Lecture 20
VEDA: Scanning controls

Daniel Kiracofe (drkiraco@purdue.edu)
Mechanical Engineering
Birck Nanotechnology Center
Why use VEDA scanning simulations?

- Understand the effects of various parameters such as feedback gains and setpoint so that you can quickly and easily optimize your images when scanning.

- Understand common imaging artifacts so that you can recognize them in your images.
Outline

- Contact mode scanning tool
 - Basic operation and features
 - Demonstration: Tip-sample convolution
 - Scanning parameters: controller gains, setpoint, speed
- Amplitude modulated scanning
 - Demonstration of basic operation and features
 - Phase contrast
 - Jumps between attractive and repulsive mode
Tip-sample geometry convolution

- Question: what happens to your image as the feature size gets much smaller than your tip radius?
- Demonstration:
 - Start with a 5 nm tip radius, substrate length of 40 nm, sinusoidal feature of length 35 nm, and include geometric convolution
 - Reduce the feature width down to 1 nm over a few runs and see what happens.
Effects of controller gains: “easy” topography

- Sinusoidal features are “easy”, because topography is continuous, smooth.
- Good imaging is possible with pure integral gain and zero proportional gain.
- Increasing gain gets better image, but if you go too high, controller becomes unstable.
- Demonstration: defaults except 100 lines/s, increasing integral gain.
Setpoint and forces

- Defaults except: Hertz, step, setpoint 0.1 nm
- Steps are more difficult – discontinuous. rise time & parachuting
- How to reduce parachuting?
 - Increasing integral gain: 0.04 -> 0.5. tradeoff: closer to instability, overshoot at leading edge
 - Increase setpoint: 0.1 -> 1 nm. tradeoff higher mean forces
 - Slow down scan, 10 lines/s -> 3
 - Proportional gain: reduces overshoot/slow rise time
Problem

Start with all the defaults except:
 tab 3: substrate length 40 nm,
 tab 4: feature = cylinder, dia = 20 nm, height = 20 nm

- Can you optimize the imaging parameters?
- Change control P & I gains, setpoint, and scan speed.
- Try to keep measurement error at X=11 and X=31 under 0.2 nm, and keep peak interaction force under 2.5 nN.
- Obviously if scan speed is very very slow, this will be easy to meet, so see how fast you can scan and still meet the requirements.
Outline

- Contact mode scanning tool
 - Basic operation and features
 - Setpoint and forces
 - Tip-sample convolution
 - Effect of controller gains

- Amplitude modulated scanning
 - Demonstration of basic operation and features
 - Phase contrast
 - Jumps between attractive and repulsive mode
AM scanning

- Advantages: tip-sample forces much reduced over contact mode (especially lateral forces)
- New ability: multiple vibration properties such as amplitude, phase, allow creating many different types of imaging modes, obtaining information about sample composition
- Complexity: must consider attractive vs. repulsive regimes, data interpretation may be quite difficult.
Demonstration: attractive vs. repulsive

- amplitude setpoint has same properties as deflection setpoint in contact mode: tradeoffs between controller response and mean force:
- additionally affects imaging regime
- AMS ex 3, setpoint 0.6, sample H = 3.0e-20
Phase contrast

- In the simplest possible behavior, tip motion is a sine wave, which can be described by three numbers: frequency, amplitude, and phase.
- In AM-scanning, frequency is fixed, amplitude is controlled by Z feedback, but phase is not controlled.
- Variations in phase can give us information on the sample
Problem

While imaging a two component-blend polymer sample with a tapping mode cantilever in air, how does the phase contrast image depend on the viscoelastic properties of the two blends?

Load AMS example 2

Make setpoint=0.6, Kp=0.1

Choose DMT with viscoelastic interaction model (H=10-19 J, Fad=2 nN)

1) Make $E_{\text{feature}}=5$ GPa $E_{\text{substrate}}=1$ GPa, but $\text{visc}_{\text{feature}}=\text{visc}_{\text{substrate}}=0$ Pa-s– Do you see phase contrast?
2) Make $E_{\text{feature}}=5$ GPa $E_{\text{substrate}}=1$ GPa, but $\text{visc}_{\text{feature}}=100$ Pa-s $\text{visc}_{\text{substrate}}=1$ Pa-s– Do you see phase contrast?
3) Make $E_{\text{feature}}=5$ GPa $E_{\text{substrate}}=1$ GPa, but $\text{visc}_{\text{feature}}=1$ Pa-s $\text{visc}_{\text{substrate}}=100$ Pa-s– Do you see phase contrast?
4) Explain your results
Problem

- You are scanning a MW CNT (diameter 10nm, $E_{\text{eff}}=20$ GPa on a Silicon surface)
- Start by loading Example 1 in AMS tool
 - tab 1: start with 33 line/s (decrease simulation time)
 - tab 2: Assume effective Hamaker const on Si = 10^{-19}
 - tab 3: modify substrate len = 15
 - tab 4: set feature len = dia = 10. $E = 20$, $H = 10^{-20}$ J, assume similar adhesion forces
- Tune feedback control parameters for optimal imaging (i.e. low measurement error, low forces, fast scan speed)
- Parameters you might change:
 - unconstrained amplitude, setpoint ratio, P & I gains, scanning speed.
- If you finish early, explore effect of lock-in amplifier parameters
Final Thoughts

- VEDA development is user driven. If you have comments, suggestions, bug reports, or feature requests, send them in: drkiraco@purdue.edu