

Network for Computational Nanotechnology (NCN)

UC Berkeley, Univ. of Illinois, Norfolk State, Northwestern, Purdue, UTEP

1D Heterostructure Tool on nanoHUB.org

Sebastian Steiger
Arun Goud
Jean-Michel Sellier
Gerhard Klimeck

Electrical and Computer Engineering Purdue University, West Lafayette IN, USA

Outline

- Tool overview
- User input
- List of generated output
- List of available materials and their parameters
- Simulation examples
- Facts and parameters
- Validation
- Outlook
- History

Tool Overview

Find *carrier densities*, *electrostatic potential*, *eigenstates* and other quantities in 1D-layered semiconductor heterostructures:

Tool Overview

Applied gate voltage

Further parameters

Output graphs

Structure Definition

 Currently only latticematched structures are — possible (no strain)

Availability of materials depends on the selected density model

Enter thickness or #MLs
 other quantity gets adjusted

→ afterwards structure cannot be changed anymore

Physical Models for the Density

$$\rho = e(p - n + N_D)$$

• Semiclassical density (no Schroedinger equation needs to be solved):

$$n(x) = N_c F_{0.5} \left(\frac{E_c(x) - e\varphi(x) - E_F}{k_B T} \right), \quad p(x) = N_v F_{0.5} \left(\frac{E_F - E_v(x) + e\varphi(x)}{k_B T} \right)$$

• Quantum density:
$$n(x) = \sum_{n} \sum_{k} f_{FD} \left(\frac{E_{nk} - E_F}{k_B T} \right) |\psi_{nk}(x)|^2, \quad p(x) = 0$$

» Single-band effective mass Schroedinger equation:

$$\left(-\frac{d}{dx}\frac{\hbar^2}{2m^*(x)}\frac{d}{dx} + E_c(x) - e\varphi(x)\right)\psi_{nk}(x) = E_{nk}\psi_{nk}(x)$$

» Multi-band empirical tight-binding (LCAO) Schroedinger equation:

$$H\psi_{nk}(x) = E_{nk}\psi_{nk}(x), \quad H_{ij} = \langle \phi_i | H | \phi_j \rangle \quad \phi = \text{atomic orbitals}$$

Gate Voltage

Numerical Parameters

Default settings are good enough for most users

k-space Treatment

For Schroedinger simulations two alternatives exist:

1. Solve only **k=0** and use

$$\sum_{k} f_{FD} \left(\frac{E_{nk} - E_{F}}{k_{B}T} \right) |\psi_{nk}(x)|^{2} \approx \sum_{k} f_{FD} \left(\left(E_{n0} + \frac{\hbar^{2}k^{2}}{2m_{avg}^{*}} - E_{F} \right) / k_{B}T \right) |\psi_{n0}(x)|^{2} = \frac{m_{avg}^{*} k_{B}T}{2\pi\hbar^{2}} \log \left(1 + \frac{E_{F} - E_{n0}}{k_{B}T} \right) |\psi_{n0}(x)|^{2}$$

For effective mass simulations with constant effective mass this method is exact.

2. Do **numerical integration** using solutions of several *k*-points.

This option submits the job onto a Purdue supercomputer. It is computationally much more expensive and takes longer.

Output Parameters

If checked, the 3D density will be integrated between the specified boundaries to obtain a 2D density

For quantum density simulations, states in the range $E_{\scriptscriptstyle F} \pm \Delta$ will be displayed.

List of Output Graphs

Graph	Available when?		
CB / Resonances / EF	quantum density simulations		
CB / EF	semiclassical density simulations		
CB / VB / Resonances / EF	quantum density simulations		
CB / wave functions	quantum density simulations		
Electrostatic potential	always		
Doping density	always		
Electron density	always		
CB / VB w/o electrostatics	always		
Sheet density vs. gate voltage	when option is checked		
Eigenenergies vs. gate voltage	quantum density simulations		

CB = conduction band (including electrostatic potential)

VB = valence band (including electrostatic potential)

EF = Fermilevel (spatially constant)

Available Material Systems

substrate	material	Ec	Ev	me	sp3s*?	sp3d5s*?
(0	GaAs	1.422	0.000	0.067	✓	✓
GaAs	AlGaAs	1.672	-0.159	0.067		
U	AlAs	1.634	-0.530	0.361	✓	~
GаР	GaP	1.803	-0.470	0.504	✓	✓
ග	AIP	1.548	-0.940	0.401	✓	~
GaSb	GaSb	1.497	0.770	0.039	✓	~
Ga	AISb	2.006	0.390	0.274	✓	~
	InP	1.213	-0.140	0.080	✓	
민	In53GaAs	0.948	0.205	0.044	✓	
	In52AlAs	1.505	0.015	0.075	✓	
	Si	1.125	0.000	1.084	✓	~
:S	Ge	1.448	0.545	0.869		~
	SiO2	4.295	-4.705	0.3		✓

• Most effective mass parameters are taken from Vurgaftman 2001. Effective DOS masses are taken for indirect semiconductors.

Heterostructure Examples (1)

Heterojunction FET:

GaAs, 1e14, 20nm
AlGaAs, 1e18, 30nm
GaAs, 1e14, 150nm
GaAs, 1e14, 800nm

InGaAs/InAlAs:

LHET:

 GaAs/AlGaAs w/ uniform doping

Heterostructure Examples (2)

MBE Grown Heterostructure with uniformly doped layer

Conduction band profile along the growth direction

Calculated channel electron density for the ungated structure is N_s =4.26x10¹¹ cm⁻². The experimental measurements revealed N_s =4.1x10¹¹ cm⁻², in close agreement with our simulation results.

GaAs/AlGaAs
 w/ δ-doping

Facts and Parameters

- For multi-band simulations the discretization is given by the atomic lattice.
- The Fermilevel is spatially constant and fixed during the simulation.
- Zero density in the "substrate" material is assumed except when the designated option is checked.
- In the case of varying effective masses and analytical k-space, the assumed effective mass for the lateral dispersion is

$$m_{avg}^* = \int m^*(x) |\psi(x)|^2 dx.$$

- For numerical k-space integration, by default a sample of 100 k-points is taken over the square [0,2pi/4a]x[0,2pi/4a] (and multiplied by 4).
- The multiband tight-binding parameter sets are *not* temperature-dependent so changing the temperature will have no effect on the simulation.
- For multiband simulations, a quantum state E_{nk} is assumed to be an electron according to the (spatially dependent) criterion

$$E_{nk} > E_c - e\varphi(x) - \Delta.$$

The parameter Δ is 0.2 eV by default and adjustable in the Numerics section of the GUI.

NSF

Validation

 Bulk E(k) band structure diagrams of most materials and models were validated against literature:

Model	Source
Ec, Ev, me	Vurgaftman et al., JAP 89, 5815 (2001)
sp3s*	Klimeck et al., Superlatt. 27, 519 (2000) Klimeck et al., Superlatt. 27, 77 (2000) NEMO-1D
sp3d5s*	Jancu et al., PRB 57, 6493 (1998) Boykin et al., PRB 69, 115201 (2004)

- The Poisson solver was validated against analytical results.
- The Schroedinger-Poisson iteration result was compared to previous versions of the tool that had an independent codebase.

- Ternary materials with flexible mole fractions
- Holes
- Strain
- Varying crystal orientations (multiband only)
- Nitrides

History of the Tool

1d_hetero is an ongoing outreach effort by the Klimeck group @Purdue:

- First Matlab prototype by Samarth Agarwal (<1.0.3).
- New-NEMO 3D simulation engine by Sunhee Lee (1.0.3-2.x).
- NEMO 5 simulation engine by Sebastian Steiger, Michael Povolotskyi, Tillmann Kubis and Hong-Hyun Park (>3.0). Material database by Ben Hailey (>3.0).
- Initial Tcl/Tk and Rappture GUIs by Jean-Michel Sellier (1.0.3-2.x) and Xufeng Wang (<1.0.3).
- Current (>3.0) GUI and maintenance by Arun Goud under supervision of S. Steiger.
- General supervision: Gerhard Klimeck. Counseling: Dragica Vasileska.

Last update of this document: Jan 2011

