John Melcher jmelcher@purdue.edu

Dynamic AFM in Ambient/UHV

Tuning curves - inputs

Tuning curves - inputs

Tuning curves - outputs

Tuning curves - outputs

(no feedback regulation)

(no feedback regulation)

Experimental observables:

 ${\it Z}$: base displacement

 A_0 : unconstrained amplitude

 ϕ_0 : unconstrained phase

(no feedback regulation)

Attractive regime

Experimental observables:

 ${\it Z}$: base displacement

 A_0 : unconstrained amplitude

 ϕ_0 : unconstrained phase

A: reduced amplitude

 ϕ : phase

(no feedback regulation)

Experimental observables:

 ${\it Z}$: base displacement

 A_0 : unconstrained amplitude

 ϕ_0 : unconstrained phase

A: reduced amplitude

 ϕ : phase

Question: At what amplitude ratio are peak forces maximized?

Question: At what amplitude ratio are peak forces maximized?

Application:	
Amplitude Modulated Approach Curves (basic: ambient or UHV only) ▼	
cantilever properties -> ② Tip-sample interaction properties -> ③ Simulation parameters -> (About this tool Questions?
Number of points plotted: 500	
Deflection points per cycle: 500	*
Plot a higher harmonic?:no	
Number of higher harmonics: 2	<u></u>
Choose higher harmonics: 7,9	
Include time histories: 🗹 yes	
Number of time histories: 3	<u> </u>
Choose amplitude ratio(s): 0.9,0.8,0.5	
Number of cycles: 5	<u> </u>
Choose X-axis variable: Amplitude ratio	K
(Note: Scroll up to see simulation tabs)	
< Tip-sample interaction properties	Simulate >

Question: At what amplitude ratio are peak forces maximized?

Question: What amplitude ratio should we choose in order to enhance phase contrast?

Question: What amplitude ratio should we choose in order to enhance phase contrast?

- 1. What amplitude ratio (set-point) should we choose in order to image in a monostable regime.
- 2. What kind of artifacts can occur in the topography for an imaging set-point in a bistable regime?
- 3. What can we do to reduce the bistable regime?

- 1. What amplitude ratio (set-point) should we choose in order to image in a monostable regime.
- 2. What kind of artifacts can occur in the topography for an imaging set-point in a bistable regime?
- 3. What can we do to reduce the bistable regime?

- 1. What amplitude ratio (set-point) should we choose in order to image in a monostable regime.
- 2. What kind of artifacts can occur in the topography for an imaging set-point in a bistable regime?
- 3. What can we do to reduce the bistable regime?

- 1. What amplitude ratio (set-point) should we choose in order to image in a monostable regime.
- 2. What kind of artifacts can occur in the topography for an imaging set-point in a bistable regime?
- 3. What can we do to reduce the bistable regime?

- 1. What amplitude ratio (set-point) should we choose in order to image in a monostable regime.
- 2. What kind of artifacts can occur in the topography for an imaging set-point in a bistable regime?
- 3. What can we do to reduce the bistable regime?

