Nanostructure Epitaxial Growth Techniques

ECE 598XL

Fall 2009

Crystal Growth

- Advancement in crystal growth techniques is one of the major factors responsible for the nanotechnology momentum today.
- Thermodynamics
 - Chemical reactions
 - Phase diagrams
- Figure of merit: material quality, uniformity and controllability
 - Thickness
 - Composition
 - Interface
 - Doping
 - Defects

Crystal Growth

- Epitaxial growth techniques
 - LPE
 - HVPE
 - MOCVD
 - MBE
- Deposition of dielectric films or polycrystal semiconductors
 - PECVD
 - Evaporation
 - Sputtering

- Hydride gaseous source
- Metal liquid atomic source
- •Fast growth rate (> 100 um/h)
- •Surface defects for non-nitride materials

MBE

- Inventor:
 - Bell Lab, Arthur and Alfred Cho
- UHV : 10⁻¹¹ torr
 - Not thermodynamic equilibrium condition
 - Governed by the kinetics of the surface process
- Solid atomic source effusion cellcontrolled vapor pressure
- Shutters
- Substrate-heated
- GSMBE and MOMBE (CBE)
- Slower growth rate
- Better thickness and heterojunction control
- Lower growth temperature
- High cost

UHV

tin situ monitoring

RHEED

- 5- 50 keV
- Glancing angle incidence
- Surface sensitive
 - ML

Reflection High Energy Electron Diffraction (RHEED): principle

Layer-by-layer 2D growth

- RHEED oscillation
 - Growth rate
 - Growth condition

RHEED Patterns for Nanostructures

FIG. 1. RHEED patterns and corresponding SEM images of GaN nanowires [(a) and (b)] grown directly on Si (111) substrate and [(c) and (d)] on AlN thin buffer layer on Si (111) substrate.

- RHEED image
 - Sharp vs diffuse
 - Streaky line -2D
 - Spotty 3D
 - Chevron –QD facet

Applied Surface Science 228 (2004) 306–312

RHEED patterns for various stages of LT-GaAs on Si growth. (a) Typical pattern after exposure to arsenic and MEE cycles. (b) After LT-GaAs growth. (c) [011] azimuth after in-chamber annealing. (d) [0-11] azimuth after in-chamber annealing.

MOCVD

- Nomenclature
 - MOCVD
 - OMVPE
 - MOVPE
 - OMCVD
 - AP-MOCVD
 - LP-MOCVD
- Most widely used epitaxial technique at commercial scale
- Major components:
 - Gas handling system
 - Reactor chamber
 - Heating system
 - Exhaust system

MOCVD Growth System

A MOVD growth system

In Xiuling Li's group, UIUC

Gas Handling System

- Sources:
 - Metalorganics (MO) or alkyls:
 - TMGa, TEGa, TMAI, TMIn, DMZn, etc.
 - Bubbler
 - Hydride: AsH3, PH3, NH3, Si2H6
 - Cylinder
 - Gas cabinet
- Carrier gas: H₂ or N₂
 - H2 purifier
- Valves, MFCs, tubes, pumps etc.
- Purity, cleanness, leak-tight

Calculate mol flow rate of MO sources

The flow rate of a source is normally expressed in mol/min

- Use the mole flow rate
 - >calculate growth rate:
 - > estimate alloys composition, assuming the pyrolysis and incorporation efficiencies of Al and Ga sources are the same.

$$\bullet x_{AI} = F_{AI}/(F_{AI} + F_{Ga})$$

Vapor pressure of most common MO compounds

Compound		P at 298 K	A	В	Melt point
		(torr)			(°C)
(Al(CH3)3)2	TMAl	14.2	2780	10.48	15
$Al(C_2H_5)_3$	TEAl	0.041	3625	10.78	-52.5
Ga(CH ₃) ₃	TMGa	238	1825	8.50	-15.8
$Ga(C_2H_5)_3$	TEGa	4.79	2530	9.19	-82.5
In(CH3) ₃	TMIn	1.75	2830	9.74	88
$In(C_2H_5)_3$	TEIn	0.31	2815	8.94	-32
$Zn(C_2H_5)_2$	DEZn	8.53	2190	8.28	-28
$Mg(C_5H_5)_2$	Cp2Mg	0.05	3556	10.56	175

Log[p(torr)]=B-A/T

KSU

MOCVD mechanism

MOCVD growth process of GaN and related materials

 $Ga(CH_3)_3 + NH_3$ $GaN + CH_2$

Two Step MOCVD Growth procedure

In situ Monitoring in MOCVD: epiRAS

Optical

- Conventional reflection spectroscopy:
 - Growth rate
 - Layer thickness
 - Composition
- Reflectance Anisotropy Spectroscopy (RAS)
 - reflectance difference spectroscopy
 - Sensitive to surface, interface, doping induced surface electrical fields
 - For cubic crystal only
 - For surface that absorbs incoming light
 - Artifacts

$$\frac{\Delta R}{R} = 2\frac{R_x - R_y}{R_x + R_y}$$

RAS setup

Control Parameters

- Temperature
- Pressure
- Growth rate
- V/III ratio
- Doping
- Growth pulse
- Substrate orientation
- Desorption condition

Black box?

Comparison of Epitaxial Techniques

Growth method	time	features	limitation
LPE (Liquid phase epitaxy)	1963	Growth from supersaturated solution onto substrate	Limited substrate areas and poor control over the growth of very thin layers
VPE (Vapor phase epitaxy	1958	Use metal halide as transport agents to grow	Surface roughness thick layer
MBE (Molecular Beam Epitaxy)	1958 1967	Deposit epilayer at ultrahigh vacuum	Slow and hard to grow materials with high vapor pressure
MOCVD (Metal-Organic Chemical Vapor Deposition)	1968	Use metalorganic compounds as the sources	Some of the sources e.g. AsH _{3,} are very toxic.

SOLUTIONS FOR A WIDE VARIETY OF DEVICES					
Applications	MBE	MOCVD			
Wireless telecom	InP, GaAs, GaN	InGaP, GaAs, GaN, SiC			
Optical telecom	InP, GaAs	InP/As			
Lighting-LEDs	ZnO, ZnSe	GaN, AlGaAs; As/P			
Research	Across periodic table	GaN, As/P, SiC			
Data storage	Metal oxides	GaN, AlGaAs			
Si semiconductor	Oxide, novel materials	GaN			