Lecture 17
Cantilever eigenmodes, equivalent
point mass oscillator, analytical
approaches

Arvind Raman
Mechanical Engineering
Birck Nanotechnology Center
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Cantilever zigenmodes
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Point mass vs. continuous oscillator?

The point mass model was derived with the
assumption that cantilever mass was <« tip mass

The shape of the oscillating beam in the point mass
model is assumed to be that of a statically bent
beam under a tip force

The point mass model does not predict any
oscillation modes beyond the fundamental

How to include spatially continuous nature of the
AFM cantilever and yet enjoy the simplicity of a
point mass model?
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Transverse viorations of classical bzarm

p(x. 1)
v, 11
M(x) < T l >M(x+Ax)
x—, V(x+Ax)

p(x,t): external force per unit
length

A: Area of cross section

p: mass density of cantilever

Bernoulli-Euler
beam theory

PURDUE

V (X)+ p(X,1)AX =V (X + AX) = (0 AAX)W,

as Ax —» O we get pAw = —ﬂ+ pP(X,t)

OX
or
. 0° o*w
Aw = — + p(Xx,t) = —El + p(X,t
P P p(X,t) Ve p(X,t)
Or

4

AW +El 2 N pixt)

X4

Tobe solved with boundary conditions
w(0)=0

oW

ax (=0

V(L) = El 83";’ (L) = 22
OX

M(L) = EI 82";’ (L) = 22
OX



Transverse vibrations of classical bearm
To calculate eigenmodes and natural frequencies,
one can set p(x,t)=0 and any damping=0

P (D
X
Let  w(x,t)=a(x)T(t) (2)
El
( AA)d%(X) o 1dT7 =const = w”* (3)
d(x)  dx* T(t) dt?
T(t) = Asin(wt) + B cos(at) P(X) =Ce™ (4)
(4)In (3a) >

A= NV Y NSV BN ©

#(x)=Ce”™ +C,e +C.e” +C,e™”
= C, sin(fpx) +C, cos(px) +C, sinh(pBx) +C, cosh(fx)

and o= p° |— El
pA
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Tre ansyerse vioraTtions of classical beam

Assuming n ible tip mass
#p(x)=C cgos(%x +C, sﬁ)n(ﬂx)+C cosh(Bx) +C, sinh(3x) where g* = AC‘)ZI
o°w o°wW
0)=0, —(0)=0, EI L)=0, EI L)=0
w(0) ax( ) o 7 (L) = ~ 2( )

C,=C,=0and
C,(cos(pL)+cosh(pL))+C,(sin(pL) +sinh(pL)) =0 (2)
C,(—sin(pL) +sinh(pL)) +C,(cos(pL) + cosh(pL)) =0

or { cos(SL) +cosh(pL)  sin(pSL) +sinh(fL) HCZ} 3)
—sin(pL) +sinh(pL)) cos(pL)+cosh(pL) || C

for solutions where C,, C, # 0 we must have

cos(pL)cosh(pL)+1=0 (4)

cos(pL) +cosh(pL) c (5)
sin(AL) +sinh(pL) °
Solving (4) yields (,BL)1 =1.875, (,BL)2 = 4.694, (,BL)3 =7.855......
So that the eigenmodes are

cos(p,L)+cosh(p L)

$n () = (cos(/,x) — cosh(/5,x)) -~ (5.L)+sinh(5.L)
PURDUE Normalize so that ¢ (L) =1

and C, =-

(sin(,x) - sinh($,x)) (6)



st o]
1 elgenmode( pL), =1.875,(BL), = 4.694, (BL), = 7.855......

Thus

\ w0, 0, ...=1:6.26:17.55:...

for a uniform rec tangular lever with negligible tip mass

2"d eigenmode

T

3rd eigenmode
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cquivalent point mass oscillator
——% v Yi(t)=Yicos(wt)

k.
y(t)=Ycos(wt) p, A, L, E I S f m,
Y3 T\ ___________________________ 3 255 :::_-_:::T
Z )= - T F.r‘.v d
DO S

Energy based equwalence principle

d j¢(x>dx
—kq :—jEl[ X¢jdx “mgq __ij ) dx Y, Y[ ]f(

dsz jdx

For negligible tip mass

k, =1.03k, k, = 40.5k, k, = 317k

m =m,=m, =....=0.249 pAL

Y, ~1.5Y

PURDUE Melcher et al, App. Phys. Lett. 91(5), 2007 &



cfrect of Tip rmass

Not much effect on first mode shape

Big effect on second and higher mode
shape

Often k,~60-80k etc.

R. Tung, T. Wutscher, D. Martinez-Martin, R. Reifenberger, F. Giessibl, A. Raman,
Journal of Applied Physics, 107(10), 104508, 2010.

D. Kiracofe, A. Raman,
Journal of Applied Physics, 108, 034320, 2010
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" Vibrations of triangular cantilevers can be thought
of as two cantilevers joined together at their tip

" Leads to symmetric and anti-symmetric eigenmodes
" However the point mass oscillator equivalence holds

10
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Analytical descriptions of AM-ArFM

So far we have resorted to numerical
simulations (VEDA) of the point mass model
or linearized the equations

Perturbation methods are quite useful too

to help understand
Origin of phase contrast
Origin of amplitude reduction
Average forces while tapping
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Phase Contrast

d i
FFFFFFF

Extender
Electronics

——am plitudle

——phase

phase

AFM height (left) and phase (right) images
of poly(methylmethacrylate)

(Veeco, Inc.)

- Regular tapping mode implemented but signal phase monitored
- But what does a phase contrast image mean really?

PURDUE
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Analytical deseription of AM=AFM

1
Forcing

I If(*r)

X(f)x
mxX = —kx —cx + F, cos(wt) +F_(d,d) d(ﬂZ+><(ﬂ\ ¢ I
y Z
LZ+ X+t % = 1(FO cos(wt) + Fts(d,d)) where
[N @,Q k
with @, = 5,0 =M%
m C

Let x(t)= Acos(wt—¢) sothat x(t)=d(t)=—Awsin(wt—¢)
¢ is phase lag A s the setpoint amplitude

Substitute (2) in  (1),we get

2 o

PURDUE

D

(2)

(3)
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cnergy dissipation

x(t) = Acos(wt —¢) sothat X(t) =d(t) = —Awsin(ot — ¢) @
_ [%T _1J cos(wt — @) —[wajsin(a)t —$) = %{FO cos(at) + F(d,d)) (2)
2;1:Sin(0)t — )= (D)dt = _[wi)ng — —%% F, sin(#) +%2t’].’:sin(wt — $)xF,_(d,d)dt
Or, sin(g) = ‘;?{Qa;o B nklAz ZtT:(_Aa)sin(a)t —¢))><Fts(d,d)dt} — ';’j‘ {QCZ)O — ”klAz Ediss}

(3)

(4)

A/ A= consTant in Tapping mode scan

Sin(¢) contrast = energy dissipation contrast!
PURDUE . cowski et al App. Surf. Sci. 140, 376, 1999 g
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Analytical description of AM-AFM

Conversely

Eq. (7) relates the energy dissipated per cycle due to
tip-sample interaction to observables

By quantitative knowledge of Q, k, A, Ay, and ¢ it becomes p
ossible to know in an experiment the energy dissipated in
eV or pJ per cycle

PURDUE 15



The virial

x(t) = Acos(wt —¢) sothat x(t)=d(t) =—-Awsin(wt — ¢) D

_((ﬂj _1J cos(wt — @) —( a)QJsin(a)t —@P) = %{FO cos(wt) + F, (d,d)} (2)

W

ZTWCOS(O)'[ — @) X(D) dt = —[(ﬁj — ]g = %g F, cos(®) + %Zj: cos(wt — @) xF._(d,d

t=0

Or,cos(¢)=ll<:—A<— [ﬁj ) 27]‘/0)(Acos.(a)t—¢))><Fts(d,o'l)dt}

(0]

Or,cos(¢)=ll<:—A<— [ﬂj —1 —é(ﬁ@x)}

virial

(3)
(4)

os(¢) maps virial (a measure of conservative interactions)
PURDUER: 16
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Last comments on pnase
Pay attention to whether your system plots phase

lead or phase lag (How?)

Always make sure to plot phase in degrees not in
Volts

Only when you plot sin(¢) is it a map of
dissipation, with energy dissipation
scaling as sin(¢)-A/ A,

When cos(9) is plotted, it is a map of local conser
vative interactions

In a sense the oscillator settles to a value of phase
lag which is a balance between conservative and
dissipative interactions

In liquids even the interpretation of sin(¢)
PURDUE s different H
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(g). b,c, The above considerations are illustrated by comparing the topography
an aggragate of three Salmonelia typhimurium cells covered by an extracellula
palymeric capsule (b) and the phase image (c), that is acquired simultaneously
the topography, reveals the inner structure of the cell as well as the continuity 1
flagellae. (R. Avci ef af. ref. 49 © 2007 American Chemical Society).

=  From Garcia et al
Nature Materials, 6, 2007

PURDUE
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_Phase contrast imaging in air/vacuum

Figure 4 Complex microdomain structure of a block copolymer. The AFM images are
rendered into three-dimensions using the height image as height-field and the phase
image as contrast. The images show the formation of terraces in a thin film of SBS
block copolymer and the systematic change of microdomain structures along the
changes in film thickness from 32 nm at the lowest terrace to 57 nm at the higher
terrace. Reprinted with permission from ref. 54.



Next Time
Please Read Garcia and Perez in the

reader

Other analytical results (average
force, peak force,
amplitude reduction)

PURDUE
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