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1 Introduction 

It has been known for many years that carriers in the inversion layer of a Si MOSFET are 

confined by the barrier between the semiconductor-oxide interface on one side and the band-

banding of the conduction band on the other side. Since the average thickness of the inversion layer 

is comparable to the de Broglie wavelength of the electrons, this confinement is sufficient to 

produce quantization in the direction normal to the oxide-semiconductor interface. The space 

quantization effect is very important in determining the number of carriers in the inversion layer for 

devices with very high substrate doping, representative of the state-of-the art technology. In 

principle, the solution of even the equilibrium problem in these structures requires self-consistent 

solution of the Poisson and the Schrödinger equation using any available band-structure method. 

This is a difficult and time consuming problem, however. In many practical situations, it is 

sufficient to utilize the band-structure solvers to get the proper band-edge effective masses, which 

are then used in the time-independent Schrödinger equation for stationary potentials. One such tool 

that has been successfully utilized in the calculation of the energy level structure in simple MOS or 

dual-gate capacitor structures is SCHRED that has been developed at Arizona State University and 

Purdue University and is currently residing on the Purdue NanoHUB [1]. 

 

 

 

 

 



 

Originally written: December  1995, Updated and revised:  January 2006  2 

2 Description of SCHRED 

SCHRED is a one-dimensional solver that solves self-consistently the 1D Poisson 
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and the 1D one-electron effective-mass Schrödinger equation 
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In Eqs. (1) and (2), )(z! is the electrostatic potential, )(z! is the spatially dependent dielectric 

constant, )(zN
D

+ and )(zN
A

! are the ionized donor and acceptor concentrations, )(zn and )(zp  are 

the electron and hole densities, )(zVeff  is the effective potential energy term, !
i
m  is the effective 

mass normal to the semiconductor-oxide interface of the i-th valley, and ijE  and )(zij! are the 

energy level and the corresponding wavefunction of the electrons residing in the j-th subband from 

the i-th valley. The effective potential energy term V zeff ( )  in the 1D Schrödinger equation equals 

the sum of the Hartree V e zH = ! "( ) , image V zim( )  and exchange-correlation V zexc ( )  terms. 

The Hartree term represents the solution of the 1D Poisson equation. The image term, which arises 

because of the different dielectric constants of the semiconductor and the oxide, is calculated from 
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where ! sc  and !
ox

 are the semiconductor and the oxide dielectric constants, respectively. Note that 

in the present version of SCHRED, the image term is implicitly included via the boundary 

conditions on the potential since the sheet electron density is no longer an input parameter but the 

gate voltage. That means that some of the experiments regarding the influence of the image term 

only on the subband separation can not be performed with the present version of SCHRED. When 

evaluating the exchange-correlation corrections to the chemical potential, we have relied on the 

validity of the density functional theory and the local density approximation outlined below. 
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2.1 Inclusion of Exchange-Correlation Corrections 
In silicon inversion layers, due to the large effective mass, many-body effects such as 

exchange and correlation can play an important role. For example, Stern [2] has calculated that the 

exchange energy is comparable to or even larger than the energy separation between subbands 

calculated in the Hartree approximation. In general, the exchange energy is the contribution to the 

overall energy of the electron gas that arises from the correlation between two electrons whose 

positions are reversed, or exchanged [3].  In other words, as a consequence of the Pauli exclusion 

principle, the electrons with equal spin tend to avoid each other (exchange repulsion) so that each 

electron is surrounded by an exchange hole. The presence of the exchange hole indicates that the 

mean separation between electrons with equal spin is larger than it would be without the Pauli 

principle. The existence of the exchange hole reduces the overall Coulomb repulsion which explains 

the reduction in the ground-state energy of the system. 

 According to the Hartree-Fock theory, electrons with different spin do not avoid each other, 

since the states are chosen to satisfy the exchange principle, but they do not include Coulomb 

correlations [4]. In reality, there exists an additional correlation, which leads to the so-called 

Coulomb hole. To treat these effects one has to go beyond the Hartree-Fock theory. Therefore, if 

one writes the exact ground state energy of the system as 

 

 
HF HF HF

corr kin exc corr
E E E E E E= + = + +  , (4) 

it is obvious that the correlation energy represents the correction to the ground-state energy of the 

system beyond the Hartree-Fock approximation. Therefore, the correlation energy is not a quantity 

with physical significance; it merely represents the error incurred in making a fairly crude first-

order approximation. Since an exact calculation of corr
E  is generally not possible, one of the main 

tasks of the many-body theory is to obtain a good estimates for corr
E .  

 In a series of three papers Hohenberg and Kohn [5], Kohn and Sham [6], and Sham and 

Kohn [7] have laid the foundations for a “new” theory of electronic structure. The theory represents 

a systematic extension of the Thomas-Fermi ideas, and is capable in principle of providing exact 

answers. The theory is based on two theorems which center on the particle density as a fundamental 

variable for the description of any many-body system. The first theorem states that the total ground-

state energy E  of any many-body system is a functional of the one-particle density ( )rn . In this 

context, different many-body systems differ only by the local potential felt by the electrons. 
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Furthermore, splitting off from the total energy the explicit interaction with the external potential 

( )r
ext
V , the theorem also states that the rest is a universal functional of ( )rn , i.e. independent of the 

external potential. Thus, if 

 

 
3[ ] [ ] ( ) ( )r r

ext
E n F n d rV n= + !  , (5) 

then the functional F  depends only on n  and not on ( )r
ext
V . The second theorem states that for any 

system (any external potential) the functional [ ]E n  for the total energy has a minimum equal to the 

ground-state energy at the physical ground-state density of the system. These theorems, although 

rather abstract in nature were of immense importance to the rapid development of density-functional 

theory. It is customary to extract from [ ]F n  the classical Coulomb energy and write 
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In this notation, the energy functional becomes 
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The stationary functional [ ]E n  allows in principle a much simpler determination of the ground-

state energy E  and density ( )rn  than the conventional Rayleigh-Ritz method [8]. The functional 

[ ]G n  is further divided into two parts 

 [ ] [ ] [ ]
s xc

G n T n E n= +   , (8) 

where [ ]
s
T n  is the kinetic energy of a non-interacting electron gas of density ( )rn  in its ground 

state and [ ]
xc
E n  represents the exchange and correlation energy. With these new quantities, we can 

write 
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The energy functional given in Eq. (9) has to be minimized with respect to the electron density ( )rn  

subject only to the normalization condition 
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3 ( )rN d rn= !   , (10) 

where N  is the total number of electrons in the system under consideration. The standard method 

of taking care of the constraint given in Eq. (10) is to make the variational principle read 

 

 ( ) 0E N! µ" =  , (11) 

where µ  is a Lagrange multiplier. Carrying out the variation, one obtains the Euler condition 
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where 
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is the exchange-correlation potential. The variational derivative of the kinetic energy [ ] ( )r
s
T n n! !  

is then replaced with the kinetic operator 2 2 *
2m! "h . At this point, Kohn and Sham [6,7] make a 

crucial observation that the Euler Eq. (12) is the Euler equation of non-interacting particles subject 

to the effective external potential ( )reffV , given by 
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where the Hartree potential is obtained from the solution of the corresponding Poisson equation. 

This scheme allows one to construct an equivalent one-particle formulation of the complicated 

many-body problem at hand. 

 The exchange-correlation energy [ ]
xc
E n  is in general an unknown functional of the electron 

density. However, for slowly varying density, one can make the local-density approximation (LDA) 

 

 
3[ ] ( ( )) ( )r r

xc xc
E n d r n n!" #   , (15) 

where ( ( ))r
xc
n!  is the exchange and correlation energy per electron of a uniform electron gas with 
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density 0 ( )rn n= . The original idea for this approximation comes from Slater [9]. Using LDA, we 

find 

 

 
( ( )) ( )

( ) ( )r
xc xc

xc xc

d n n d n
V n n

dn dn

! !
!" = +

  , (16) 

which, according to the Seitz theorem [10], is equivalent to the definition of the chemical potential. 

Therefore, ( )r
xc
V  can be interpreted as the exchange-correlation contribution to the chemical 

potential of a homogeneous electron gas of density 0
n  equal to the local electron density ( )rn  of 

the inhomogeneous system. As pointed out by Kohn and Vashishta [11], the LDA works 

surprisingly well in calculating the electronic structure of confined electronic systems where the 

electron density 

 

 
2( ) ( ) ( )r

i i

i

n n z N z!= ="
 (17) 

is not slowly varying in space. The exchange-correlation potential xc
V  for LDA has been 

parametrized by many authors. A standard parametrized form due to Hedin and Lundqvist 

[12,13,14,15] , used also in SCHRED, is 
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where ( ) 21
s

x x z r= = , 1 3
3( ) 4 ( ) / 3

s s
r r z b n z!

"
# $= = % &  and 2 * 2

4
sc

b m e!"= h . The first term on the 

RHS of Eq. (18) is the exchange energy correction due to the attractive interaction between other 

electrons and the Fermi hole resulting from the displaced charge. The second term represents the 

correlation energy correction to the chemical potential µ. Using this parametrized expression for 

( )
xc
V z , one calculates the electronic subband wavefunctions and the corresponding subband 

energies by solving the so-called Hohenberg-Kohn-Sham (HKS) equation, which is formally the 

same as the Schrödinger equation in which, as already noted, one takes 

( ) ( ) ( ) ( )eff H xc imV z V z V z V z= + + . In such a calculation, one obtains not only the total energy and the 

electron density, but also the eigenvalues of the KS equations [16].  For silicon inversion layers, by 

analogy to the spin-density formalism [17], the exchange-correlation correction to the chemical 



 

Originally written: December  1995, Updated and revised:  January 2006  7 

potential is different for the unprimed and primed valleys, and it depends only on the volume 

density of electrons in the unprimed and primed subbands. 

 The extension of this formalism for nonzero-temperatures was formally set up by Mermin 

[18], and the finite temperature exchange-correlation functions that enter the Kohn-Sham-Mermin 

formulation were calculated by Gupta et al. [19,20]. The finite-temperature exchange correction to 

the chemical potential calculated by Gupta et al. is 
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where the Fermi temperature F
T  is defined in terms of the zero-temperature variables 

1 3
23 ( )r

F
k n!" #= $ % , 2 2 *

2
F F
E k m= h  and B F F

k T E= . The result given in Eq. (19) is valid for 

Boltzmann statistics. In the Debye limit, the corresponding correlation energy correction is given by 

 

 

2 2

0 0

( )
( , )

8

r
r

corr

B

e e n
V T

k T!" "
= #

  . (20) 

From the results given in Eqs. (19) and (20) it is obvious that the correlation contributions can still 

be important for temperatures where the exchange contribution has become vanishingly small. 

A comparison of the calculated self-consistent potentials for (100) p-type Si with 
15 3

2.8 10
a
N cm

!
= "  (corresponding to 11 2

2.02 10deplN cm!
= " ), 12 2

4 10
s
N cm

!
= "  and T = 0 K, with 

(thick lines) and without (thin lines) the inclusion of the exchange-correlation correction to ( )effV z , 

is given in  Ref. [21] and also shown on Figure 1. We observe that the subband energies are lowered 

considerably by the exchange-correlation effect. The energy of the ground subband is lowered by 35 

meV, whereas the energy of the first excited subband is lowered by 20 meV, which is in agreement 

with results obtained by Vinter [22]. Since the inclusion of the exchange-correlation effects 

increases the subband separation, this many-body correction leads to an increase of the carrier 

concentration at which the occupation of the second subband begins. We also find that, in contrast 

to the image term which tends to increase the spatial extent of the wavefunctions, the exchange-

correlation term tends to compress the wavefunctions. 
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Figure 1  Calculated potential energy profile, subband structure and normalized wavefunctions for 

(100) p-type Si with 15 3
2.8 10

a
N cm

!
= " , 12 2

4 10
s
N cm

!
= "  and interface-trap density 

10 2
9.5 10

it
N cm

!
= " . The thick (thin) lines correspond to the case when the exchange-correlation 

effect is included (omitted) in the simulation 

 

 

Figure 2. Density dependence of the separation of the 1
!  and 0

!  subbands in a (100) p-type silicon 

inversion layer. The filled triangles represent the infrared absorption measurements. 

 

 In Figure 2 we compare our simulation results for the energy spacing between the lowest 

two subbands (subbands 0
!  and 1

!  from the unprimed ladder) with the infrared absorption 

measurements of Kneschaurek et al. [23] on a p-type Si(100) at T = 4.2  K. The doping 
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concentration is ( ) 15 3
2 0.2 10

a d
N N cm

!
! = ± " . The experimental data shown in the figure represent 

the dark sweep spectroscopy results. For these experimental conditions, the depletion layer length 

and the depletion charge density do not reach their thermal equilibrium values and the measured 

value of the experimentally relevant effective depletion charge density is 

( )* 11 2
1.0 0.1 10deplN cm!= ± " . To be in agreement with the experimental conditions, we take 

11 2
1 10deplN cm!

= " . We find that the experimental data show a faster increase in the level splitting 

than the Hartree theory (with and without the image term). The inclusion of the exchange-

correlation correction to the chemical potential in the Kohn-Sham equation significantly improves 

the situation, especially at higher inversion charge densities (In the space-charge layer, the condition 

of slowly varying potential translates into *

s deplN N>> ). It is believed that the so-called excitonlike 

and depolarization corrections nearly cancel each other except at very high electron concentrations 

[24,25]. (The exciton shift is the interaction of the excited electron with the hole in the ground state, 

analogous to the exciton associated with the valence-to-conduction band transition. The 

depolarization shift is a plasmon shift of the transition caused by the screening response of the 

electron gas.) Our simulation results for the energy spacing are in excellent agreement with those 

obtained by Ando [26]. 

In principle, the finite-temperature extension of the density-functional theory presented in 

this section is obtained by using the finite-temperature expressions for the exchange and correlation 

corrections to the chemical potential and through the change of the occupancies of various 

subbands. However, Das Sarma and Vinter [27,28] have shown that neglecting any temperature 

dependence of the exchange-correlation potential, but retaining its implicit temperature dependence 

through the electron density ( )n z , which is calculated at finite temperature, leads to results which 

are in very good agreement with the measured subband separations, especially the ones for the 

unprimed ladder. To check this argument, we calculated the subband separation of a p-type Si with 

effective depletion charge density * 10 2
6 10deplN cm!

= "  and (100) orientation of the surface at T=300 

K using first the parametrized expression given in Eq. (18) and then the finite-temperature results 

for the exchange-correlation corrections to the chemical potential given in Eqs. (19) and (20). The 

difference in the calculated subband energies for various inversion charge densities s
N  was found 

to be always less then 5%, even for the worst case. The simulation results for the subband 

separations 10
!  and 1'0'

!  and various inversion charge densities, for the same sample, are shown in 
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Figure 3 and  

Figure 4, respectively. The filled triangles in both figures represent the room-temperature 

infrared resonant absorption measurements due to Schäffler et al. [29]. It is believed that the net 

correction to the subband separation due to depolarization and exciton-like shifts is less that 4%. A 

total of 10(5+5) and 5(3+2) subbands was used in these simulations. We observe that the use of 10 

instead of 5 subbands leads to the increase in the subband separations in both cases throughout the 

whole range of s
N . However, this increase is more pronounced for the primed ladder of subbands. 

For comparison, in both figures we also give the Hartree results for the subband separation. We see 

that the Hartree approximation becomes a better approximation for the subband energy difference at  
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Figure 3. Subband energy difference 10

!   vs. inversion charge density at T=300 K. 
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Figure 4. Subband energy difference 1'0'

!  vs. inversion charge density at T=300 K. 
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elevated temperatures due to the decrease of the exchange energy correction to the chemical 

potential. Our simulation results for the subband energy difference for the unprimed ladder of 

subbands are in agreement with Ref. [27,28]. However, for the primed ladder of subbands, we are in 

better agreement with the experimental data compared to the results of Das Sarma and Vinter. The 

major difference comes from the fact that they use 5 instead of 10 subbands as well as the 

conductivity instead of the density-of states mass. 

 

2.2 Other Simulator Details 
In all the calculations presented here, we assume that the SiO2/Si interface is parallel to the 

[100] plane. For this particular case, the six equivalent minima of the bulk silicon conduction band 

split into two sets of subbands (Figure 5). 

Δ
2-band:

     m⊥=ml=0.916m0, m||=mt=0.196m0
Δ
4-band:

     m⊥=mt=0.196m0,  m||= (ml mt)1/2=0.42m0

Δ
4-band

Δ
2-band

<100> direction

EF

VG>0

E11

E12

E13

E14

<100> direction

(a) (b)

E21

E22

 

Figure 5. (a) Constant energy surfaces in Si together with the description of the Δ2- and Δ4-bands. 

Also shown are the appropriate transverse and in-plane masses for the two equivalent bands. (b) 

Schematics of the band-bending in MOS capacitors. Also shown are the energy levels belonging to 

the unprimed and primed ladder of subbands corresponding to the Δ2- and Δ4-bands, respectively. 

The first index describes the band (=1 for the Δ2-band, and =4 for the Δ4-band), whereas the second 

one refers to the appropriate energy level within the band. 

 

The first set (Δ2-band) consists of the two equivalent valleys with in-plane effective mass 

m||=0.19mo and perpendicular effective mass m⊥=0.91mo. The second set (Δ4-band) consists of the 
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four equivalent valleys with m||=0.42mo and m⊥=0.19mo. The energy levels associated with the Δ2-

band comprise the so-called unprimed ladder of subbands, whereas those associated with the Δ4-

band comprise the primed ladder of subbands. 

The self-consistent solution of the 1D Schrödinger-Poisson problem is obtained in the 

following way: We start with some initial guess for the electrostatic potential and use it to solve the 

1D Schrödinger equation numerically [8]. After we determine the eigenfunctions and the 

eigenvalues that characterize the electrons in the inversion layer, the inversion layer electron density 

appearing in the 1D Poisson equation is obtained by summing over all subbands to get 
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In Eq. (21), 
F
E  is the Fermi level, 

B
k  is the Boltzmann constant, T is the temperature, ||

i
m  is the in-

plane effective mass of the i-th band, Nij is the sheet-charge density corresponding to the j-th 

subband from the i-th band, and gi  ( g1=2 for the Δ2-band, and g2 =4 for the Δ4-band) is the band 

degeneracy. It is important to note that the inversion layer electrons are treated quantum-

mechanically only when confined by the surface-field. If otherwise, or if we relied on the validity of 

the classical description of the inversion layer electron density, we skip the solution of the 1D 

Schrödinger equation and use  

 !
"

#
$
%

& '
=

Tk

zEE
FNzn

B

CF
C

)(
)( 2/1 , (22) 

where NC is the effective density of states of the conduction band. For holes, which are always 

treated classically for p-type substrates, we use 
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EEzE
FNzp

B

FGC
V

)(
)( 21 , (23) 

where 
V
N  is the effective density of states of the valence band, and 

G
E  is the semiconductor 

bandgap. For the evaluation of the Fermi-Dirac integrals, which appear in Eqs. (22) and (23), we 

use the analytical approximation due to Bednarczyk and Bednarczyk [30] 

 [ ]183

21 43)(
!

! += "#x
exF , (24) 

where 
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 ( )[ ]{ }24 117.0exp68.01 6.3350)( +!!++= xxxx" . (25) 

The poly-silicon gates are modeled as heavily-doped single-crystal silicon. Both the electrons and 

holes are treated classically and assuming general Fermi-Dirac statistics, valid for degenerate 

semiconductors. 

After we update the electron and hole concentrations in the semiconductor and/or the poly-

silicon gates, we resolve numerically the 1D Poisson equation for the electrostatic potential using 

finite-difference discretization scheme and LU decomposition method. We then solve the 1D 

Schrödinger equation to find the updated values for the electron density at each mesh point, and 

repeat the above-described procedure until self-consistent solution is found. In is important to note 

that the potential energy profile for the next iteration is obtained by using fixed-convergence factor 

scheme for the first 10 iterations and the extrapolated convergence-factor scheme thereafter. The 

error criterion for the convergence of the self-consistent field iterations is that the absolute value of 

the difference between the input and output potentials at each mesh point is less than 0.01 mV. 

At self-consistency, i.e. once we determine the self-consistent results for the variation of the 

charge distribution on the semiconductor side of the MOS capacitor as a function of the gate voltage 

VG, we proceed with the calculation of the total gate capacitance Ctot. We determine Ctot by 

differentiating the total induced charge density in the channel with respect to VG. In contrast to some 

previous studies [31], where Cinv was approximated with 
avsc

z/! , where 
av

z  is the centroid of 

the electron density distribution, here we calculate the inversion layer capacitance by differentiating 

the total sheet charge density   

 !=
ji

ijs NN
,

 (26) 

with respect to the surface potential [32]. The depletion-layer capacitance Cdepl and the poly-gate 

capacitance Cpoly are evaluated in an analogous manner. 

 

2.3 Some Sample Simulation Results Obtained with SCHRED 
To demonstrate the existence of the two physical origins of the inversion layer capacitance 

Cinv, discussed in Ref. [33], in Figure 6 we show the variation of Cinv with inversion charge density 

Ns in the channel of a MOS capacitor with substrate doping NA = 5×1017 cm-3, oxide thickness tox = 

4 nm and metal gates. Exchange-correlation and image contributions to the effective potential 
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energy term V zeff ( ) , appearing in the 1D Schrödinger equation, have not been included in these 

simulations. 

0.1

1

10

10
11

10
12

10
13

SC

QMC
i
n
v

 
 
[

µ
F
/
c
m

2
]

Inversion charge density N
s
  [cm

-2
]

DOS (SC)

Inversion layer

thickness (QM)

sN

3/1
sN

0.8

0.9

1

1.1

1.2

1.3

1.4

10
11

10
12

10
13

SC

QM

!
s

 
 
[
V
]

N
s
  [cm

-2
]

 
Figure 6. Variation of the inversion layer capacitance with inversion charge density at T=300 K. In 

the inset we show the self-consistent results for the variation of the surface potential with  Ns when 

using both SC and QM description of the electron density in the inversion layer. The surface 

potential is calculated using 
bulkiFoxsciFs

EEEE )()( / !!!=" , where 
i
E  is the intrinsic energy 

level. 

 

The pronounced double-slope behavior of the quantum-mechanically calculated Cinv comes 

from the fact that the total inversion layer capacitance can be represented as a series capacitance of 

two contributions. The first contribution is classical and comes from the finite density of states, i.e. 

due to the fact that a finite change in the surface potential is always necessary to increase Ns (inset 

of Figure 6), which, in turn, leads to finite value for Cinv. This term dominates at low values of Ns 

(low gate voltages). The second contribution to Cinv is due to the finite inversion layer thickness, 

which effectively increases the oxide thickness in terms of the total gate capacitance, thus providing 

an additional capacitance component. This term dominates at large gate voltages, where the 

inversion charge density Ns significantly influences the band bending and leads to a steeper rise of 

the conduction band near the SiO2/Si  interface. 

In Figure 7, we show simulated Ctot to oxide capacitance Cox for metal/p-substrate and n+-

poly/p-substrate MOS capacitors, as a function of the physical oxide thickness tox and the doping of 

the polysilicon gates ND , assuming VG =3 V. The high value for VG , used here, may overestimate 
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the severity of the bias dependent attenuation for thinner oxides, but a consistent value for VG  is 

useful for the purpose of tabulating the simulated results. The results shown clearly demonstrate that 

classical charge model and Maxwell-Boltzmann (non-degenerate) statistics are clearly inadequate 

for oxide thickness below 10 nm. Even use of Fermi-Dirac statistics in the classical charge 

description can lead to significant errors in the estimate of the total gate capacitance for devices 

with metal gates and oxide thickness less than 5 nm, due to the higher surface fields and, therefore, 

pronounced quantum-mechanical size-quantization effect in the channel. For example, the classical 

model that uses Maxwell-Boltzmann (Fermi-Dirac) statistics predicts that, for the device with tox = 1 

nm, C Ctot ox = 0.983 (0.882). On the other hand, the quantum-mechanical model predicts that 

C Ctot ox =0.795, which leads to relative error of 23.65 (10.94) %. As previously noted, the 

depletion of the poly-silicon gates will further degrade the total gate capacitance. 
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Figure 7. Simulated Ctot  to oxide capacitance Cox  for metal/p-substrate and n+-poly/p-substrate 

MOS capacitors, as a function of the physical oxide thickness tox  and the doping of the polysilicon 

gates ND . We use VG =3 V. 

 

The linear region threshold voltage shift between the QM and SC predictions for a device 

with NA=5×1017 cm-3 and tox=4 nm as a function of the doping of the poly-silicon gate is shown in 

Figure 8. The threshold voltage Vth equals the gate voltage for which Qinv = 10-3Qdepl. As expected, 

the QM description of the charge in the channel increases Vth and the shift in the threshold voltage is 

about 74 mV. This is due to the fact that the QM picture differs from the SC one in two ways: First, 

the energy spectrum is not continuous, but consists of discrete energy levels which, in turn, reduces 
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the DOS function. Second, the energy of the ground subband from the unprimed ladder of subbands 

does not coincide with the bottom of the conduction band and the energy difference 
C
EEE !="

11
 

increases with increasing substrate doping. The depletion of the poly-silicon gate, due to insufficient 

doping, further increases the threshold voltage. The additional shift in the threshold voltage due to 

the inclusion of the poly-gate depletion can be as large as 68 mV for 319
cm 10

!
=

D
N , and drops 

down to about 18 mV for 320
cm 102

!
"=

D
N . 
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Figure 8. Linear region threshold voltage shift between the QM and the SC predictions versus ND. 

We use NA=5×1017 cm-3 and tox=4 nm. 

 

The linear region threshold voltage shift for the device with  tox = 4 nm, ND=1020 cm-3, and 

different substrate doping is shown in Figure 9. Also shown in this figure are the van Dort et al. [34] 

experimental data for a device with metal gates and oxide thickness tox=14 nm. Very close 

agreement between the experimentally derived threshold voltage shifts and our simulation results 

for the device with 14 nm thick oxide can be observed. A major difference from the results shown 

in Figure 8 is that the inclusion of both the QM effects in the channel and poly-gate depletion leads 

to strong dependence of the threshold voltage shift upon the substrate doping NA. For example, for a 

device with 4=
ox
t  nm, 318

cm 10
!

=
A

N  and 320
cm 10

!
=

D
N , the inclusion of the quantum-

mechanical space-quantization effect leads to a threshold voltage shift of about 106 mV. The 

addition of poly-gate depletion leads to a further shift in the threshold voltage of about 34 mV. This 

observation, together with the results shown in Figure 9, suggests that both a QM description of the 
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charge density distribution in the channel and poly-gate depletion must be accounted for if accurate 

results for the threshold voltage are desired. 
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Figure 9. Linear region threshold voltage shift between the QM and the SC predictions versus NA. 

3 Modification of the Effective Mass Schrödinger Equation for 

Heterostructures 

Note that in a solid in general, the momentum space is periodic and the true wavefunction is 

approximately the product of a periodic Bloch function and an envelope function. The Schrödinger 

equation can be used to study the evolution of the envelope wavefunction for an electron in the 

conduction band, provided that the effective mass m!  is used in the Hamiltonian. When the 

Schrödinger equation is applied to semiconductors in the effective mass approximation, the 

potential ( )V r is assumed to be only the electrostatic potential, since the effect of the periodic 

crystal potential is accounted for by the effective mass itself. Such model can be used for relatively 

low energies close to the bottom of the conduction band, where a parabolic dispersion relation is a 

good approximation. In semiconductors, some of the most interesting applications of the 

Schrödinger equation involve spatially varying material compositions and heterojunctions. The 

effective mass approximation can still be used with some caution. Since the effective mass is a 

property of a bulk, it is not well defined in the neighborhood of a sharp material transition. In the 

hypothesis of slow material composition variations in space, one can adopt the Schrödinger 

equation with a spatially varying effective mass, taken to be the mass of a bulk with the local 

material properties. However, it can be shown that the Hamiltonian operator is no longer Hermitian 
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for varying mass. A widely used Hermitian form brings the effective mass inside the differential 

operator as  

 
2

1

2 m
!

"

# $
% & ' &( )

* +

h  . (27) 

This approach is extended to abrupt heterojunctions, as long as the materials on the two sides have 

similar properties and bandstructure, as in the case of the GaAs/AlGaAs system in a certain range of 

the Al concentration. One has to keep in mind that very close to the heterojunctions the effective 

mass Schrödinger equation provides a reasonable mathematical connection between the two 

regions, but the physical quantities are not necessarily well defined. For instance, in the case of a 

narrow potential barrier obtained by using a thin layer of AlGaAs surrounded by GaAs, it is not 

clear at all what effective mass should be used for the AlGaAs, since such a region cannot be 

certainly approximated by a bulk. Even more difficult is to treat the case when there is a transition 

between direct and indirect bandgap materials (example, GaAs and AlGaAs with large Al 

concentration).  

Assuming a uniform mesh size x! , the Hamiltonian of the Schrödinger equation can be 

discretized in 1-D by introducing midpoints in the mesh intervals on the two sides of the generic 

grid point i. First, we evaluate the outer derivative at point i with centered finite differences, using 

quantities defined at points (i - 1/2) and (i + 1/2)  
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and then the derivatives defined on the midpoints are also evaluated with centered differences using 

quantities on the grid points  
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The effective mass is the only quantity which must be known at the midpoints. If an abrupt 

heterojunction is located at point i, the abrupt change in effective mass is treated without ambiguity. 

It can be shown that the box integration procedure yields the same result. 
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Another hermitian Hamiltonian operator proposed for variable mass has the form  

 
2

2 21 1

4 m m
! !

" "

# $% &
' ( +( ) *+ ,

- ./ 0

h  (30) 

which is the linear combination of two non-Hermitian operators. It is instructive to compare the two 

formulations. In 1-D, the operators can be rewritten as follows 
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The second operator has an additional term involving the second order derivative of the effective 

mass. For smoothly varying mass, the two approaches are approximately equivalent. If one were to 

use the form on the right hand side of Eq. (32) for discretization of the operator, it is easy to see that 

a direct application of finite differences is awkward. The proper procedure is to apply box 

integration to the interval [i - 1/2; i + 1/2 ]  
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Integration by parts of the first term yields  
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The two integrals cancel, and if the result is divided by the integration length x! , we recover Eq. 

(29). 
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