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General Device Simulator

D. Vasileska and S.M. Goodnick, Computational Electronics, published by Morgan 
& Claypool , 2006.
D. Vasileska, S. M. Goodnick and G. Klimeck, Computational Electronics: Semi-
classical and Quantum Transport Modeling, Taylor & Francis, 2010.
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Electronic Structure



Advantages of Particular Methods

� Semi-Empirical Methods
� Empirical Pseudopotential Method

� Predicts optical gaps

� k.p Method
� Predicts effective masses

� Tight-Binding Method
� Can include strain and disorder, can simulate finite structures (not 
just bulk or infinite 2D or 1D)

� Ab InitioMethods
� GW Method

� Predicts Energy gaps of Materials correctly

D. Vasileska, S. M. Goodnick and G. Klimeck, Computational Electronics – Semiclassical and Quantum Transport Modeling, Taylor&Francis, 2010.



The sp3d5s* Tight-Binding Hamiltonian
- [Jancu et al. PRB 57 (1998)] -

Many parameters, but works quite well ! 



QPscGW Ab Initio Results 
- Mark van Schilfgaarde -

COMP
UTEL

M. van Schilfgaarde, Takao Kotani, S. V. Faleev, Quasiparticle self-consistent GW theory, Phys. Rev. Lett. 96, 226402 (2006)
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What Transport Models exist?

� Semiclassical FLUIDmodels

(ATLAS, Sentaurus, Padre)

� Drift – Diffusion

� Hydrodynamics

1. PARTICLE DENSITY
2. velocity saturation 

effect

3. mobility modeling 

crucial
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What Transport Models Exist?

Semiclassical PARTICLE-BASED 
Models:

� Direct solution of the BTE Using Monte Carlo 
method

� Eliminates the problem of Energy Relaxation 
Time Choice

� Accurate up to semi-classical limits

� One can describe scattering very well

� Can treat ballistic transport in devices



Why Quantum Transport?

1. Quantum Mechanical
TUNNELING 2. SIZE-QUANTIZATION

EFFECT

3. QUANTUM 
INTERFERNCE EFFECT



What Transport Models Exist?

� Quantum-Mechanical WIGNER
Function and DENSITYMatrix 
Methods:
� Can deal with correlations in space BUT NOT 
WITH CORRELATIONS IN TIME

Advantages: Can treat SCATTERING rather 
accurately

Disadvantages: LONG SIMULATION TIMES



What Transport Models Exist?

� Non-Equilibrium Green’s 
Functions approach is MOST 
accurate but also MOST difficult 
quantum approach

� FORMULATION OF SCATTERING 
rather straightforward, 
IMPLEMENTATION OF SCATTERING 
rather difficult

� Computationally INTENSIVE



Model Improvements

Compact models Appropriate for Circuit

Design

Drift-Diffusion
equations

Good for devices down to

0.5 µm, include µ(E)

Hydrodynamic
Equations

Velocity overshoot effect can

be treated properly

Boltzmann Transport

Equation Monte Carlo/CA methods Accurate up to the classical
limits

Quantum
Hydrodynamics

Keep all classical

hydrodynamic features +
quantum corrections

Approximate Easy, fast

Exact Difficult
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Quantum-Kinetic Equation(Liouville, Wigner-Boltzmann) Accurate up to single particle
description

Green's Functions method
Includes correlations in both

space and time domain

QuantumMonte Carlo/CA methods Keep all classical

features + quantum corrections

Direct solution of the n-body

Schrödinger equation

Can be solved only for small 
number of particles
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D. Vasileska, PhD Thesis, Arizona State University, December 1995.



Range of Validity of Different Methods
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Maxwell�Poisson Equation Solvers

FDTD – Finite Difference Time Domain
Fourier Methods



Computational Hierarchy for Maxwell Solvers



Poisson/Laplace Equation

No knowledge of solving of PDEs

Method of images

With knowledge for solving of PDEs 

Theoretical Approaches

Numerical Methods:

finite difference

finite elements
Poisson

Green’s function method

Laplace

Method of separation of variables

(Fourier analysis)



Numerical Solution Details

Governing 

Equations 

ICS/BCS

Discretization

System of 

Algebraic 

Equations

Equation 

(Matrix) 

Solver 

Approximate

Solution

Continuous 
Solutions

Finite-Difference

Finite-Volume 

Finite-Element 

Spectral  

Boundary Element

Hybrid

Discrete 
Nodal 

Values

Tridiagonal       

SOR     

Gauss-Seidel 

Krylov

Multigrid

φi (x,y,z,t)

p (x,y,z,t)

n (x,y,z,t)

D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State University, Tempe, AZ.



Complexity of Linear Solvers

  Algorithm    Type  Serial      PRAM        Storage  #Procs 

                     Time        Time 

   ---------   ----  ------    ---------     --------  ------ 

   Dense LU      D   N^3           N           N^2      N^2 

   Band LU       D   N^2           N         N^(3/2)     N 

   Inv(P)*bhat   D   N^2         log N         N^2      N^2 

   Jacobi        I   N^2           N            N        N 

   Sparse LU     D   N^(3/2)     N^(1/2)     N*log N     N 

   CG            I   N^(3/2)   N^(1/2)*log N    N        N 

   SOR           I   N^(3/2)   N^(1/2)          N        N 

   FFT           D   N*log N     log N          N        N 

   Multigrid     I   N           (log N)^2      N        N 

 

     Dense LU    : Gaussian elimination, treating P as dense 

     Band LU     : Gaussian elimination, treating P as zero  

                   outside a band of half-width n-1 near diagonal 

     Sparse LU   : Gaussian elimination, exploiting entire 

                   zero-structure of P 

     Inv(P)*bhat : precompute and store inverse of P,  

                   multiply it by right-hand-side bhat 

     CG          : Conjugate Gradient method 

     SOR         : Successive Overrelaxation 

     FFT         : Fast Fourier Transform based method 
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