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Introductory Notes



We will calculate scattering rates:

Two cases for Matrix element:

(a) δ -function perturbation for which the matrix element is 
constant. 

(b) Matrix element is a function of the momentum transfer of 
the system.

The governing equation is:  

matrix element of 

perturbation

long time limit leads to energy 

conservation…no collisional 

broadening
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The total scattering rate out of a state k
�

is given by:

Assuming parabolic energy bands and doing the integration:

(a) Constant Matrix element:

- Description of the acoustic phonon scattering in the elastic and  

equipartition approximation.

- The more final states are available the higher the scattering   

rates…..makes sense.

- Only those final states with spin parallel to the incident electron’s

are available.

(nondegenerate semiconductor: state at p’ is empty)
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(b) Momentum dependent matrix element:

Used in general description of phonon scattering and given by:

Long time limit leads to energy 

conservation.

Momentum is always conserved.
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To establish a relation between E and q :
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Using the following relationship:
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We arrive at the general expression:

We can integrate the expression in terms of the momentum transfer 
q
�

in the scattering process. After doing the integration:

Where the limits of the integration are obtained from setting the 
argument of the δ function to zero, i.e.
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Our goal is to study electron scattering in common semiconductors.
Hole scattering is complicated:

� There exist degenerate heavy and light hole bands with their
warped constant energy surfaces.

� For energetic carriers, overlap integrals need to be considered 
and even a detailed, numerical description of band structure
is needed.

Common scattering mechanisms in semiconductors:

The total scattering rate:
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Defects
• Neutral impurities
• Dislocations
• Alloy scattering
• Ionized impurities

Carriers
• Binary: electron-electron,

electron-hole
• Collective: Plasmons

Screening

Phonons
• Deformation potential..intravalley
• Nonpolar optical
• Polar optical
• Intervalley

Coupled 
plasmons and 

phonons



Description of Acoustic 
Deformation Potential Scattering













Strain Tensor…a concept:
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New length becomes,

Extending this concept for a volume, one gets the volume dilation:
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Deformation potential scattering: Intravalley

- long wavelength phonons are considered. Vibrations of the 
solid resemble those of an elastic continuum. 

-The essential concept due to Bardeen and Shockley: For a 
solid continuum.

- The above concept is verified by a simple example:
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where αβΞ is the deformation potential tensor.
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Fermi level expression (low Temp):

For a change in volume by an amount δV:
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The deformation potential is now expressed in terms of phonon 
coordinates with the position as a  continuous variable rather and 
from an atomic point of view: 

Now, we would interpret δEF as the deformation potential electron-
Phonon interaction. This leads to:
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Recast:

Let Hep be the electron-phonon interaction. To describe the 
interaction one needs to evaluate the matrix element of the 
form: 
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Ion displacement at 
location In the crystal 

R
�

Electronic 
component of the 
electron-phonon 
interaction

Substituting the values leads to:
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The integration over the phonon coordinates leads to the condition 
That q = qj = qi and ν = bi = bj, which leaves only one term in the double 
product. Since the number of phonons in a given mode of lattice 
vibrations is not necessarily conserved, we have that, in general,
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ABSORPTION EMISSION
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After the integration over the phonon coordinates, the expression
simplifies to:

Because of the periodic properties of the Bloch function and
of the integration, the integral over the crystal can be factored 
into an integral over a unit cell, and a sum over all unit cells. 
This is achieved by using:

Lattice vector
(location of unit cell)

Vector within 
the unit cell
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So comparing this equation for the previously derived expression
For Mfi :

This last result suggests that only Longitudinal acoustic waves
with polarization direction along the direction of propagation 
couple to the carriers in a spherically-symmetric band.

So the matrix element for scattering (ignoring non-parabolicity):
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So the total scattering rate is given by:

To evaluate the limits we once again use:

Utilizing the fact that we are considering long wavelength phonons
(in acoustic limit):
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Few observations:

� For emission process, cosθ is between 0 and 1, which means that
an electron can only emit a phonon in the forward direction.

� For vs/v > 1, 
em

qmax and
em

qmin do not exist.  

This observation suggest that an electron must travel with a 
velocity in excess of the sound velocity vs to be able to emit
a phonon. This is known as CERENKOV condition.

� At room temperature the average electron velocity is on the order
of 107 cm/s whereas the sound wave is on the order of 105 cm/s.
Therefore vs/v << 1 and for both the absorption and the emission 
processes: kq 20 ≤≤

The maximum phonon energy involved in this case is: 

meVkvsq 12
max ≈= ��ω

This energy is much smaller than the thermal energy of the
electron (3/2kBT ~ 40 meV), which suggests that scattering by 
acoustic (long wavelength) phonons can be considered as elastic.  

, which means that limits for integration
of both the processes are the same.



� The number of phonons in a given mode q is given by:
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Since nq >> 1, we also have that nq ~ nq +1, i. e. the matrix elements
squared for absorption and emission processes are (aside from the
δ-function) the same. This is known as EQUIPARTITION
approximation.
For elastic scattering, we have seen that the limits of integration for the 
absorption and the emission processes are also same. So considering 
matrix element for absorption only:
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The total scattering rate out of some initial state k
�

is a sum of 
absorption and emission rates that are nearly equal for equipartition
Which gives:
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From the definition of density of states:
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