
Materials Science and Engineering 405 
Prof. Mark C. Hersam, Fall 2006 

PHYSICS OF SOLIDS 
 

Homework #6 
 

Due: Thursday, November 30, 2006 
 

1.) (35 points) In Lecture #25, we considered the temperature dependence of the free carrier 
concentration as a function of temperature in a doped semiconductor.  In particular, Fig. 3-18 
showed three regimes: intrinsic, extrinsic, and ionization.  While Fig. 3-18 is qualitatively 
correct, it quantitatively exaggerates the relative temperature dependence between the intrinsic 
and ionization regimes.  In this problem, you will correct this problem by quantitatively 
recalculating Fig. 3.18 for silicon doped with 1015 donors/cm3.  In particular, assume the 
following parameters for silicon: Eg = 1.11 eV; mn

* = 1.1m0; mp
* = 0.58m0; m0 = free electron 

mass.  In addition, assume that the donor ionization energy is 45 meV. 
 
(a) Using your favorite mathematical software (e.g., Matlab, Mathematica, Maple, etc.), calculate 
and plot the energy of the Fermi level with respect to the valence band edge (i.e., Ef – Ev) as a 
function of 1000/T for 50 K < T < 1000 K. 
 
(b) Using your results from part (a), calculate and plot the electron concentration (i.e., n) as a 
function of 1000/T for 50 K < T < 1000 K.  Like Fig. 3-18, use a logarithmic scale for n. 
 
2.) (30 points) Throughout this question, consider a Hall effect measurement performed on an 
intrinsic semiconductor: 

 
 
(a) Assuming that the intrinsic carrier concentration is ni and the electron and hole mobilities are 
µn and µp respectively, show that the Hall coefficient is given by: 
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(b) Assuming that scattering is equivalent for electrons and holes, determine the ratio of electron 
effective mass to hole effective mass that will lead to a Hall voltage equal to zero. 



3.) (35 points) In Lecture #27, we considered the solution of the diffusion equation for steady 
state hole injection into a semiconductor whose length (l) greatly exceed the hole diffusion 
length (Lp).  In this case, we found: 
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(a) These equations well describe hole injection across a forward biased p-n junction diode.  In 
particular, it is evident from these equations that the hole current injected across the junction is: 
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(b) A narrow-base diode is analogous to the aforementioned situation except that l << Lp, which 
changes the second boundary condition to ( ) 0p x l∆ = = .  In this case, show that the diffusion 

equation yields:  
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(c) For a narrow-base diode, show that: ( 0) cothp
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(d) Since the length of the semiconductor is shorter than the hole diffusion length in a narrow-
base diode, not all of the holes will recombine within the semiconductor.  In other words, the 
surviving holes will recombine at the electrical contact at x = l.  Show that the current due to 

recombination at this contact is:  ( ) cschp
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Note: The narrow-base diode analysis is the starting point for the analysis of bipolar junction 
transistors. 
 


