 12:26:13 | Compact Models | Contributor(s): Ognian Marinov | doi:10.4231/D3R785Q3B

    Compact model oTFT supports mobility bias enhancement, contact effects, channel modulation and leakage in organic thin-film transistors. Version 2.04.01 “mirrors” TFT in all regimes of operation by DC, AC and transient simulations.

  14. UCSB 2D Transition-Metal-Dichalcogenide (TMD) FET model

    UCSB 2D Transition-Metal-Dichalcogenide (TMD) FET model

    2015-03-25 17:05:28 | Compact Models | Contributor(s): Wei Cao, Kaustav Banerjee | doi:10.4231/D37940V7H

    a compact model for 2D TMD FET considering the effect of mobility degradation, interface traps, and insufficient doping in the source/drain extension regions

  15. mCell Model

    mCell Model

    2015-01-20 00:40:32 | Compact Models | Contributor(s): David M. Bromberg, Daniel H. Morris | doi:10.4231/D3CR5ND3Q

    This model is a hybrid physics/empirical compact model that describes digital switching behavior of an mCell logic devices, where a write current moves a domain wall to switch the resistance of a magnetic tunnel junction between stable states.

  16. R3

    R3

    2014-11-21 15:20:44 | Compact Models | Contributor(s): Colin McAndrew | doi:10.4231/D3QB9V64G

    Compact model for polysilicon (poly) resistors, 3-terminal JFETs, and diffused resistors.

  17. FET pH Sensor Model

    FET pH Sensor Model

    2015-06-04 14:39:01 | Compact Models | Contributor(s): Piyush Dak, Muhammad A. Alam | doi:10.4231/D30000150

    The FET pH sensor model is a surface potential compact model for FET based pH sensors that accurately describes the physics of electrolyte and surface charges that respond to pH.

  18. Stanford University Resistive-Switching Random Access Memory (RRAM) Verilog-A Model

    Stanford University Resistive-Switching Random Access Memory (RRAM) Verilog-A Model

    2014-10-23 20:13:21 | Compact Models | Contributor(s): Zizhen Jiang, H.-S. Philip Wong | doi:10.4231/D37H1DN48

    The Stanford University RRAM Model is a SPICE-compatible compact model which describes switching performance for bipolar metal oxide RRAM.

  19. Purdue Nanoelectronics Research Laboratory Magnetic Tunnel Junction Model

    Purdue Nanoelectronics Research Laboratory Magnetic Tunnel Junction Model

    2014-10-23 20:13:09 | Compact Models | Contributor(s): Xuanyao Fong, Sri Harsha Choday, Panagopoulos Georgios, Charles Augustine, Kaushik Roy | doi:10.4231/D33R0PV04

    This is the Verilog-A model of the magnetic tunnel junction developed by the Nanoelectronics Research Laboratory at Purdue University.

  20. TAG Solar Cell Model (p-i-n thin film)

    TAG Solar Cell Model (p-i-n thin film)

    2014-10-23 17:59:16 | Compact Models | Contributor(s): Sourabh Dongaonkar, Xingshu Sun, Mark Lundstrom, Muhammad A. Alam | doi:10.4231/D3V97ZS4G

    The TAG solar cell model is a physics-based compact model for p-i-n thin film solar cells that can be used for panel level simulations.