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Introductory Notes




We will calculate scattering rates:

The governing equation is:

V| 0(E, —E, *ho)

matrix element of long time limit leads to energy

furbation conservation...no collisional
Reliioatio broadening
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Two cases for Matrix element:

(a) o -function perturbation for which the matrix element is
constant.

(b) Matrix element is a function of the momentum transfer of
the system.



(a) Constant Matrix element:
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The total scattering rate out of a state k is given by:
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Assuming parabolic energy bands and doing the integration:
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- Description of the acoustic phonon scattering in the elastic and
equipartition approximation.

- The more final states are available the higher the scattering
rates.....makes sense.

- Only those final states with spin parallel to the incident electron’s
are available.




(b) Momentum dependent matrix element:

Used in general description of phonon scattering and given by:

S(k,k") = \M(k k)\ S(E, —E, Tha,)d(k'—k £§)

Long time limit leads to energy Mo
conservation.

mentum is always conserved.

To establish a relation between E and g :
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Using the following relationship:

Slax]=— §(x)
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We arrive at the general expression:
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We can integrate the expression in terms of the momentum transfer
d in the scattering process. After doing the integration:
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Where the limits of the integration are obtained from setting the
argument of the o6 function to zero, i.e.
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Common scattering mechanisms in semiconductors:

Our goal is to study electron scattering in common semiconductors.
Hole scattering is complicated:

v There exist degenerate heavy and light hole bands with their
warped constant energy surfaces.

v For energetic carriers, overlap integrals need to be considered
and even a detailed, numerical description of band structure
IS needed.

The total scattering rate:
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Defects
* Neutral impurities
* Dislocations
« Alloy scattering
* lonized impurities

Carriers

* Binary: electron-electron,

electron-hole
e Collective: Plasmons

Screening

Phonons

* Nonpolar optical
 Polar optical

Coupled
plasmons and
phonons




Description of Acoustic
Deformation Potential Scattering




Solutions for a simple diatomic lattice model
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EQUILIBRIUM POSITIONS
OF ATOMS

ACOUSTICAL VIBRATION:
The two atoms on the
unit cell vibrate along

the same direction
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OPTICAL VIBRATION:
The two atoms on the
unit cell vibrate in
opposing motion.
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SECOND QUANTIZATION

Classical wave of quantlzatlo)n Wave has n quanta

frequency n and each of energy hn.
ntensity / The number of quanta
15 determined by
intensity J

Particle nature 1s manifested when either/or:

* wave mtensity 1s very low so that the number of
quanta approaches ~1

« Interactions with matter involve exchange of
single quantum.

A conceptual picture of second quantization.




Bose Einstein statistics

_ 1
<n(0‘))> - hm
exp kaT -1

4

PHONON 3
OCCUPATION

2
<

p

1

2

x = kgT/ho

3




SCATTERING PROBLEM

scattering

k .\kv

INITIAL STATE:
electron: k
phonons: | ngp)

FINAL STATE:
electron: k'
phonons: | n'yp)

ABSORPTION OF PHONON: n'=n -1
EMISSION OF PHONONS: n'=n +1




Strain Tensor...a concept:

Uy AX'ux Uy s Ax

Fractional change in length:
du,
ox

New length becomes,

A =Ax+e Ax=(1+€_)Ax

=s(x)=¢€_

Extending this concept for a volume, one gets the volume dilation:
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Deformation potential scattering: Intravalley

- long wavelength phonons are considered. Vibrations of the
solid resemble those of an elastic continuum.

-The essential concept due to Bardeen and Shockley: For a
solid continuum.

OE,(k)=3E 58,
ofs
where Ea/,» is the deformation potential tensor.

- The above concept is verified by a simple example:
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Fermi level expression (low Temp): E, =[

For a change in volume by an amount dV:
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The deformation potential is now expressed in terms of phonon
coordinates with the position as a continuous variable rather and
from an atomic point of view:

Now, we would interpret 0E¢ as the deformation potential electron-
Phonon interaction. This leads to:

cA==2 'V i

ep,dp = ac ' r
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Recast:

Let H,, be the electron-phonon interaction. To describe the
interaction one needs to evaluate the matrix element of the
form:

M, =3y, i, (R.0H, Ply,)

Electronic

component of the
lon displacement at R electron-phonon
location In the crystal interaction

Substituting the values leads to:
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The integration over the phonon coordinates leads to the condition
That g = g;=g;and v = b; = b, which leaves only one term in the double
product. Since the number of phonons in a given mode of lattice
vibrations is not necessarily conserved, we have that, in general,
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After the integration over the phonon coordinates, the expression
simplifies to:
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Because of the periodic properties of the Bloch function and
of the integration, the integral over the crystal can be factored
Into an integral over a unit cell, and a sum over all unit cells.

This is achieved by using:

= /R + 7
Lattice vector \ Vector within

(location of unit cell) the unit cell



Therefore'
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So comparing this equation for the previously derived expression
For M;:

G-, =%,.q9 when é_1llg (longitudinal)

1g (transverse)

This last result suggests that only Longitudinal acoustic waves
with polarization direction along the direction of propagation
couple to the carriers in a spherically-symmetric band.

So the matrix element for scattering (ignoring non-parabolicity):
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So the total scattering rate is given by:

1 m'V dn ~ 2

— = M(k,qg) d
o)~ 2 JIM D) da

To evaluate the limits we once again use:
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Utilizing the fact that we are considering long wavelength phonons
(in acoustic limit):

@, =v.q
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qg" = 2k(cos 60— v—”‘)



absorption - — — = emission




Few observations:

» For emission process, cosé is between 0 and 1, which means that
an electron can only emit a phonon in the forward direction.

» For v/v > 1, dmax and g do not exist.

This observation suggest that an electron must travel with a
velocity in excess of the sound velocity v, to be able to emit
a phonon. This is known as CERENKQYV condition.

> At room temperature the average electron velocity is on the order
of 10”7 cm/s whereas the sound wave is on the order of 10° cm/s.
Therefore v /v << 1 and for both the absorption and the emission
processes: 0 < g <2k ,which means that limits for integration
of both the processes are the same.

The maximum phonon energy involved in this case is:
ha,™ =hv 2k =1meV

This energy is much smaller than the thermal energy of the
electron (3/2kgT ~ 40 meV), which suggests that scattering by
acoustic (long wavelength) phonons can be considered as elastic.




» The number of phonons in a given mode q is given by:

1

= o it > >1, for hw, <<k,T =25meV
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Since n,>> 1, we also have that n, ~n, +1, i. e. the matrix elements
squared for absorption and emission processes are (aside from the
o-function) the same. This is known as EQUIPARTITION
approximation.
For elastic scattering, we have seen that the limits of integration for the
absorption and the emission processes are also same. So considering
matrix element for absorption only:
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The total scattering rate out of some initial state k is a sum of
absorption and emission rates that are nearly equal for equipartition
Which gives:
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From the definition of density of states:
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