Lecture 18b Analytical Approaches – Peak Interaction Forces

Peak force during tapping - not directly observable

Arvind Raman Mechanical Engineering Birck Nanotechnology Center

1

Observables/non-observables in dAFM

Observables- quantities directly measured in an AFM

- "Free" or initial amplitude A₀
- Setpoint amplitude A
- Phase lag \u00f3
- Photodiode output $\theta(t)$, bending angle
- Energy dissipation
- Cycle averaged tip-sample interaction force <F_{ts}>

"Known" parameters

- Cantilever equivalent stiffness k
- Natural and drive frequency ω_0 , ω
- Q factor

Non-Observables- quantities

that cannot be directly measured in dynamic AFM

- Tip-sample interaction force history F_{ts} (t)
- Peak interaction force
 F_{ts}^{peak}
- Adhesion, sample elasticity

This is a major point of departure from contact mode imaging where the applied force is known!

PURDUE UNIVERSITY

Tip-sample interaction modelDerjaguin-Toporov-Mueller contact mechanics

 $F_{ts}(d) = \begin{cases} F_{VdW} = -\frac{HR}{6d^2}, \text{ for } d > a_0 \\ F_{contact} \not B - \frac{HR}{6a_0^2} + \int for \ d \end{pmatrix}^a a < 0 \end{cases}$

DMT contact mechaniqs = $E\frac{4}{3}R^*, \sqrt{\alpha} = \frac{3}{2}$ Linear sample stiffness modet k, $\alpha_{s}=1$ (t)

d(t): Gap between sample and tip

R : Tip radius

- H: Hamaker constant
- E^* : Effective elastic modulus
- *k*_{ts}: Sample contact stiffness
- a_0 : Intermolecular distance

Average vs. peak forces

 $\omega = \omega_0 = 100$ kHz, $A_0 = 20$ nm, k = 20 N/m, Q = 100 Es = 1 GPa, Fad = 1.4 nN DMT

Hint: Under "Simulation parameters" tab in VEDA choose X axis as amplitude ratio

Peak forces - analytical expressions

- Using perturbation methods, it is possible to estimate the peak interaction forces for specific tip-sample interaction models^{1,2}
- DMT model in net repulsive regime

$$F_{peak}^{rep} = 1.995 \left(E^* \sqrt{R} \right)^{1/4} \left(k_c / Q \right)^{3/4} A_0^{9/8} \left(A_{ratio} - A_{ratio}^3 \right)^{\frac{5}{8}}$$

Or
$$\overline{F}_{peak}^{rep} = \left(E^* \sqrt{R} \right)^{-1/4} \left(Q / k_c \right)^{3/4} A_0^{-9/8} F_{peak}^{rep} = 1.995 \left(A_{ratio} - A_{ratio}^3 \right)^{\frac{3}{8}}$$

 ¹ S. Hu, A. Raman, App. Phys. Lett., 91, 123106, 2007
 ² X. Xu, C. Carrasco, P. J. de Pablo, J. Gomez-Herrero, A. Raman, Biophysical Journal, 95(5), 2520, 2007

- Max forces at setpoint between 50-60% !!!! Very important result
- Sample viscosity has little effect on the result
- Results are excellent for stiff lever, UHV simulations
- Similitude implies commonality of interaction physics PURDUE

Other peak force expressions

DMT in net attractive force regime

$$F_{peak}^{att} = -2 \times 3^{1/3} \left(HR \right)^{-1/3} \left(k_c / Q \right)^{4/3} A_0^2 \left(A_{ratio} - A_{ratio}^3 \right)^{\frac{2}{3}}$$

• Linear contact spring k_{ts} $F_{peak}^{rep} = 2^{-5/3} 3^{2/3} \pi^{2/3} k_{ts}^{1/3} (k_{eff} / Q)^{2/3} A_0 (A_{ratio} - A_{ratio}^3)^{1/3}$

These formulas suggest peak forces scale with A₀, A_{ratio} and k/Q mainly

SEM of (a) the small lever (SL) and (b) conventional lever (CL) used for this study and phage $\underline{\Phi}29$ capsids imaged with the SL and the CL using acoustic dAFM under nominally similar operating conditions. (c) A tapping mode image of the viral capsid taken with the SL with the inset profile showing the correct height of the capsid. (d) A tapping mode image of the same kind of capsid scanned with the CL with the inset profile showing χ a collapsed virus capsid.

Microtubules scanned by SL for the 1^{st} (a) and 80^{th} (b) time, show that the same microtubule can stand the scanning forces for at least 80 times. Microtubules scanned by CLare either destroyed (c) or flattened (d)

Why?

X. Xu, C. Carrasco, P. J. de Pablo, J. Gomez-Herrero, 10 A. Raman, *Biophysical Journal*, 95(5), 2520, 2007

Evidence

	(SL) BioLever	(CL) OMCL-RC800
Resonance frequency in air (kHz)	43.6	20.1
Q-factor in air	41	53
Resonance frequency in liquid - far from surface (kHz)	9.3	6.0
Resonance frequency in liquid - close to surface (kHz)	8.3	5.4
Q-factor in liquid - far from surface	1.84	1.85
Q-factor in liquid - close to surface	1.02	0.47
Cantilever stiffness* (N/m)	0.063	0.072
Effective mass in liquid - close to surface (kg)	1.9×10-11	5.2×10 ⁻¹¹
Effective mass in liquid - close to surface (kg) PURDUE	2.4×10 ⁻¹¹	6.4×10 ⁻¹¹

UNIVERSITY

One possible solution

 $F_{peak}^{rep} = 2^{-5/3} 3^{2/3} \pi^{2/3} k_{ts}^{1/3} (k_{eff} / Q)^{2/3} A_0 (A_{ratio} - A_{ratio}^3)^{1/3}$

- Q of CL near surface is >2 times that of SL
- K of SL is slightly softer
- Thus force applied is also ~100% greater using CL
 - Viral capsids and microtubules have critical loads where they rupture/buckle (typically ~ 1nN)

Feedback controller for scanning

