

PREVENTION THROUGH DESIGN IN COLLABORATIVE RESEARCH ENVIRONMENTS

John Weaver Facility Manager Birck Nanotechnology Center

The Presentation

- What is Prevention through Design ?
- The Value of PtD in Meeting Safety Challenges
- Implementation of PtD: Real-World Examples
- Integrating Engineering Controls with Procedural Controls
- Summary

What is Prevention through Design ?

- A NIOSH* initiative
 - Launched July, 2007
 - Involves industry, academia, and government
 - Cooperative program to reduce workplace injuries, illnesses, and fatalities
- Addresses workplace hazards through design
 - FacilitiesPractices
 - ProcessesMaterials
 - * National Institute of Safety and Health

What is Prevention through Design ?

- A NIOSH* initiative
 - Launched July, 2007
 - Involves industry, academia, and government
 - Cooperative program to reduce workplace injuries, illnesses, and fatalities
- Addresses workplace hazards through design
 - FacilitiesPracticesMaterials
 - * National Institute of Safety and Health

Prevention Through Design

• NIOSH defines PtD as:

 Addressing occupational safety and health needs in the design process to prevent or minimize the work-related hazards and risks associated with the construction, manufacture, use, maintenance, and disposal of facilities, materials, and equipment.

Prevention through Design

- Consider safety in earliest design stages
 - Risk analysis
 - Overall safety plan
- Implement controls throughout the design process
 - Safety hierarchy
 - Designing in safety
- Implement the designs during construction
 - Bid process and submissions review
 - Systems installation
- Commission the safety systems
 - Ensure proper performance
 - Debug and repair process

Safety Hierarchy

Elimination or substitution

Engineering Controls

Procedural Controls

Personal Protective Equipment (PPE)

Elimination or Substitution

- The elimination of the material or equipment causing the risk.
 - Preferred solution for dealing with risks
- Achieved through:
 - Process and equipment modifications
 - Substitution of nonhazardous materials for the hazardous materials
- Example of substitution
 - Use of material quantities or concentrations that cause the material to fall below the hazard threshold

Engineering Controls

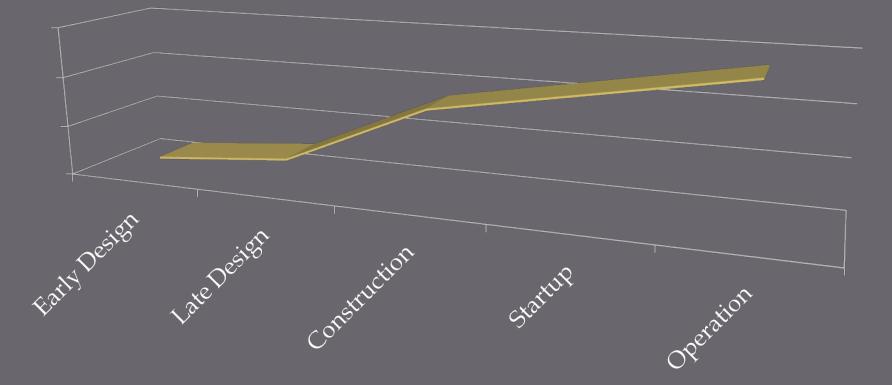
- Devices that prevent exposure to the hazard
- Used when elimination or substitution is not practical
- Designed to control the hazard without effort by the person using the equipment or material
- May be active or passive in nature
 - If active they should be automatically activated when the hazard or the person is present.

Procedural Controls

- Least desirable hazard controls
- Require activation by the person using the equipment or materials
 - Susceptible to failure.
- Sometimes necessary
 - Far more desirable to implement engineering controls or eliminate/substitute the hazard.

Personal Protective Equipment (PPE)

- Used as a procedural control to minimize hazards
- Used to provide a second level of safety when engineering controls are used.


Why Use Prevention through Design?

Cost effective

- Cost of implementation increases through project duration
- Capability
 - Many controls cannot be retrofitted must be designed into the system
 - Less need to compromise on type of control if designed in from the beginning

Cost of Implementation

Relative Cost of Implementation

PtD Summary

- Prevention through Design is a major NIOSH initiative
- Can be applied to facilities, equipment, procedures, processes, products, and materials
- Stresses the need to consider safety early in the design cycle
- Provides better cost effectiveness and increased capability of control implementation

Prevention through Design

- Utilize engineering controls as primary control
- Use operational controls for secondary control (redundancy)
- Implement these controls in the design phase
- Can be designed into original or retrofit to existing
 - Building
 - Process
 - Product

In short:

Make it easier to do it the safe way!

What is PtD?

The easiest way to describe PtD is to show it in action

- Vignettes of PtD solutions to facility issues
- A "deep dive" into PtD solutions for gashazard mitigation

Problem: Safety glasses required

- Safety glasses are required in many areas
- Violations of policy are common
 - Person forgets to bring glasses to lab
 - Person entering lab to "pick up something" and does not bring glasses
 - Visitors touring lab, guide did not bring glasses
- Can result in eye injury even when in lab for a short time
- Degrades general laboratory discipline

PtD Mitigation: Safety glasses stocked at laboratory entrance

- Safety-glasses holders with spare safety glasses are located inside the door of each laboratory or other area where safety glasses are required
- User returns glasses to holder when exiting
- Stock levels inspected and replenished weekly

Problem: Building Alarm Systems

People must remember the meanings of various alarm tones

- "Evacuation tone" vs. "Take Cover" tone
- No international standard on tones different companies and universities have different tones for different warnings
- During an emergency situation, people don't always think clearly
- Significant risk accompanies incorrect interpretation of an alarm tone
 - Taking cover in building during an evacuation
 - Exiting the building during a tornado alarm

PtD Mitigation: Alarm System Design

- Tone with spoken instructions for evacuation
 Identifies type of emergency
 Gives specific instruction on what to do
- Text messaging system
 - Appropriate staff are notified of situation
- Communicates with Building Security System
 - Doors lock and unlock as appropriate

Building Security System Response to Alarms

- Normal Operation
 - Public areas open during business hours
 - Nighttime access only to trained personnel
 - Laboratory and cleanroom access according to training
- Evacuation
 - Lock all outside doors
 - Unlock all inside doors
- Tornado Alarm
 - Unlock all outside doors
- Workplace violence incident
 Outside doors to BNC employees only

Problem: *Summoning assistance during a laboratory emergency*

- A chemical exposure requires person to use an emergency shower-eyewash station
 - May need assistance but cannot communicate outside laboratory while in shower
 - Lab "buddy" may not be immediately available
 - Lab "buddy" may be occupied in helping person in shower

PtD Mitigation: Flow-Monitoring of Eyewash Stations

- Building control system monitors the flow in an eyewash – safety shower station
 - Eliminates human intervention in summoning help
 - Pages appropriate staff
 - Sounds alarm as required
 - Logs activity, time-stamp for an incident
 - Useful in after-incident evaluation

Problem: Enforcement of Training Completion

- Training courses are required
 - After-hours building access
 - Laboratory access
 - Courses depend on hazards present in laboratory
 - Cleanroom access
 - Biocleanroom access
- It is difficult to enforce completion of training courses
 - Faculty
 - Students
- Training expires after period of facility non-use
 Difficult to enforce refresher compliance

PtD Mitigation: *Access Dependent* on Training Completion

- Office keys (including faculty) issued only on completion of building training
- Laboratory, cleanroom, biocleanroom access allowed on completion of training
- Building security system ensures compliance
 - Access card issued during completion of building training
 - Card activated only for areas where requisite training has been completed
 - Card deactivated when training has expired

Problem: Liquid chemicals must be transported to point of use

- Liquid chemicals staged in chemical storage room near point of delivery
- Chemicals must be transported from this location to their point of use
- Vulnerable to an incident that would result in a spill
 - Dropped chemical bottle
 - Leaking chemical bottle
 - Collision with transport cart
 - Especially during an emergency evacuation

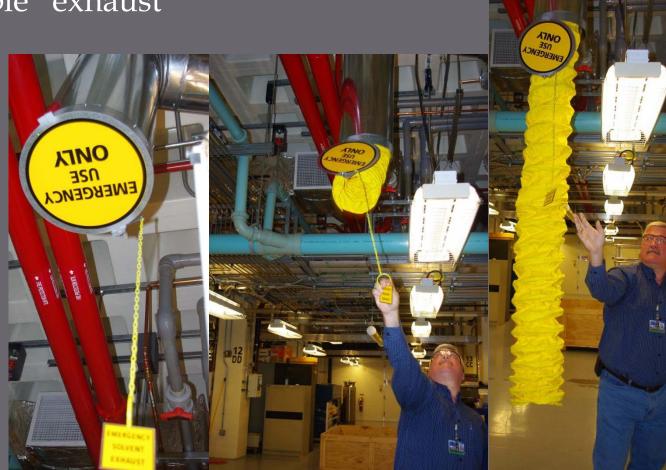
PtD Mitigation: Liquid Chemical Protection

Overpacks

- Special design protects from breakage and contains leaks and spills
- Two-piece design cannot be used independently
- Containment carts
 - Contains at least the volume of the largest container being transported on cart

PtD Mitigation: Liquid Chemical Delivery Route

- Transport path that does not cross exit corridors
 - Emergency exits on either side of transport corridor
- Dumbwaiter to cleanroom
 - Unmanned transportation route


Problem: *A liquid spill event gives off vapors*

- Vapors given off by liquid spill can cause problems to facility and/or its occupants
 - Corrosive vapors damage nearby equipment
 - Toxic vapors cause health risks
- Vapors often exhausted through equipment enclosures
 - Damages components when passing through enclosure
 - Endanger people between spill and enclosure

PtD Mitigation: Designing for an Emergency

- Emergency exhaust systems
 - Fixed exhaust
 - "Flexible" exhaust

Problem: *Access to critical* equipment settings

 Hazards can be created by unauthorized people changing equipment settings

- Gas valves and flow settings
- Electrical connections and power
- Interlocks and safety settings

 Motivated by user "trying something new" to perform specialized experiment

PtD Mitigation: *Equipment Controls*

- Bulkhead mounting of equipment
 - Operations access from cleanroom bay
 - Maintenance access from chase
 - Only staff are allowed in chase
- Uses fixed barrier rather than procedural control

Problem: Use of Hazardous Gaseous Processing Materials

- Pyrophoric gases / Detonable gases
 - Silane
 - Germane
- Flammable gases
 - Hydrogen
 - Dichlorosilane
 - Methane

- Toxic gases
 - Arsine
 - Phosphine
 - Fluorine
 - Chlorine
 - Boron Trichloride
 - Hydrogen Chloride
 - Nitric Ŏxide
 - Nitrogen Dioxide
- Non-hazardous gases
 - Nitrogen
 - Helium
 - Argon
 - Oxygen

PtD Mitigation: *Facility Designs to Reduce Risks from Hazardous Gases*

> A Systematic Application of Prevention through Design Implementation

A "Deep Dive" into PtD

The Hierarchy Applied to Gas Hazard Mitigation

Prevention

- Building security design
- Separate dock area
- Outdoor storage area
- Pyrophoric bunker
- Flammable and toxic gas rooms
- Gas Cabinets
- Distribution System

_Engineering Controls

Prevention => Monitoring => PPE

The Hierarchy Applied to Gas Hazard Mitigation

Monitoring

- Monitoring Systems
- Automated Response

Emergency shut-off

- Personal Protective Equipment
 - Air packs
 - Air-Line Cart

Engineering Control

Procedural Controls

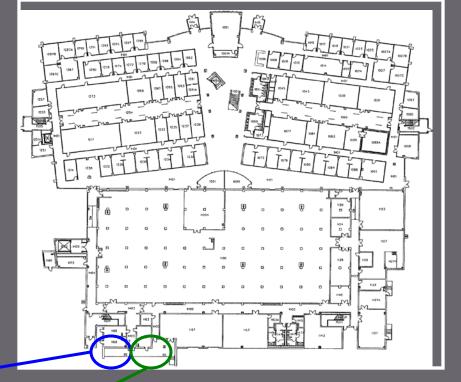
Prevention => Monitoring => PPE

Building Security Design Engineering Controls

- Card-Access levels
 - Public spaces distinct
 - Laboratory security
 - Cleanroom security
 - Support areas
- Special keys/access
 - High-hazard areas
 - High-vulnerability spaces
- Camera systems
 - Recording devices for documentation
- Automation during emergency
 - Lock all exterior doors
 - Unlock all laboratory doors
 - Supplemented by "door guards"

Building Security Procedural Controls

- Card-Access levels
 Cultural change: Access is not prestige
- Discipline for Circumventing Security
 - Propping open doors
 - "Tailgating" into secure spaces
- Access recordkeeping
 - Provides documentation for discipline
 - Assists in after-incident analysis


Problem: Dock Area Traffic with Hazardous Chemicals Present

- Typical dock area
 - Fork-truck traffic
 - Large-equipment movement
 - Numerous deliveries throughout day
- Staging area
 - Location of materials and equipment prior to movement to final location
 - Items may be present for extended periods
- Access Requirements
 - Untrained personnel (e.g., truck drivers)
 - Pedestrian traffic

PtD Mitigation: Separate Dock Area and Outdoor Staging Area

- Used for loading and unloading chemicals only
- Outside of building traffic patterns
- Locked staging areas
- VERY limited access to staging areas

Outdoor storage area -

Chemical dock

Chemical Dock and Gas Storage

Problem: *Pyrophoric and Detonable Gases*

Pyrophoric gases required

- Spontaneously ignite when in contact with oxygen levels present in air
- Detonable gases
 - Some pyrophoric gases (e.g., silane) are detonable
 - Pocket without burning
 - Detonate when mixed with air
 - Lethal pressure wave when detonation occurs

PtD Mitigation: *Pyrophoric bunker*

- Poured concrete structure
- Blow-out wall and ceiling
- Remote purging
- Very limited access

Pyrophoric Bunker

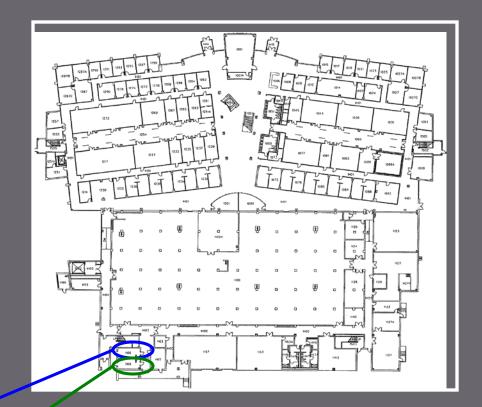
Pyrophoric Bunker

Problem: *Toxic and Flammable Gases*

- Toxic and flammable gases needed
 - Highly toxic gases like arsine and phosphine
 - Flammable gases like propane and methane

PtD Mitigation: Isolation and Protection

Isolation


- Primary control: Gas Cabinets
- Secondary control: Gas Rooms

Protection

- Distribution system
- Monitoring systems
- Emergency shutoff
- PPE

Flammable and Toxic Gas Rooms

- Separate rooms for flammables and toxics
- Explosion-proof construction
- Very limited access
- Close to chemical dock and storage

Gas Cabinets

- Gas cabinets are required for all hazardous gases (3 or higher on the NFPA scale)
- Automated operation to ensure proper purging
- Redundant safety features with emergency shut-down
 - Excess flow
 - System failure
 - Reduced-flow orifice
- All cabinets contain fire sprinklers
- High exhaust flow 200 cfm at 0.02 in. H2O

20 September 2010

Gas Cabinet Exhaust

- Magnahelic gauge on cabinet exhaust
 - Visual display that exhaust is functional
 - Redundant with automatic cabinet shutdown

Distribution System

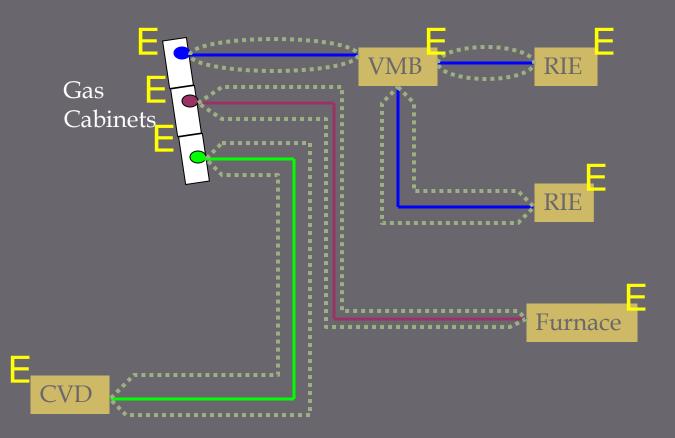
Doubly contained pipingCoaxial stainless steel piping

Protected overhead runs

Rigorous welding requirements
 certified welders
 certified welds

20 September 2010

Monitoring Systems for hazardous gases


Sensing ("sniffing") System

- Senses presence of hazardous gas
- Used where there is single containment
 <u>Points of d</u>elivery
 - Points of use
- Interstitial-Pressure Monitoring
 - Used to monitor doublecontainment efficacy

Monitoring Schematic

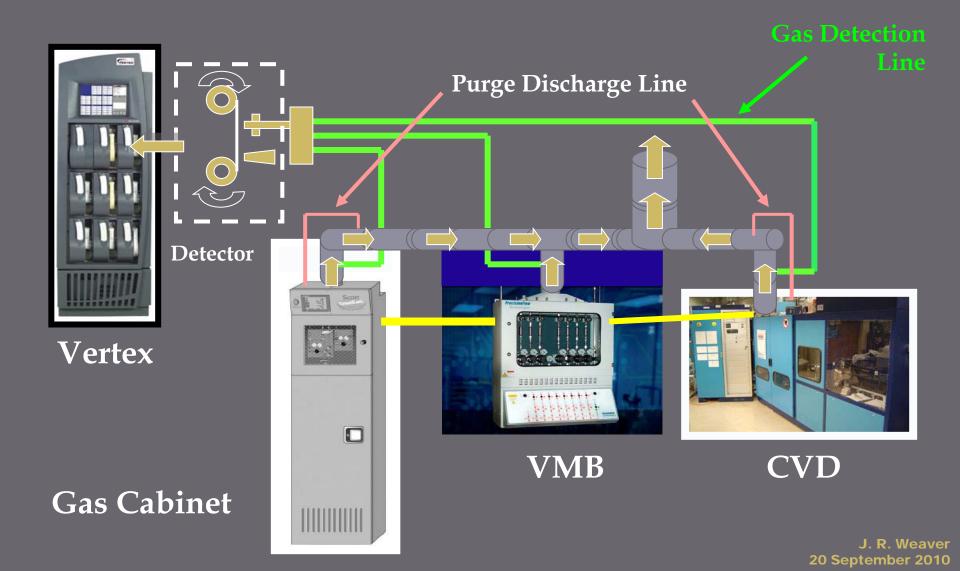
Gas sensors immediately downstream

Individually Monitored Section of Continuous Piping

Gas Sensing

Hazardous-gas monitoring system

- Senses gases in low concentration
- 72 detection points
- Three different families of gases
 - Hydrides
 - Halides
 - Chemical-specific
- Two levels of alarm
 - Danger (Evacuate) = 100% TLV
 - Warning (Page) = 50% TLV


Gas Sensing (continued)

Used in areas of single containment

- Gas cabinets
- Valve-Manifold Boxes (VMBs)
- Equipment enclosures
- Monitor in exhaust duct immediately downstream from potential leaks
 - High turbulence area
 - Complete mixing of exhaust
 - More likely to sense a leak than inside a cabinet

Gas Sensing Locations

Doubly contained piping

- Inner piping carries
 hazardous gas
- Outer piping contains inert gas (Ar)
- Outer gas is 50% the pressure of the inner gas
 - Pressure rise indicates leak in inner piping
 - Pressure drop indicates leak in outer containment
 - Pressure to zero indicates catastrophic failure

Real-time monitor tracks pressure and initiates action

Actions in Event of a Dual-Containment Alarm

Rise or fall of interstitial pressure

- No hazard exists
 - Bleed-down of pressure
 - Breach in redundancy
- Text message to appropriate staff
- Interstitial pressure goes to zero
 - Catastrophic failure of piping
 - Potential for high hazard
 - Evacuate facility
 - Shut off gases at cylinder valve

Integration of Monitoring Systems

- Pressure Monitoring System ties into
- Gas Sensing System

ties into

- Fire Alarm System
 - Paging of first responders
 - Building evacuation annunciation
 - Summoning emergency responders police and fire

Emergency Gas Shut-Off

- Mushroom switch with protective cover
- Located at exits where hazardous gases are used
- Shuts down all hazardous gases at their source
- Sounds building evacuation alarm

Procedural Control

Personal Protective Equipment

Self-Contained Breathing Apparatus (SCBA)

- Air-pack for short-term maintenance and cylinder changes
- Air-Line Cart
 - Long-term supply air for extended maintenance activities

Procedural Control

Summary

- A population of diverse cultures and technical backgrounds provides particular challenges to occupant safety.
- The NIOSH Prevention through Design initiative provides a method for mitigating risks through design elements rather than procedural controls
- Procedural controls are used as a secondary element – redundancy – in the development of workplace safety systems

Acknowledgements

- The design-for-safety concepts executed in the Birck Nanotechnology Center were – and are – a major team effort. Some key members who created the designs shown in this presentation are:
 - The BNC Engineering Staff 28 of the best engineers and scientists with whom one could ever work!
 - Purdue Radiological and Environmental Management
 - Purdue University faculty involved in nanotechnology
 - HDR Architecture

