Performance of Magnetic Quantum Cellular Automata and Limitations due to Thermal Noise

Federico M. Spedalieri,1,* Ajey P. Jacob,2 Dmitri Nikonov,2 and Vwani P. Roychowdhury1

1Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
2Technology Strategy, Technology and Manufacturing Group, Intel Corporation, 2200 Mission College Blvd., Santa Clara, California 95052, USA

(Dated: June 3, 2009)

Abstract

Operation parameters of magnetic quantum cellular automata are evaluated for the purposes of reliable logic operation. The dynamics of nanomagnets is simulated via Landau-Lifshitz-Gilbert equations with stochastic magnetic field corresponding to thermal fluctuations. It is found that in the macrospin approximation the switching speed does not change under scaling of both size and distances between nanomagnets. Thermal fluctuations put a limitation on the size of nanomagnets, since the gate error rate excessive for nanomagnets smaller than 200nm at room temperature.

*Electronic address: federico@ee.ucla.edu
I. INTRODUCTION

[All fonts for axes and legends need to be increased 4x and make lines thicker. Fig 1 and 2 have ”height” in the label and ”thickness” in the captions. Remove the shadow at the legend in figures. References for equations and theories used in the paper. Do you have a plot Error vs.Size at alpha=0.01 ?]

The success of computing in the past 40 years was based on scaling the complementary metal-oxide-semiconductor (CMOS) transistors to the nanoscale size [1]. As it is anticipated that this scaling will approach limits defined by the quantum theory and thermodynamics [2], the search is on for alternative logic technologies [3, 4], which would be able to supplement CMOS and have certain advantages compared to it. One promising technology among them is spintronics and nanomagnetics [5].

Magnetic Quantum Cellular Automata (MQCA) have been proposed as one of the types of spintronic logic. MQCA are based on bistable nanomagnet elements that can perform basic logic operations by means of magnetostatic interactions. Nanomagnets are typically arranged in the shape of crosses - majority gates. A majority gate has three inputs and one output. The output’s logic state is determined by the ‘majority voting’ of the logic states of the inputs. This gate is naturally suited for the magnetic dipole-dipole interaction that is the basis of MQCA. It also allows us to perform AND and OR logical functions by fixing one of the inputs, and (in combination with the NOT element) it can be used to perform any logical operation. Another type of spintronics - domain wall logic [6] can also be rendered in a form of majority gates [7]. A chain of nanomagnets carrying the logic variables was demonstrated by Cowburn and Welland [8]. Later a majority gate based on these principles has been proposed and experimentally implemented [9].

To be a viable alternative to CMOS logic, MQCA must show that they can achieve a better (or at least similar) performance level at least in one of the benchmarks, such as size, speed, switching energy, bit stability and scalability. Some of these issues have been studied through simulations [10, 11]. In this paper, our goal is to estimate how far can we push the limits of MQCA performance for all the benchmarks presented above. To this end, we will analyze a simplified model of MQCA that captures the basic physical principles that govern its behavior. We pay a special attention to the limitation stemming from the thermal...
fluctuations of the magnetization.

The paper is organized as follows. In Section II we show how the bit stability of an MQCA element puts a lower bound on its size. In Section III we introduce a simple model of the MQCA dynamics and use it to simulate the behavior of an MQCA majority gate and study the speed of a signal propagating along a chain of nanomagnets. In Section IV we discuss the relationship between MQCA initialization and its stability. Section V we simulate the effects of thermal fluctuations and study their impact on the error rate of the majority gate. Finally, in Section VI we summarize our results and present our conclusions.

II. BIT STABILITY AND MINIMUM SIZE

Our first step will be to study what type of constraints bit stability imposes on the size of MQCA. The basic element of MQCA is a nanomagnet that is used to store a single bit of information. Usually the nanomagnets are elongated along some direction which determines the easy axis of magnetization due to shape anisotropy. This bit is represented by the magnetization direction of this nanomagnet: “0” for the magnetization ‘pointing up’, i.e., along positive easy axis, and “1” for the magnetization ‘pointing down’, i.e., along negative easy axis. We thus need to require these two configurations to be stable and separated by an energy barrier to prevent bit-flip errors. Even though material properties such as the uniaxial anisotropy can be exploited to produce such a bistable system, shape anisotropies are more advantageous to produce such a result, and most proposals of MQCA are essentially based on this idea.

Our mathematical model is based on the free energy of a nanomagnet with uniform magnetization M. It includes contributions from the shape anisotropy, material anisotropy, and the energy in the external magnetic field.

$$E = K_1(1 - (m \cdot \hat{e}_{axis})^2)V + \frac{1}{2}\mu_0 M_s^2 V m \cdot \mathcal{N} \cdot m - \mu_0 M_s V m \cdot H_{ext},$$ \hspace{1cm} (1)

where $m = \frac{M}{M_s}$ is the normalized magnetization (note that $|m| = 1$); M_s is the saturation magnetization of the material; V is the volume of the nanomagnet; μ_0 is the permeability of vacuum; K_1 is the uniaxial anisotropy of the material and \hat{e}_{axis} is a unit vector in the direction of the easy axis; \mathcal{N} is the demagnetizing tensor; and H_{ext} is the external field. The demagnetizing tensor can be diagonalized by finding its principal axes, and its diagonal
elements are positive and satisfy $N_x + N_y + N_z = 1$. We will consider that our nanomagnet is a rectangular prism whose symmetry axes are aligned with the cartesian axes. We will also assume that the easy axis of the crystalline uniaxial anisotropy is aligned with the y axis. The explicit expression for these demagnetizing factors can be found in [12].

Let us consider the case of a vanishing external field. If a, b and c are the dimensions of the nanomagnet in the x, y and z directions, we will assume that $b > a > c$, which corresponds to a rectangular prism elongated in the y direction. This choice of proportions translates into an inverse ordering of the demagnetizing factors ($N_z > N_x > N_y$). This makes the z direction the least energetically favorable. It is easy to see that the energy is minimal when the magnetization points in the y direction, either up or down. These are the two stable states that encode a bit of information. Then the energy barrier between these two minima is smaller when we consider the magnetization to be in the $x − y$ plane. To compute this energy barrier, we just need to evaluate (1) in the x and y directions and subtract them. Then we have

$$
\Delta E = E(\mathbf{m} = \hat{e}_x) - E(\mathbf{m} = \hat{e}_y) = \frac{1}{2}\mu_0 M_s^2 V \left[N_x - (N_y - \frac{2K_1}{\mu_0 M_s^2}) \right].
$$

From this equation we can extract a few useful facts: (i) the energy scale is given by $\frac{1}{2}\mu_0 M_s^2 V$; (ii) the energy barrier, and hence the energy dissipation, scales down with the volume of the nanomagnet; (iii) the geometrical anisotropy can be used to control the height of the barrier; (iv) the uniaxial crystal anisotropy can be seen as a correction to the geometrical anisotropy.

The height of the energy barrier will determine the stability of the information stored in the nanomagnets, and hence its bit stability. The thermal fluctuations will cause the direction of the magnetization to vary and with a certain probability to turn over 90 degrees - the direction of the energy saddle point. After that the magnetization will flip to the other energy minimum. In a simple model the probability of the nanomagnet’s magnetization flipping its direction due to thermal noise is given by $p_{flip} = \exp(-\Delta E/k_B T)$, where k_B is the Boltzmann constant. Since we are interested in MQCA as an alternative to CMOS-based logic, it is natural to require this error probability to be at least of the same order as that of CMOS transistors, which is of the order of 10^{-17}. This corresponds to the condition $\Delta E/k_B T > 40$. For room temperature we have $k_B T \approx 0.026 eV$, and so we need $\Delta E \approx 1eV$ or larger. The energy barrier height gives an approximate estimate of the energy that will be
dissipated every time we switch the magnetization direction of a nanomagnet. The exception would be slow adiabatic switching regime [13] which we do not consider here.

The lower bound on the height of the energy barrier, coupled with equation (2) allows us to extract a lower bound on the size of the nanomagnets. Since the energy barrier depends on the volume of the nanomagnet, any lower bound on it will translate into a lower bound on the volume. Assuming that the geometrical anisotropy is due to a 2:1 aspect ratio between the length and width of the prism, we can plot the values of thickness and width that are required to obtain a $1eV$ energy barrier. In Figure 1, we present this plot for three different materials: permalloy, CoFeB and Fe (with saturation magnetizations equal to 800kA/m, 1180kA/m and 1750kA/m, respectively.) For example, in permalloy, we can see that for a thickness of $6nm$, the nanomagnet needs to have a $15nm$ width and a $30nm$ length. Clearly, there is an advantage for higher values of the saturation magnetization, since we can achieve the same energy barrier height with a smaller volume (see Eq. (2).)

It can be argued that the very high bit stability we are requiring (error rate $\simeq 10^{-17}$) might be appropriate for a memory device, but may not need to be that high for a logic device. For MQCA, we only need the nanomagnets to maintain their state only during the time it takes to perform a certain computation. We might be able to reduce the size even further if we somewhat relax the bit stability requirements. However, given that the dependence of the error probability with the energy barrier is exponential, a small reduction in size can have a huge impact on the bit stability. We can illustrate this point by repeating

![FIG. 1: Thickness vs. width for a nanomagnet with an energy barrier of 1eV. The length is taken to be twice the width.](image)
the plot in Figure 1 for permalloy, but for different values of the error probability (Figure 2.) We can see the rapid increase of the error probability even for a modest reduction on the

![Graph](image)

FIG. 2: Thickness vs. width for different values of the error probability (plot corresponds to permalloy, and a 2:1 aspect ratio.)

size of the nanomagnet. This shows that the lower limit on the size of MQCA is a rather strong one if we want to preserve bit stability.

III. DYNAMICS AND SPEED

To estimate the speed of MQCA-based logic devices we will simulate their behavior using the Landau-Lifshitz-Gilbert (LLG) equations. Since we are only interested in an order of magnitude estimate, we will skip the detailed micromagnetic simulations that are usually discussed in the literature [14], and instead work with a very simple model of the MQCA. We will model each nanomagnet as a macrospin, but we will include the effects of geometrical and crystalline anisotropies in the computation of the effective field. This approximation is equivalent to assuming the magnetization is uniform over the whole volume of a nanomagnet at any time, and neglecting magnetic moments higher than the dipole moment [11, 15]. We expect this approximation to improve for decreasing nanomagnet size, since the exchange interaction tends to force the magnetization to be uniform on a length scale of about 10nm. From our discussion in the previous section, we are interested in nanomagnet sizes of the order of tens of nanometers, so we are not that far from that regime. In any case, we are
interested in an upper bound for the speed of MQCA-based logic, and a full simulation will most likely produce a slower device.

The LLG equations [16, 17] for the macrospin model are

\[
\frac{dM^{(i)}}{dt} = -\frac{\gamma}{1 + \alpha^2} M^{(i)} \times H_{\text{eff}}^{(i)} - \frac{\gamma \alpha}{(1 + \alpha^2) M_s} M^{(i)} \times (M^{(i)} \times H_{\text{eff}}^{(i)}),
\]

where \(M^{(i)}\) is the magnetization of the \(i\)th nanomagnet, \(H_{\text{eff}}^{(i)}\) is the effective field at the position of the \(i\)th nanomagnet, \(\gamma = g|e|/2m_e c = 2.21 \times 10^5 mA^{-1}sec^{-1}\) is the Lande factor, and \(\alpha\) is the Gilbert damping constant, which depends on the material and the environment of the nanomagnet and typically has values in the range 0.001 – 0.1. The effective field includes the contributions of any external field, the nanomagnet self-field and the field due to the dipole-dipole interaction with other nanomagnets.

\[
H_{\text{eff}}^{(i)} = H_{\text{ext}}^{(i)} - N \cdot M^{(i)} + \sum_j C_{(ij)} M^{(j)}.\tag{4}
\]

In this expression we are assuming that all nanomagnets have the same shape, and hence the demagnetizing tensor \(N\) is the same for all nanomagnets. This term can also include the effects of uniaxial crystalline anisotropy if we redefine the corresponding demagnetizing factor \(N_y \rightarrow N_y - \frac{2K_{1}}{\mu_0 M^2}\), where \(y\) is the easy axis of the crystalline anisotropy. The last term on the RHS of (4) represents the dipole-dipole interaction between nanomagnets, and the matrices \(C_{(ij)}\) are coupling constants determined by their size and relative positions. If \((x^{(i)}, y^{(i)}, z^{(i)})\) are the coordinates of the \(i\)th nanomagnet, we define the coordinate differences for a pair of nanomagnets as \(d_{x}^{(ij)} = x^{(i)} - x^{(j)}, d_{y}^{(ij)} = y^{(i)} - y^{(j)}, d_{z}^{(ij)} = z^{(i)} - z^{(j)}\), and the distance between nanomagnet centers as \(d^{(ij)} = \sqrt{(d_{x}^{(ij)})^2 + (d_{y}^{(ij)})^2 + (d_{z}^{(ij)})^2}\). The coupling constant matrices \(C_{(ij)}\) are given by

\[
C_{(ij)} = \frac{V^{(j)}}{4\pi(d^{(ij)})^5} \begin{pmatrix}
3(d_{x}^{(ij)})^2 - (d^{(ij)})^2 & 3d_{y}^{(ij)}d_{x}^{(ij)} & 3d_{z}^{(ij)}d_{x}^{(ij)} \\
3d_{x}^{(ij)}d_{y}^{(ij)} & 3(d_{y}^{(ij)})^2 - (d^{(ij)})^2 & 3d_{z}^{(ij)}d_{y}^{(ij)} \\
3d_{x}^{(ij)}d_{z}^{(ij)} & 3d_{y}^{(ij)}d_{z}^{(ij)} & 3(d_{z}^{(ij)})^2 - (d^{(ij)})^2
\end{pmatrix}.	ag{5}
\]

In our case, since all nanomagnets will be in the \((x, y)\) plane, this expression simplifies since \(d_{z}^{(ij)} = 0\). An important fact about the matrices \(C_{(ij)}\) is that they are dimensionless, and hence invariant under scaling of both the sizes of nanomagnets and the distances between nanomagnets. We will see that this property is preserved by the LLG equations in our model.
To simplify the simulation and analysis it is useful to normalize the LLG equations. This is accomplished using the following definitions

\[m^{(i)} = \frac{M^{(i)}}{M_s} \]

\[h^{(i)}_{eff} = \frac{H^{(i)}_{eff}}{M_s} \]

\[t' = t(\gamma M_s), \quad (6) \]

where now all the quantities on the LHS of (6) are dimensionless (note that \([\gamma M_s] = \text{sec}^{-1} \)).

With these rescalings and using vector identities and the obvious fact that \(\frac{dM^{(i)}}{dt} M^{(i)} = 0 \), we can rewrite the normalized LLG equations in an implicit form that simplifies the implementation of the simulation,

\[\frac{d m^{(i)}}{dt'} = -m^{(i)} \times h^{(i)}_{eff} + \alpha m^{(i)} \times \frac{d m^{(i)}}{dt'}. \quad (7) \]

These equations have the property that the value of magnetization is constant \(|m^{(i)}(t')| \equiv 1, \forall t' \), and that must be preserved in the discretized numerical model. To do this we employ the mid-point method [18] with which this constraint is automatically satisfied.

To estimate the speed with which MQCA switch, we simulated the behavior of the majority gate. Let us first briefly review its operation. The nanomagnets forming the gate are arranged as seen in Figure 3. We also include three nanomagnets with fixed magnetization that are used to simulate the inputs of the gate. The nanomagnets that form the gate are initially magnetized in the \(x \) direction, and then are left to evolve driven by the magnetic dipole interaction. The magnetization of each nanomagnet will tend to align itself with the field produced by the other nanomagnets at its position. The geometric anisotropy will force the magnetization to lay in the \(y \) direction, and the influence of other nanomagnets will decide if it ends up pointing up or down. The fields of the three inputs will add at the position of the central magnet and decide its direction of magnetization, hence computing the majority of the input signals. Finally, this signal can be read on the output magnet.

Note that a signal that propagates horizontally is inverted every time it is received by the next nanomagnet (due to the antiferromagnetic coupling). This does not affect the function of the gate, though this feature must be tracked in order to correctly interpret the output of any MQCA-based gate.

Again, in order to extract numerical estimates from the simulation, we specified the properties of the material (\(M_s \) and \(K_1 \)) to be those of permalloy. The value of the Gilbert
FIG. 3: Majority gate: the thick arrows represent nanomagnets with fixed magnetization that simulate inputs to the gate. The remaining nanomagnet align their magnetization in order to minimize the energy of the system from an initial magnetization in the x (horizontal) direction. The output of the gates can be extracted from the magnetization of the “output” nanomagnet on the right.

damping constant did not have a big effect on the simulation when confined to the typical range $0.001 - 0.01$. We found that the typical gate time, measured as the time it took the output to reach 90% of its final magnetization, was about 700ps. An interesting feature of our model is that the normalized equations (7) are invariant under changes of scale, which means that the gate time is independent of size. Even though this is only true in this simplified model, and making less approximations will likely break this invariance, whatever effects this may have on the gate time will likely be of higher order. This is in contrast to CMOS logic [1] as well as MQCA based on magnetic wires (rather than discrete nanomagnets) [7].

From the form of the normalized equations we can see that the speed of this gate will depend on the material properties. In particular, the speed of the gate increases linearly with the saturation magnetization of the material.

[Can we insert a plot here ?]

Another issue that needs to be considered when analyzing the speed of MQCA-based information processing, is the speed of propagation of information. In MQCA this is accomplished by chains of nanomagnets that are initially magnetized in the x direction, and evolve according to the dipole-dipole interaction propagating a signal, as can be seen in
Figure 4 for the case of a horizontal wire. Note that the antiferromagnetic coupling forces neighboring nanomagnets to become antiparallel. For vertical wires the coupling is ferromagnetic and the nanomagnets magnetization tends to become parallel.

This evolution follows the same dynamical equations presented in the previous section, so we can use them to simulate the propagation of a signal along a chain of nanomagnets and estimate its speed. For nanomagnets made of permalloy with a width of about 10\(\text{nm}\), separated by 15\(\text{nm}\), the speed of signal propagation is around 100\(\text{m/sec}\). This is of the order of the speed of sound, and would certainly limit the speed of an integrated MQCA chip if communication is done using the same principles as logic. This speed depends on the material through the saturation magnetization, but only linearly, so it is not likely that choosing a different material will solve this problem for MQCA.

[Let us express the speed of propagation in time per cell ?]

IV. INITIALIZATION AND BIT STABILITY

As discussed before, in order to run a MQCA-based logic gate it is necessary to initialize the magnetization of all nanomagnets in the \(x\) direction (i.e., the hard axis.) In terms of energy, this corresponds to placing all nanomagnets at the top of the energy barrier created by the geometrical and crystalline anisotropies (see Figure 5 a.) However, this configuration corresponds to an unstable equilibrium point for each nanomagnet, and it should be expected that small perturbations due to thermal effects and stray fields will randomly force the nanomagnets to relax to one of their stable configurations independent from the input signals.

This is an important issue for any implementation of MQCA-based logic and some possible solutions have been suggested. One consists of exploiting the biaxial anisotropy of the
material to create a stable configuration around the initialization direction, by generating a local minimum of the energy [19]. If we consider the magnetization confined to the $x - y$ plane, and note as θ the angle between the magnetization direction and the x axis, the geometric and uniaxial anisotropy result in an energy profile proportional to $\cos^2(\theta)$ as can be seen in Figure 5 a). The biaxial anisotropy introduces another term that is proportional to $\sin^2(2\theta)$, and by carefully choosing the parameters we can produce a local minimum for $\theta = 0$, as seen in Figure 5 b).

![Figure 5](image)

FIG. 5: a) Energy profile for geometrical and uniaxial anisotropies. Stable configurations correspond to magnetization in the y direction (up or down). Magnetization in the x direction (initial configuration) is an unstable equilibrium point. b) Including a biaxial anisotropy produces local minima for magnetization in the x direction, stabilizing the initial configuration.

This energy minimum provides a latch mechanism that keeps the initialized nanomagnets pointing in the x direction while the information from the input signal propagates through the chain of magnets. Once again, the effectiveness of this local minimum to trap the magnetization direction against thermal fluctuations, will depend on the height of the energy barrier around it (i.e., the energy difference between the peaks and the local minimum in Figure 5 b).) The reasoning of Section II applies to estimate the energy of this barrier necessary to preserve the bit in its local energy minimum for sufficiently long time, and hence obtain an estimate of the strength of the required biaxial anisotropy. We realize that the requirements to the height of this barrier are contradictory - it should be high enough to prevent spontaneous transition to one of the global minima before the signal reaches the
bit; it also needs to be low enough so that the signal can reliably switch it to the desired local minimum. In the next section we simulate the behavior of the majority gate, including the biaxial anisotropy, in the presence of thermal fluctuations.

V. THERMAL EFFECTS AND GATE ERROR PROBABILITY

In this section we model the effects of the thermal fluctuations on the operation of MQCA. We especially focus on gate errors caused by spontaneous transitions from the local energy minimum after the initialization of elements of MQCA.

Our simulations will use the stochastic LLG equations based on the midpoint rule derived by d’Aquino et al. in [18]. The only difference with the above model (Section III) will be the inclusion of an extra term that represents the field generated by the biaxial anisotropy (we show in the appendix that the introduction of this term does not affect the useful properties of the discretized equations.)

Let us start by considering the extra term in the normalized effective field that is responsible for the biaxial anisotropy acting on nanomagnet (i),

\[
\mathbf{h}_{\text{eff(biaxial)}}^{(i)} = -\frac{2K_2}{\mu_0 M_s^2} \left(m_x^{(i)}(1 - (m_x^{(i)})^2)\hat{x} + m_y^{(i)}(1 - (m_y^{(i)})^2)\hat{y} + m_z^{(i)}(1 - (m_z^{(i)})^2)\hat{z} \right). \tag{8}
\]

The biaxial anisotropy constant \(K_2\) has dimensions of \(J m^{-3}\). It is not difficult to show that, when restricted to the \(x - y\) plane, the contribution to the energy of this term is proportional to \(\sin^2(2\theta)\), with \(\theta\) the angle between the magnetization direction and the \(x\) axis. In order to have a local minimum around \(\theta = 0\), the constant \(K_2\) must satisfy the condition

\[
K_2 > K_{2\text{min}} = \frac{1}{2} \frac{\mu_0 M_s^2 V}{\left(N_x - (N_y - \frac{2K_1}{\mu_0 M_s^2}) \right)}. \tag{9}
\]

The thermal fluctuation manifest themselves as random variation of the overall magnetization of the nanomagnet. We describe this process by the stochastic LLG equations [20, 21], which are obtained by adding a random force, or, in other words, a stochastic thermal magnetic field \(\mathbf{h}_T^{(i)}(t)\) to the effective field in (7). Note that we are considering a different thermal field for each nanomagnet, since it is usually assumed that the thermal fluctuations in different nanomagnets are uncorrelated. The random thermal field \(\mathbf{h}_T^{(i)}(t)\) is assumed to be an isotropic vector Gaussian white-noise process with variance \(\nu^2\), and so it can be expressed in terms of the Wiener process as \(\mathbf{h}_T^{(i)}(t)dt = \nu d\mathbf{W}^{(i)}\). Then, the stochastic
LLG equations take the form
\[
dm^{(i)} = -m^{(i)} \times \left(h_{eff}^{(i)} + h_{eff(biaxial)}^{(i)} \right) dt - m^{(i)} \times \nu dW^{(i)} + \alpha m^{(i)} \times dt^{(i)}.
\] (10)

The value of \(\nu \) can be obtained from the fluctuation-dissipation theorem in thermal equilibrium, and is given by \(\nu = \sqrt{\frac{2k_B T}{\mu_0 M_s^2 V}} \).

Using (10), we simulated the behavior of the majority gate at various values of sizes, damping constant, and temperature. We fixed the saturation magnetization and uniaxial anisotropy to be those of permalloy, and studied the error rate of the gate as a function of \(K_2 \) and for several values of the damping constant \(\alpha \). Starting with the nanomagnets initialized with magnetization in the \(x \) direction, each run simulated the evolution of the gate for 2000 ps. We considered the gate to be successful if the average of the output magnet during the last 300 ps was larger than 80\% of the ideal output value (all runs used the same set of fixed inputs.) In any other case, we considered that the gate failed. For each value of the parameters \(K_2 \) and \(\alpha \), we ran 1000 instances of the simulation. The results are presented in Figure 6. The error probability is plotted against the ratio of \(K_2 \) to \(K_{2\text{min}} \).

FIG. 6: Error probability of the majority gate as a function of the (scaled) biaxial anisotropy for different values of the damping constant \((T = 300K)\).

where \(K_{2\text{min}} \) is the minimum value of the biaxial anisotropy that produces a local energy minimum around \(\theta = 0 \). If we increase \(K_2 \), we expect the error probability to decrease when we pass \(K_2/K_{2\text{min}} = 1 \), since the biaxial anisotropy becomes more effective in preventing a
premature flipping of the nanomagnets spurred by the thermal fluctuations. On the other hand, if we increase the biaxial anisotropy too much, the local energy minimum is too deep for the signal to force the nanomagnet to flip. This is the behavior we can appreciate in Figure 6. For $K_2 > 2K_{2\text{min}}$, the gate becomes essentially frozen by the biaxial anisotropy; for $K_{2\text{min}} < K_2 < 2K_{2\text{min}}$, the error probability seems to have a minimum for a certain value of K_2, that depends on the damping constant. However, an important result of these simulations is that, for the particular temperature and size, the gate error rate exceeds a certain minimum value, 15% in this case. The stabilizing effects of the biaxial anisotropy are either too weak, and spontaneous gate errors happen, or too strong, so that it prevents the normal evolution of the gate.

One possible solution for the gate error probability will be to decrease the temperature. Then, thermal fluctuations will be weaker and smaller values of the biaxial anisotropy will be enough to keep the magnets magnetized in the x direction until the signal, in the form of the magnetization of a neighboring magnet in the y direction, reaches the magnet and makes it flip up or down. And since the required biaxial anisotropy is not too large, it does not freeze the magnet in its initial magnetization direction. We used our model to study the dependence of the gate error probability on the temperature, again running 1000 simulations for each value of the temperature and the biaxial anisotropy, and then finding the minimum value of the error probability for each temperature. These results are presented in Figure 7.

[Let us use the log scale ?]
We can see that, as expected, the error probability decreases with decreasing temperature, although this decrease seems to be linear for the most part. For temperatures below 30K, the error probability is actually below 0.001, but it cannot be accurately estimated with the same number of simulation runs.

Another approach to lowering the error probability of the gate is to increase the size of the magnets. We know that larger magnets have a larger energy barrier between the states of up and down magnetization. This increases the stability of the computational states of the magnets but it is not the reason why the majority gate becomes more reliable. The key parameter is the ratio of the height of the energy barrier surrounding the local energy minimum around the magnetization in the x direction, and the strength of the signal produced by neighboring magnets. We ran our simulations for different sizes of the nanomagnets, but keeping a 2:1 aspect ratio and a thickness of 6nm. Figure 8 shows these results.

[Let us use the log scale ?]

![FIG. 8: Minimum error probability of the majority gate as a function of the length of the nanomagnets.](image)

We can see that the error probability decreases fast with size. The mechanism for this behavior is the following. When we increase the size of the magnets following the prescription mentioned above, the depth of the local minimum increases, but this increase is approximately a linear function of the length. On the other hand, the volume of the magnet increase quadratically with the length (since we are keeping a fixed aspect ratio), and hence
the strength of the magnetic field generated by the magnets also increases quadratically. In summary, the deeper local minimum does a better job stabilizing the magnet against thermal fluctuations, while the magnetic interaction grows faster, preventing the biaxial anisotropy from freezing the nanomagnets. From these results we see that nanomagnets with size less that 200nm have too high gate error probability and thus cannot be used to build MQCA.

VI. SUMMARY AND DISCUSSION

The goal of this work was to estimate the characteristics of an MQCA-based logic device, in particular the limits that can be achieved in terms of minimum size, gate switching time, switching energy, and gate error probability. To this end we analyzed a simplified model in an effort to understand how these features are affected by the basic parameters that characterize the MQCA. A reasonable requirement on the bit stability of these devices naturally leads to a lower bound on the size of the basic element of any MQCA. A nanomagnet must be at least $20\,\text{nm}$ long in one of its dimensions to prevent thermal fluctuations from inducing an error rate larger than that of today’s CMOS transistors. Furthermore, reducing this size results in a rapidly degrading bit stability of the components, making its applications in logic circuits less useful. Fault-tolerant design does not seem to help in this situation, since any reduction in the size of the nanomagnets will be offset by the increase in their number due to the overhead usually accompanies fault-tolerant implementations. Another way to push beyond this limit would be to work at much lower temperatures, but that regime will not be practical in the most common situations.

The lower bound on size also provides us with an estimate of switching for MQCA. After initialization of an MQCA, energy is dissipated when the magnetization of each nanomagnet “rolls down” the energy barrier until it reaches a minimum energy configuration (like a ball rolling on curved surface in the presence of friction.) Then, the energy dissipated by each nanomagnet is just the energy it had at the top of the barrier, and that is just the height of the barrier. From the bit stability constraint we found that this height should be at least $1\,\text{eV}$, and hence a MQCA could in principle dissipate about $1\,\text{eV}$ per nanomagnet. A logic gate such as the majority gate requires only five nanomagnets, so we could perform logic functions with a switching energy as low as a few electron-volts. This is a big advantage of MQCA over CMOS transistors, that requires several thousand electron-volt to operate.
This is, however, only a theoretical limit however, and it does not take into account the practical difficulties of efficiently transferring such a small amount of energy to each nanomagnet.

To estimate the speed of MQCA logic gates we considered a very simple model in which we approximated the nanomagnets by point dipoles when computing their interaction, but included the effects of geometrical and crystalline anisotropies through the computation of the effective field. This approach is less sophisticated than the micromagnetic simulations that have been used in the literature to study similar systems, but our goal was not to obtain a very detailed picture of the dynamics, but rather to have a good estimate of the fastest gate time MQCA can achieve. Our model includes all the fundamental elements of MQCA dynamics, and more refined simulations are likely to result in slower gate times. Using this simple model we found that the majority gate produces the required output in about 700 ps, which is slower than gate times expected from CMOS in the next few years.

Another obstacle for implementing MQCA-based logic has to do with information transmission. In MQCA this is accomplished following the same basic principles as logic. Chains of nanomagnets propagate a signal through the dipole-dipole interaction. But the propagation speed of this signal turns out to be around 100 m/sec, which is extremely slow when compared with the speed of electric signals in a wire (typically around 10^7 m/sec.) This is a huge disadvantage for any MQCA scheme.

MQCA suffers from the problem that its nanomagnets are initialized in an unstable state before the computation. Thermal fluctuation push the nanomagnets randomly into one of the stable states regardless of the value prescribed by the computation. It has been proposed [19] that exploiting the biaxial anisotropy of the material, can increase the robustness of the MQCA initial state against thermal fluctuations, preventing premature relaxation of the nanomagnets before the computation is complete. On the other hand, a strong biaxial anisotropy can completely freeze the dynamics, by trapping the magnetization in the local energy minimum of the initial state. We simulated the behavior of the majority gate in the presence of thermal fluctuations and analyzed the error rate of the majority gate for different values of the biaxial anisotropy, in order to find what are the optimal choices of the parameters. We found that for room temperature operation ($T = 300K$), the gate error rate has an impractically high value (\approx1%) for all sizes of nanomagnet smaller than 200nm. This seems to show that the biaxial anisotropy approach may not be enough to solve the
gate error rate problem and scale MQCA logic to smaller sizes at room temperature.

APPENDIX A: PROPERTIES OF THE DISCRETIZED STOCHASTIC LLG EQUATIONS

In this appendix we show some of the details of the numerical approach used to solve the stochastic LLG equations in the presence of thermal fields. As mentioned before, we follow essentially the approach presented in [18], that uses the midpoint rule to discretize the stochastic LLG equations. Here we will show that introducing an extra term in the effective field that represents the effects of the biaxial anisotropy does not change the two main properties of this technique, namely the unconditional preservation of the magnetization magnitude and the consistency of the evolution of the free energy.

The stochastic LLG equations take the form

\[
d\mathbf{m}^{(i)} = -\mathbf{m}^{(i)} \times \mathbf{h}_{eff}^{(i)} dt - \mathbf{m}^{(i)} \times \nu d\mathbf{W}^{(i)} + \alpha \mathbf{m}^{(i)} \times d\mathbf{m}^{(i)},
\]

where \(\mathbf{h}_{eff}^{(i)} \) includes the biaxial term. Applying the midpoint method corresponds to the following replacements:

\[
d\mathbf{m}^{(i)} \rightarrow (\mathbf{m}^{(i)}_{n+1} - \mathbf{m}^{(i)}_n)
\]

\[
\mathbf{m}^{(i)} \rightarrow \left(\frac{\mathbf{m}^{(i)}_{n+1} + \mathbf{m}^{(i)}_n}{2} \right)
\]

\[
\mathbf{h}_{eff}^{(i)}(\mathbf{m}^{(i)}, t_n) \rightarrow \mathbf{h}_{eff}^{(i)} \left(\frac{\mathbf{m}^{(i)}_{n+1} + \mathbf{m}^{(i)}_n}{2}, t_n + \frac{\Delta t}{2} \right)
\]

\[
d\mathbf{W}^{(i)} \rightarrow (\mathbf{W}^{(i)}_{n+1} - \mathbf{W}^{(i)}_n)
\]

that result in the discretized stochastic LLG equations

\[
(\mathbf{m}^{(i)}_{n+1} - \mathbf{m}^{(i)}_n) = - \left(\frac{\mathbf{m}^{(i)}_{n+1} + \mathbf{m}^{(i)}_n}{2} \right) \times \mathbf{h}_{eff}^{(i)} \left(\frac{\mathbf{m}^{(i)}_{n+1} + \mathbf{m}^{(i)}_n}{2}, t_n + \frac{\Delta t}{2} \right) \Delta t - \\
- \left(\frac{\mathbf{m}^{(i)}_{n+1} + \mathbf{m}^{(i)}_n}{2} \right) \times \nu (\mathbf{W}^{(i)}_{n+1} - \mathbf{W}^{(i)}_n) + \alpha \left(\frac{\mathbf{m}^{(i)}_{n+1} + \mathbf{m}^{(i)}_n}{2} \right) \times (\mathbf{m}^{(i)}_{n+1} - \mathbf{m}^{(i)}_n).
\]

Since every term on the RHS is of the form \((\mathbf{m}^{(i)}_{n+1} + \mathbf{m}^{(i)}_n) \times \mathbf{V} \), it is clear that the RHS vanishes when scalar multiplied by \((\mathbf{m}^{(i)}_{n+1} + \mathbf{m}^{(i)}_n) \), while the LHS becomes \((|\mathbf{m}^{(i)}_{n+1}|^2 - |\mathbf{m}^{(i)}_n|^2) \), and so we have that

\[
|m^{(i)}_{n+1}|^2 = |m^{(i)}_n|^2,
\]
which means the midpoint method unconditionally preserves the magnitude of the magnetization. Note that the form of the term added to the effective field does not affect this property, since the corresponding term on the RHS is still of the form \((\mathbf{m}_{n+1}^{(i)} + \mathbf{m}_n^{(i)}) \times \mathbf{V} \).

Another property that the discretized stochastic LLG equations presented in [18] have is that the change in the discretized free energy is bounded by the work performed by the thermal fields on the magnetization for any finite value of the increment \(\Delta t \). Their proof of this fact relies on the particular form of the effective field, namely that the free energy is an at most quadratic polynomial function of the magnetization. Even though when we add the biaxial anisotropy term the free energy has a term of degree 4, the result still holds as we show below. First we write the free energy \(g(\mathbf{m}) \)

\[
g(\mathbf{m}) = \frac{1}{2} \sum_i \mathbf{m}^{(i)} \cdot \mathcal{N} \cdot \mathbf{m}^{(i)} - \frac{1}{2} \sum_i \sum_{j \neq i} \mathbf{m}^{(i)} \cdot C^{(ij)} \cdot \mathbf{m}^{(j)} - \sum_i \mathbf{h}_{\text{ext}}^{(i)} \cdot \mathbf{m}^{(i)} - \frac{2K_2}{\mu_0 M_s^2} (m_x(1-m_x^2)\mathbf{x} + m_y(1-m_y^2)\mathbf{y} + m_z(1-m_z^2)\mathbf{z}),
\]

where \(\mathcal{N} \) is the demagnetization tensor, which includes a term corresponding to the uniaxial anisotropy, \(C^{(ij)} \) is the matrix that encodes the dipole-dipole interaction between nanomagnets (and it is symmetric with respect to \(i \) and \(j \).) We want to compute \(g_{n+1} - g_n \), where \(g_n = g(\mathbf{m}_n) \). Clearly, this will give us an expression in powers of \(\delta \mathbf{m}^{(i)} = (\mathbf{m}_{n+1}^{(i)} - \mathbf{m}_n^{(i)}) \). We will keep terms up to order \((\delta \mathbf{m}^{(i)})^2 \), since from the LLG equations we can see that \(\delta \mathbf{m}^{(i)} \) is proportional to \((\mathbf{W}_{n+1}^{(i)} - \mathbf{W}_n^{(i)})\), and \((\mathbf{W}_{n+1}^{(i)} - \mathbf{W}_n^{(i)})^2\) is of order \(\Delta t \). With that in mind, after some algebra we get

\[
g_{n+1} - g_n \simeq \sum_i \left(\mathbf{m}^{(i)} \cdot \mathcal{N} - \sum_{j \neq i} \mathbf{m}^{(j)} \cdot C^{(ij)} \cdot \mathbf{m}^{(j)} - \mathbf{h}_{\text{ext}}^{(i)} - \mathbf{h}_{\text{biaxial}}^{(i)} \right) \cdot \delta \mathbf{m}^{(i)} + \frac{1}{2} \sum_i \delta \mathbf{m}^{(i)} \cdot \mathcal{N} \cdot \delta \mathbf{m}^{(i)} - \frac{1}{2} \sum_i \sum_{j \neq i} \delta \mathbf{m}^{(i)} \cdot C^{(ij)} \cdot \mathbf{m}^{(j)} - \frac{K_2}{\mu_0 M_s^2} \sum_i \delta \mathbf{m}^{(i)} \cdot \mathcal{D} \cdot \delta \mathbf{m}^{(i)}
\]

where \(\mathcal{D} = 1 + 2 \mathbf{m}_n^{(i)} \mathbf{m}_n^{(i)\mathsf{T}} - 3 \text{diag} \left((m_x^{(i)})^2_n, (m_y^{(i)})^2_n, (m_z^{(i)})^2_n \right) \). Note that the term multiplying \(\delta \mathbf{m}^{(i)} \) in the first sum is exactly \(-\mathbf{h}_{\text{eff}}^{(i)}(\mathbf{m}_n) \) (as it should be). Now we go back to the discretized LLG equations that have the form

\[
\mathbf{m}_{n+1}^{(i)} - \mathbf{m}_n^{(i)} = -\mathbf{m}_{n+\frac{1}{2}}^{(i)} \times \left(\mathbf{h}_{\text{eff}}^{(i)}(\mathbf{m}_{n+\frac{1}{2}}^{(i)}, t_n + \frac{\Delta t}{2}) \Delta t + \nu (\mathbf{W}_{n+1}^{(i)} - \mathbf{W}_n^{(i)}) + \alpha (\mathbf{m}_{n+1}^{(i)} - \mathbf{m}_n^{(i)}) \right)
\]

where now \(\mathbf{h}_{\text{eff}}^{(i)} \) also includes the biaxial term. This equation is of the form \(\mathbf{m}_{n+1}^{(i)} - \mathbf{m}_n^{(i)} = \)
−\mathbf{m}_{n+\frac{1}{2}} \times \mathbf{A}, and so if we scalar multiply both sides by \mathbf{A}, the RHS vanishes and we get

\mathbf{h}_{\text{eff}}^{(i)}(\mathbf{m}_{n+\frac{1}{2}}, t_n + \frac{\Delta t}{2}) \cdot \delta \mathbf{m}^{(i)} \Delta t + \nu (W_{n+1}^{(i)} - W_n^{(i)}) \cdot \delta \mathbf{m}^{(i)} = \alpha |\delta \mathbf{m}^{(i)}|^2. \quad (A12)

Now we write \mathbf{h}_{\text{eff}}^{(i)}(\mathbf{m}_{n+\frac{1}{2}}, t_n + \frac{\Delta t}{2}) in terms of \mathbf{h}_{\text{eff}}^{(i)}(\mathbf{m}_n^{(i)}) (we drop the time, since the field does not have an explicit time dependence). After some more algebra, we get

\mathbf{h}_{\text{eff}}^{(i)}(\mathbf{m}_{n+\frac{1}{2}}) \cdot \delta \mathbf{m}^{(i)} \Delta t = \mathbf{h}_{\text{eff}}^{(i)}(\mathbf{m}_n^{(i)}) \Delta t - \Delta t \cdot \mathbf{M}^{(i)} \cdot \mathbf{m}^{(i)} \cdot \delta \mathbf{m}^{(i)} + \Delta t \sum_{j \neq i} \delta \mathbf{m}^{(j)} \cdot \mathbf{C}^{(ij)} \quad (A13)

with \(M^{(i)} = \text{diag} ((m_{\chi}^{(i)})_{n}^2, (m_{\chi}^{(i)})_{n}^2, (m_{\chi}^{(i)})_{n}^2). Now, using this in the expression we computed for \(g_{n+1} - g_n\), and doing even more algebra, we arrive to

\frac{\nu}{\Delta t} \sum_i (W_{n+1}^{(i)} - W_n^{(i)}) \cdot \delta \mathbf{m}^{(i)} - \sum_i \delta \mathbf{m}^{(i)} \cdot \mathcal{M}^{(i)}(\mathbf{m}_n) \cdot \delta \mathbf{m}^{(i)}, \quad (A14)

with \(\mathcal{M}^{(i)}(\mathbf{m}_n) = \frac{\nu}{\Delta t} \mathbf{1} + \frac{2K_2}{\mu_0 M_s} \mathbf{m}_n^{(i)} \mathbf{m}_n^{(i)\text{T}}. Hence, \(\mathcal{M}^{(i)}(\mathbf{m}_n)\) is positive semidefinite, and so we have finally

\begin{align*}
g_{n+1} - g_n &\leq \frac{\nu}{\Delta t} (m_{n+1}^{(i)} - m_n^{(i)}) \cdot \frac{(W_{n+1}^{(i)} - W_n^{(i)})}{\Delta t}, \quad (A15)
\end{align*}

which shows that the change in the discretized free energy is always less than the work done by the stochastic field during the time interval \(\Delta t\).

