Welcome!

Device Characterization with the Keithley Model 4200-SCS Characterization System

Ultra-Fast I-V for Pulsed and Transient Characterization

A GREATER MEASURE OF CONFIDENCE

Ultra Fast I-V

• Ultra Fast I-V means any test that requires

- short pulses or transitions between voltages (< 10 us)
- Multi-level waveforms (examples: Flash testing or ultra fast BTI)

A GREATER MEASURE OF CONFIDENCE

Ultra Fast I-V Hardware (1/2)

• Model 4225-PMU – Ultra Fast I-V

- 2 channels of voltage pulsing with integrated simultaneous V and I measurement on each channel
- Uses single slot in 4200 Chassis
- Up to 4 cards per chassis (leaving 5 slots available for SMUs and CVU)
- Pulse from mV to 40V (into high impedance)
- Pulse widths from 60 ns to 999 ms
- Control timing parameters
 - Pulse Delay
 - Pulse Width
 - Rise Time and Fall Time
 - Pulse Period

Optional 4225-RPM Remote Amplifier/Switch

- Optional Remote Amplifier Switch (4225-RPM)
 - reduces cable effects, adds low current measure ranges
 - Measure signals to <5 nA
- 4225-RPM also acts as SMU/PMU/CVU switch matrix
 - Simplifies test set ups, quicker testing
 - No re-cabling when moving between test types
 - SMU
 - CV
 - Pulse IV

4225-PMU Block Diagram

Ultra-fast IV applications require different capabilities

	Voltage	Max Current	Min Current	Rise time	Pulse Width	Duty Cycle
Single Pulse Charge Trapping / High K	+/-10v	10mA	<100nA	<100nSec	50nS-1uSec	n/a
Silicon-On-Insulator / isothermal	+/-10v	10mA	<10nA	<100nSec	100nSec	0.01%-50%
LDMOS/GaAs isothermal	+/-40v	400mA	<100nA	<100nSec	200nSec	0.01%-50%
Flash	+/-40v	10mA	<10nA	100nSec	100nS-1mSec	n/a
PC-RAM	+/-10V	10mA	<100nA	<10necS	150nSec	n/a
UF NBTI	+/-10	10mA	<2nA	50nSec	<1uSec	n/a
Thermal Impedance	+/-40V	400mA	1uA	<1uSec	1uS-1Sec	0.1%-50%
RTS	+/-40V	10mA	<10nA	n/a	100nS-1mSec	n/a
СВСМ	+/-10V	10mA	100nA	1uSec	1uS-10mSec	1%-50%

Difference between DC and Ultra Fast I-V?

- What are the main differences between a 4200 SMU and the 4225-PMU?
- DC I/V Accuracy/Precision Priority
 - Force voltage and/or current conditions on device
 - Delay until the system reaches equilibrium
 - Measure with long integration time to maximize accuracy and precision
- Ultra-Fast I/V Deterministic Timing Priority
 - Force sequence is precision timed

7

- Delays are limited to "time available" in sequences
- Measurement sequence a greater measure of confidence (Copyright 2004)

Current vs. Time Measurement Comparison

Pulse Voltage

- 2 voltages to define standard (2-level) pulse
- Two PMU source ranges
 - 10V (into high impedance)
 - 40V (into high impedance)
- Base: 10V or 40V

Pulse Timing (1/2)

Pulse Width is calculated at 50% amplitude ۲

Pulse Timing (2/2)

- Transitions
 - Rise and Fall are for 0-100% (Industry uses 10-90%)
- Pulse Top & Pulse Base Time

Duty Cycle

- Duty Cycle = Pulse Width / Period
 - Amount of time that the pulse is "on"
 Typical isothermal tests use duty cycle < 5%</p>
 Pulse
Width
(FWHM)

Period

Example: 100 ns PW, 1 us Period:

Duty Cycle = PW / Period = 100e-9 / 1e-6 = 0.1 = 10%

Time

Pulse IV vs DC Testing Diagram

PMU Source modes

- PMU provides Ultra-fast IV through 2 types of Source Modes
 - Standard (2-level) Pulse
 - Segment ARB[™]

PMU Measure types

PMU provides Ultra-fast IV through 2 types of Measure Types

- Spot Mean used for Pulse IV
 - · Just a mean of all samples within the measure window
- Sample used for Waveform Capture
 - Individual A/D samples across the measure window •

Averaging and Discrete

When sourcing multiple pulses, can choose to average them, or keep them as individual readings

Tests using Spot Mean

Spot Mean

- Used for
 - IV Sweeps using standard (2-level) source mode
- Provides the mean of samples within measure window

Tests using Sample Measurement

• Sample

- Used for
 - Waveform Capture
 - Instrument setup verification and valida
 - Pulse shape validation prior to IV testing
 - Transient IV
 - Time-resolved reliability
- Provides signal versus time data
- Maximum sample rate = 200 MSa/s
 - Sample every 5 ns
 - Minimum sample rate = 1kSa/s

Segment Arb supports Spot Mean and Sample

 Segment Arb allows both Spot Mean and Samples within a single waveform

Segment Arb with multiple levels, Spot Means and Sample measurements

18

PMU source and measure modes for UF IV

Source Measure	Spot Mean	Sample (waveform capture)			
2-level	Pulse IV Sweeps	Transient Characterization •Thermal effects			
	V _D	•Charging effects (hysteresis)			
Segment ARB	UF BTI	UF BTI dynamic recovery			
	NVM	NVM Transient Characterization during program and erase			
KEITHLEY					

Other Common Pulse Tests: Charge Pumping, Flash Testing

- Why are Charge Pumping and Flash testing missing from previous slide?
- Both Charge Pumping and traditional Flash testing do not require Pulse IV (no fast measuring during the pulse)
 - Charge Pumping
 - Pulse on gate (ground drain and source)
 - SMU measures DC current on bulk
 - Flash
 - Pulser to Program and Erase device
 - SMU to characterize (usually V_T sweep)

Pulsed (or Ultra-Fast) I-V As easy as DC

- 1. Connect your DUT
- 2. Set up the PMUs using KITE graphical user interface
- 3. Click on the green arrow
- 4. See the Curve and data

Introduction to Transient Pulse Analysis

- Pulse shape determines Spot Mean value for Pulse IV Curves
- Pulse top must be settled for Pulse IV result to correlate to SMU result
- Brief introduction to current charging effects during pulse transitions

Why pulse shapes are important for Pulse IV

- Pulse IV sweep use measurement from settled part of pulse
 - PMU does not have any way to tell if signal is settled

Α

- Spot mean measure window is at the latter part of the pulse
- If the pulse width is too short (that is, signal is not settled), a spot mean is still provided
 Measure Spot Mean here

Pulse IV curve versus Pulse Width

- Pulse width directly effects the resulting Pulse IV Curve
- PW = 150 ns (not settled)
- $PW = 10 \ \mu s$ (settled)

= Spot Mean Measure Window

Current Waveform

- Pulse voltage across resistor
- Measure voltage and current versus time

Current Waveform

- Pulse voltage across resistor
- Measure voltage and current versus time

Current Waveform

- Pulse voltage across resistor
- Measure voltage and current versus time

Current Charging Effects During Pulse Transistions

• During pulse rise and fall times, current charges the interconnect and instrument capacitance

Current Charging Effects During Pulse Transistions

• During pulse rise and fall times, current charges the interconnect and instrument capacitance

4225-PMU Channel

Current Charging Effects During Pulse Transistions

• During pulse rise and fall times, current charges the interconnect and instrument capacitance

4225-PMU Channel

Why haven't I seen this current charging effect before?

• Possible reasons

- 1. Oscilloscopes measure voltage not current
- 2. SMU measurements are made on a settled signal
- 3. Minimal experience with pulse waveform measurement (especially current measure waveforms)
- 4. Must look at pulse waveforms where current is relatively low, or DUT impedance relatively high (> \sim 100 Ω)
- 5. Must use pulse transition times that are relatively fast (< ~1 us)

Measuring Small Currents Quickly

- It is impossible to measure low current (~nA) quickly (< 10us)
- Why?
 - Signal Level (number of electrons)
 - Noise
- Signal Level Example: Measure 5 nA in 1 ns
- Calculate the number of electrons for 5 nA during 1 ns window
 - $1 A = 1 C/s = 6.24 \times 10^{18}$ electrons/s
 - $-5 \text{ nA} = (6.24 \text{ x } 10^{18} \text{ e/s}) * (5 \text{ x } 10^{-9}) = 31.2 \text{ x } 10^{9} \text{ e/s}$
 - In 1 ns: (31.2 x 10⁹ e/s) * (1 x 10⁻⁹) = 6.24 x 10² e = 31.2 electrons

Johnson-Nyquist Noise vs Measure Window

- Johnson Noise
 - Caused by electrons flowing through a resistance
 - V=sqrt(4kTBR)
 - I=sqrt(4kTBR)/R
 - k = 1.38E-23 J/K, Boltzmann's constant
 - T = 290 K
 - B = Bandwidth = 1/(2 x Measure Window)
 - R = Resistance

A GREATER MEASURE OF CONFIDENCE

Example: Johnson-Nyquist Noise vs Measure Window

- CMOS Transistor
- 10 kΩ drain-source channel
- Goal: Measure lowest possible current in 10 ns (spot mean window)
- Current Noise due to device alone = 10 nA RMS
- 10 nA does not include any cable or instrument effects (each element in test system contributes Johnson noise)

A GREATER MEASURE OF CONFIDENCE

Conclusion

Further information about using the Model 4200, applications information, and measurement techniques is available:

- 1) Model 4200 Reference Manual on CD, HELP menu, desktop
- 2) Model 4200 Applications Manual on CD, HELP menu, desktop
- Applications Notes on CD, HELP menu, Keithley website, desktop
- 4) Low Level Measurement Handbook can be requested from Keithley website
- 5) Labview Drivers can be downloaded from Keithley website.
- 6) Example Projects available from Keithley applications and in the projects folder C:\S4200\kiuser\Projects
- 7) External Instrument Libraries many already installed in KULT and others are available from Keithley applications

