Bandstructure Effect The Choice of the Transport Kernel The Maxwell→Poisson Equations Solutions

D. Vasileska and S.M. Goodnick, *Computational Electronics*, published by Morgan & Claypool , 2006.

D. Vasileska, S. M. Goodnick and G. Klimeck, Computational Electronics: Semiclassical and Quantum Transport Modeling, Taylor & Francis, 2010.

Bandstructure Effect

The Choice of the Transport Kernel The Maxwell→Poisson Equations Solutions

Advantages of Particular Methods

Semi-Empirical Methods

- Empirical Pseudopotential Method
 - × Predicts optical gaps

o k.p Method

- Predicts effective masses
- o Tight-Binding Method
 - ★ Can include strain and disorder, can simulate finite structures (not just bulk or infinite 2D or 1D)

• Ab Initio Methods

o GW Method

Predicts Energy gaps of Materials correctly

M. van Schilfgaarde, Takao Kotani, S. V. Faleev, Quasiparticle self-consistent GW theory, Phys. Rev. Lett. 96, 226402 (2006)

Bandstructure Effect The Choice of the Transport Kernel

The Maxwell \rightarrow Poisson Equations Solutions

What Transport Models Exist?

Semiclassical **PARTICLE-BASED** Models:

- Direct solution of the BTE Using Monte Carlo method
 - Eliminates the problem of Energy Relaxation Time Choice
 - Accurate up to semi-classical limits
 - One can describe scattering very well
 - Can treat ballistic transport in devices

Why Quantum Transport?

1. Quantum Mechanical TUNNELING

2. SIZE-QUANTIZATION EFFECT

3. QUANTUM INTERFERNCE EFFECT

What Transport Models Exist?

- Quantum-Mechanical **WIGNER** Function and **DENSITY** Matrix Methods:
 - Can deal with correlations in space BUT NOT WITH CORRELATIONS IN TIME
 - Advantages: Can treat SCATTERING rather accurately
 - **Disadvantages:** LONG SIMULATION TIMES

Eugene P. Wigner

What Transport Models Exist?

Bohard P. Jupunan

- Non-Equilibrium Green's Functions approach is MOST accurate but also MOST difficult quantum approach
- FORMULATION OF SCATTERING rather straightforward, IMPLEMENTATION OF SCATTERING rather difficult
- Computationally INTENSIVE

D. Vasileska, PhD Thesis, Arizona State University, December 1995.

Range of Validity of Different Methods

	$L \ll l_{e-ph}$			$L \sim l_{e-ph}$	$L >> l_{e-ph}$	
	$L < \lambda$	$L < l_{e-e}$	$L >> l_{e-e}$			
Transport Regime	Quantum	Ballistic	Fluid	Fluid	Diffusive	
Scattering	Rare	Rare	e-e (Many), e-ph (Few)		Many	
Model:						
Drift-Diffusion						
Hydrodynamic	Quantum Hydrodynamic					
Monte Carlo						
Schrodinger/Green's						
Functions	Wave					
Applications	Nanowires,	Ballistic				
	Superlattices	Transistor	Current IC's	Current IC's	Older IC's	

Bandstructure Effect The Choice of the Transport Kernel The Maxwell→Poisson Equations Solutions

Maxwell→Poisson Equation Solvers

Name	Partial differential form	Integral form
<u>Gauss's law</u> :	$\nabla \cdot \mathbf{D} = \rho$	$\oint_{A} \mathbf{D} \cdot d\mathbf{A} = Q_{encl}$
Gauss's law for magnetism:	$\nabla \cdot \mathbf{B} = 0$	$\oint_A \mathbf{B} \cdot d\mathbf{A} = 0$
Faraday's law of induction:	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_{S} \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi_{B}}{dt}$
Ampere's law + Maxwell's extension:	$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	$\oint_{S} \mathbf{H} \cdot d\mathbf{s} = I_{\text{enc}} + \frac{d\mathbf{\Phi}_{\mathbf{D}}}{dt}$

FDTD – Finite Difference Time Domain Fourier Methods

D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State University, Tempe, AZ.

Complexity of Linear Solvers

Algorithm	Туре	Serial Time	PRAM Time	Storage	#Procs
Dense LU	D	N^3	N	N^2	N^2
Band LU	D	N^2	N	N^(3/2)	Ν
Inv(P)*bhat	D	N^2	log N	N^2	N^2
Jacobi	I	N^2	N	Ν	Ν
Sparse LU	D	N^(3/2)	N^(1/2)	N*log N	Ν
CG	I	N^(3/2)	N^(1/2)*log	N N	N
SOR	I	N^(3/2)	N^(1/2)	Ν	Ν
FFT	D	N*log N	log N	N	Ν
Multigrid	I	Ν	(log N)^2	Ν	N

Dense LU	: Gaussian elimination, treating P as dense			
Band LU	: Gaussian elimination, treating P as zero			
	outside a band of half-width n-1 near diagonal			
Sparse LU	: Gaussian elimination, exploiting entire			
	zero-structure of P			
Inv(P)*bhat	: precompute and store inverse of P,			
	multiply it by right-hand-side bhat			
CG	: Conjugate Gradient method			
SOR	Successive Overrelaxation			
FFT	Fast Fourier Transform based method			

Complexity of Linear Solvers

Algorithm	Type	Serial	DRA	M Storago	#Procs	
		Time	Com	plexity of linear solver	S	
 Dense LU Band LU Inv(P)*bhat Jacobi	D D D I	N^3 N^2 N^2 N^2 N^2	Tin mo (Po	ne to solve odel problem oisson's n ^{1/2}	2	n ^{1/3}
Sparse LU CG SOR FFT	D I I D	N^(3/2) N^(3/2) N^(3/2) N*log N	eq reg	uation) on gular mesh	2D	3D
Multigrid	I	Ν		Sparse Cholesky:	O(n ^{1.5})	O(n ²)
				CG, exact arithmetic:	O(n ²)	O(n ²)
Dense LU Band LU	: Gaus : Gaus	sian elimina sian elimina		CG, no precond:	O(n ^{1.5})	O(n ^{1.33})
Sparse LU	outs : Gaus zero	ide a band o sian elimina -structure o		CG, modified IC:	O(n ^{1.25})	O(n ^{1.17})
Inv(P)*bhat CG	: prec mult : Conj	compute and s iply it by p ugate Gradie		CG, support trees:	O(n ^{1.20}) -> O(n ¹⁺)	O(n ^{1.75}) -> O(n ^{1.31})
SOR FFT	: Succ : Fast	essive Over Fourier Tra		Multigrid:	O(n)	O(n)