Welcome!

Device Characterization with the Keithley Model 4200-SCS Characterization System

Speed and Timing Considerations

Factors Affecting Measurement Time

Internal to 4200:

- Settings in the Timing Window: speed mode, A/D time, filter factor, delay factor
- Current measurement and source range
- Number of data points in the sweep
- Number of SMUs in taking measurements in a test

External to 4200:

- Resistance of DUT
- Cables: guarded vs. unguarded
- Test Fixturing: probers, switch matrix

Settings in the Timing Window

- Fast Speed: Optimizes measurements for speed at the expense of noise performance.
- Quiet Speed: Optimizes for low noise measurements at the expense of speed.
- Delay Factor: enables longer settling times for low current measurements. The higher the number, the longer the measurement time.
- Filter Factor: Reduces measurement noise by averaging multiple readings. The higher the setting, the longer the measurement time.
- Hold Time, Sweep Delay, and Interval: User inputs delay to allow for sufficient settling time.
- A/D Integration Time: The larger the A/D time, the lower the noise, the increase in measurement time.

How Does External Noise "Pick-up" Affect a Measurement?

Noise signal superimposed on DC signal being measured may result in highly inaccurate and fluctuating measurements

Line-Cycle Integration

Power lines are principal sources of noise. Integration of power line noise over precisely one or more full cycles cancels this noise.

Settling Time

Settling Time is the time that a measurement takes to stabilize after the current or voltage is applied or changed.

Factors affecting the settling time include:

- Instrument (4200) varies mainly with current range, the lower the current range, the longer the settling time.
- Cables, Test fixtures, Switches and Probers – the higher the shunt capacitance (C_{SHUNT}), the longer the settling time
- DUT the higher the source resistance (R_S), the longer the settling time

Settling Time

The settling time is the result of the RC time constant, or τ .

$$\tau = R_S C_{SHUNT}$$

Example, if $C_{SHUNT} = 10 pF$

$$R_S = 1T\Omega$$

Then, $\tau = 10 \text{pF} \times 1 \text{ T}\Omega = 10 \text{ seconds}$.

Therefore, a settling time of 50 seconds would be required for the reading to settle with 1% of final value!

NOTE: Using triax cables and guarding will reduce the shunt capacitance of the test circuit.

Ways to Reduce Test Time

- Used a fixed measurement range, if possible.
- If autoranging is unavoidable, use limited auto feature.
- Use less points in the sweep.
- Turn off all unnecessary measurements.
- Optimize the speed settings.
- Reduce (or set to 0 seconds) the Hold Time, Delay Time, and Interval Time settings.
- Use triax cables and guarding.

Definition Tab Timing

The timing window is used to configure ITM timing settings for the SMU:

- Select Speed Mode Settings: Fast, Normal, Quiet, or Custom
- Configure custom Delay Factor, Filter Factor, and A/D Integration Time (in Custom Speed Mode only)
- Add delays for Sweeping Mode and Sampling Mode.
- 4) Set the SMU power-on sequence when a test is started.
- 5) Enable a timestamp to be recorded for each

Definition Tab Timing – Speed Settings

Speed Settings:

- Fast: Optimizes the 4200 for speed at the expense of noise. Good choice if noise and settling times are not concerns.
- 2) Normal: The default and most commonly used setting. Provides good combination of speed and low noise and is the best setting for best cases.
- Quiet: Optimizes for low noise measurements at the expense of speed.
- 4) Custom: Enables fine tuning of timing parameters to meet a particular need. With custom you can configure the A/D integration time and delay and filter factors.

Definition Tab Timing – Speed Settings – Delay Factor Setting

Delay Factor Setting:

- After an applied current or voltage, the SMU waits for a delay time before making a measurement. The delay time allows for source settling.
- The default delay time is pre-programmed and range-dependent.
- The Applied Delay Time = (Default Delay Time) x (Delay Factor)

For Custom measurement Speed, you can enter a custom delay factor from 0 to 100.
 Summary of allowed Delay Factor settings

Speed Mode	Delay Factor Settings
Fast	0.7
Normal	1.0
Quiet	1.3
Custom	0 to 100

Definition Tab Timing – Speed Settings – Filter Factor Setting

- To reduce measurement noise, the 4200 SMU applies filtering which may include averaging of multiple readings to make one measurement.
- The SMU adjusts the filtering according to the measurement range.
- Filter Factor is a White Noise Reduction factor. If it is set to 2, it reduces the noise buy a factor of 2.

Summary of allowed Filter Factor settings

Speed Mode	Filter Factor Settings
Fast	0.2
Normal	1
Quiet	3
Custom	0 to 100

Definition Tab Timing – Speed Settings – A/D Integration Time

The A/D Integration time box controls the A/D converter integration time used to measure a signal.

- A short integration time results in a relatively fast measurement speed at the expense of noise.
- A long integration time results in a relatively low noise reading at the expense of speed.
- Integration time setting is based on the number of power line cycles (NPLCs). For 60Hz line power, 1.0 PLC = 16.67msec (1/60)

Summary of allowed A/D Integration Time settings

Speed Mode	A/D Integration Time Setting
Fast	Auto
Normal	Auto
Quiet	Auto
Custom	0.01 to 10 PLC

Definition Tab

Timing - Sweep Mode and Sampling Mode

Normal Sweeping

Custom Sampling

ITM Timing		X
Speed C Fast C Normal C Quiet C Custom	Delay Factor: Filter Factor: A/D Integration Time:	0.3 0.4 6
Sweep Delay:		Sampling Mode Interval: 0.25 S T #Samples: 10 Hold Time: 1 S T
NOTE: Remove		functions to allow Sampling Mode selection. <u>C</u> ancel

SMU Test Modes Sweeping and Sampling

- The Sweeping test mode applies to any ITM in which one or more forced voltages/currents vary with time.
 - Example Sweeping mode would be used to increment a series
 of voltage values to the drain of a FET, while measuring and
 recording current at each voltage point.
- The Sampling test mode applies to any ITM in which all forced voltages or currents are static, with measurements typically being made at timed intervals.
 - Example Sampling mode would be used to record a few static measurements or to time profile the charging voltage of a capacitor while forcing a constant current.

Definition Tab Timing - Sweep Mode and Sampling Settings

Sweep Mode:

- Sweep Delay: Extra time added before each measurement.
- Hold Time: Time added at the beginning of each sweep. Allows for additional settling time prior to measurements being taken in the sweep.

Sampling Mode:

- Interval: Specifies the time between measurements (data points). The Interval time can be set from 0 to 1000sec.
- #Samples: Specifies the number of data points to be acquired. #Samples can be set from 1 to 4096.
- Hold Time: Delay time added before making the first measurement.

Definition Tab Timing - Sweep Mode Timing Diagram

HT = Hold Time

= Delay (default delay x delay factor)

SD = Sweep Delay MT = Measure Time

Definition Tab Timing - Sample Mode Timing Diagram

HT = Hold Time

D = Delay (default delay x delay factor)

INT= Interval

MT = Measure Time

Definition Tab Timing – Power On Sequence

- When an ITM test is run, the SMUs power-on in a specific sequence.
- The power on sequence is identified by device terminals.
- The power-on sequence can be changed by selecting a terminal and using the Move Up and/or Move Down buttons to change its position in the sequence.

