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Boltzmann Transport Equation

� In its most general form, the BTE equals to:

� The collision integral on the RHS can be expressed 
as:
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D. K. Ferry, “Semiconductors” (Macmillan, New York, 1991).



Path Integral Solution of the BTE

� The path integral solution of the Boltzmann 
Transport Equation (BTE), where L=N∆t and 
tn=n∆t, is of the form:
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K. K. Thornber and Richard P. Feynman, Phys. 
Rev. B 1, 4099 (1970).



Path Integral Solution of the BTE

� The two-step procedure is then found by using 
N=1, which means that t=∆t, i.e.:
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Intermediate function that describes
the occupancy of the state (p+eE∆t)
at time t=0, which can be changed
due to scattering events (SCATTER)

Integration over a trajectory, 
i.e.probability that no 
scattering occurred within 
time integral ∆t 
(FREE FLIGHT)+

Rees, H. D., 1969, J. Phys. Chem. Solids 30, 643.



Path Integral Solution of the BTE

� Using path integral formulation to the BTE we 
have shown that one can decompose the solution 
procedure into two components:

� Carrier free-flights that are interrupted by scattering 
events 

� Memory-less scattering events that change the 
momentum and the energy of the particle instantaneously
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Ways of solving the BTE

� Single particle Monte Carlo Technique

� Follow single particle for long enough time to collect 
sufficient statistics

� Practical for characterization of bulk materials or inversion 
layers

� Ensemble Monte Carlo Technique

� MUST BE USED when modeling SEMICONDUCTOR 
DEVICES to have the complete self-consistency built in

Carlo Jacoboni and Lino Reggiani, The Monte Carlo method for the solution of charge 

transport in semiconductors with applications to covalent materials, Rev. Mod. Phys. 55, 645 

- 705 (1983).



Bulk MC Flow-Chart

dte=dtau

dte ≥ ∆t?

no yes

dt2 = dte dt2 = ∆t

Call drift(dt2)

dte ≥ ∆t?
yes

dte2 = dte

Call scatter_carrier()

Generate free-flight dt3

dtp=∆t-dte2

dt3 ≤ dtp?

no yes

dt2 = dtp dt2 = dt3

Call drift(dt2)

dte2=dte2+dt3

dte=dte2
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dte < ∆t ?

dte=dte-∆t

dtau=dte

dte2

dtp

dte2 dt3

dte2 dt3
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dte2

parameters initialization
readin()

scattering table construction

sc_table()

histograms calculation
histograms()

Free-Flight-Scatter
free_flight_scatter()

histograms calculation
histograms()

write data

write()

?

carriers initialization

init()

t t t= + ∆ Time t exceeds maximum 
simulation time tmax

yes

no

Optional



ASU’s Particle-Based Device Simulator
(Vasileska Group)

Initialize Material Parameters
and Device Structure

Monte Carlo Kernel:
free-flight-scatter

Solve Poisson Equation

Molecular Dynamics

Collect Results

Perform 
Particle-Mesh
Coupling Solve Energy Balance Equations

For Acoustic and Optical Phonons

Phonon Monte
Carlo is Currently
Being Implemented

Initialization includes Random Dopant Distribution and 
Unintentional Trap Specification



The Monte Carlo Method
- Non-parabolicity and Full-Band -

E. Pop, R. W. Dutton and K. E. Goodson, JOURNAL OF APPLIED 
PHYSICS VOLUME 96, NUMBER 9 1 NOVEMBER 2004



INCORPORATION  OF  THE  SHORT-RANGE  
COULOMB INTERACTION

Particle Based Device 
Simulators



K-Space Approach



Real-Space Approach

� Requires 3D device simulator, otherwise the method fails

� There are several variants of this method

� Corrected Coulomb approach developed by Vasileska and Gross

� Particle-particle-particle-mesh (p3m) method by Hockney and Eastwood

� Fast Multipole method

� Corrected Coulomb approach and p3m method are almost equivalent in 
philosophy, FMM is very different

� Treatment of the short-range Coulomb interactions using any of these three 
methods accounts for:

� Binary collisions + plasma (collective) excitations

� Screening of the Coulomb interactions

� Scattering from multiple impurities at the same time which is very 
important at high substrate doping densities



Simulation Methodologies



Corrected Coulomb Approach 

W. J. Gross, D. Vasileska and D. K. Ferry, "IEEE Electron Device Lett. 20, No. 9, pp.463-465 (1999).



Corrected Coulomb Approach – Cont’d

W. J. Gross, D. Vasileska and D. K. Ferry, "VLSI Design, Vol. 10, pp. 437-452 (2000).



Corrected Coulomb Approach – Cont’d



P3M Approch

Roger W. Hockney, James W. Eastwood, Computer Simulation Using Particles, Taylor & Francis.



P3M Approach – Cont’d



FMM Approach

L. Greengard and V. Rokhlin. On the Efficient Implementation of the
Fast Multipole Algorithm. Department of Computer Science Research
Report 602, Yale University (1988).



FMM Approach



FMM Approach



Resistor Simulations

H.R. Khan, D. Vasileska, S.S. Ahmed, C. Ringhofer and C. Heitzinger, Journal of Computational Electronics, Vol. 3, Nos. 3-4, pp. 337-340 (2005).



INCORPORATION  OF  SELF-HEATING  EFFECTS

Particle-Based Device 
Simulators



ASU (Vasileska) Model for Self-Heating Effects

K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov, IEEE Transactions on Electron Devices, vol. 55, issue 6, pp. 1306-1316, June 2008.



Exchange of variables between the two kernels
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Various factors that affect the thermal conductivity value

Ashegi, Leung, Wong, Goodson,  Appl. Phys. Lett. 71, 1798 (1997)
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INCORPORATION  OF  SPIN

Particle-Based Device 
Simulators



Spin-Orbit Effects

The atomistic  effect:

Heterostructures:



Rashba Spin-Orbit Coupling
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What do we cover in this section?

� Quantum Transport

� Solution of the Schrodinger Equation Using Usuki Method

� Green’s Functions

� Recursive Green’s Function Approach

� Contact Block Reduction Method and its applications



USUKI METHOD

Quantum Transport



Transfer Matrix Approach on the Example of RTD



How to calculate the transfer matrix T ?

divide the active region into N slices



How to calculate the transfer matrix T ?

divide the active region into N slices

discretize the potential

consider a boundary between slices i and i+1: 

i i+1

Ai

Bi

Ci+1

Di+1

write down solutions for slices i and i+1

use the continuity conditions

to calculate transfer matrix Ti

between slices i and i+1



A

B

C

D

T1   T2 ...   Ti   ...   TN

total transfer matrix:

Transfer matrix is numerically unstable

Scattering matrix S
is numerically stable:

incoming statesoutgoing states



Exercise for PCPBT

� From one well, to two wells to 5 wells (energy bands forma-
tion)



Usuki Method Explained

i=0 i=N

j=0

j=M+1

y

x

Calculate conductance using finite difference grid

incident
waves

transmitted
waves

reflected

waves

Wavefunction and potential defined on

discrete grid points i,j

i th slice in x direction - discrete problem 

involves translating from one slice to the next.

Grid spacing:  a<< λλλλF 

Slides Courtesy of Richard Akis, ASU.



Obtaining transfer matrices from the discrete SE

apply Dirichlet boundary conditions on upper and lower boundary:
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























=

−

1,

1,

,

.

.

.

i

Mi

Mi

i

ψ

ψ

ψ

ψ
�

j=0

j=M+1

j=1

j=M

i

Discrete SE now becomes a matrix equation 
relating the wavefunction on adjacent slices: 

iiii Ett ψψψψ
����

=−− −+ 110iH

where: 























+−

−+−

−+−

−+

=

)4(0

)4(

)4(

0)4(

1,

2,

,

,

tVt

ttVt

ttVt

ttV

i

i

Mi

Mi

�

�

�

�

�

0iH

(1b)



(1b) can be rewritten as:

Combining this with the trivial equation one obtains:
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Transfer matrix equation for translation across entire system
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1 ==Boundary condition- waves of 
unit amplitude incident from right 

Variation on the cascading scattering matrix technique method
Usuki et al. Phys. Rev. B 52,  8244 (1995)
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After the transmission problem has been solved, 

the wave function can be reconstructed
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The electron density at each point is then given by:

One can then iterate 
backwards through the structure:

It can be shown that:



First propagating mode for an irregular potential

confining

potential
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Vg= -1.0 V Vg= -0.9 V Vg= -0.7 V

Potential felt by 2DEG- maximum of electron distribution ~7nm below interface

Potential evolves smoothly- calculate a few as a function of Vg, and 
create the rest by interpolation
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Example – Quantum Dot Conductance as a Function of Gate voltage
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Subtracting out a background that removes 

the  underlying steps you get periodic 

fluctuations as a function of gate voltage. 

Theory and experiment agree very well

Same simulations also reveal that certain scars 

may RECUR as gate voltage is varied.  The 

resulting periodicity agrees WELL with that of the 

conductance oscillations

* Persistence of the scarring at zero magnetic field 

indicates its INTRINSIC nature

⇒⇒⇒⇒ The scarring is NOT induced by the application 

of the magnetic field 



Quantum Transport

RECURSIVE  GREEN ’S  FUNCTIONS  APPROACH



Tight-Binding Hamiltonian

� Divide the whole 1D device structure into points which interact with neighboring points 
through a coupling constant.  

� In the tight-binding method one can take the basis functions to be any set of localized 
functions such as atomic s- and p-orbitals, Wannier functions, and so forth. 

� A common approximation used to describe the Hamiltonian of layered structures consists 
of non-vanishing interactions only between nearest neighbor layers. That is, each layer i
interacts only with itself and its nearest neighbor layers i-1 and i+1.  

� Then, the single particle Hamiltonian of the layered structure is a block tri-diagonal 
matrix, where diagonal blocks  represent the Hamiltonian of layer i and off-diagonal 
blocks  represent interactions between layers i and i+1:



Matrix Representation of the Kinetic Equations
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Recursive Green’s Function Method at Work

1.   Divide the system into leads and  internal domain

2.  Calculate the Green’s Function of the internal structure 
using the Dyson Equation g=g0+g0Vg

S. Datta, From Atom to Transistor, Cambridge University Press.



Recursive Green’s Function Method at Work

3. Calculate Green’s functions of the semi-infinite 
leads � Surface Green’s function (self energy)

4. Use the Dyson Equation to connect the two 
domains of the system
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Recursive Green’s Function Method at Work

, ,,

Rr

N N N NN N
A g I=

1,1 1,11,1

Lr
A g I= [ ]r

HIEA Σ−−=

( )
1

1, 1 1, , 11, 1 ,

Lr Lr

q q q q q qq q q q
g A A g A

−

+ + + ++ +
= −

( )
1

1, 1 1, , 11, 1 ,

Rr Rr

q q q q q qq q q q
g A A g A

−

− − − −− −
= −

( ), 1 1,, 1, 1, , ,

r Lr Lr r Lr

q q q qq q q qq q q q q q
G g g A G A g+ ++ += +

( )1, , 11, 1 ,1, 1 1, 1 ,

r Rr Rr r Rr

q q q qq q q qq q q q q q
G g g A G A g+ ++ + + + + +

= +

Left-connected 
Green’s function:

Green’s functions needed
for transmission coeffi-
cient and electron density
calculations

Right-connected
Green’s function:



Example: Simulation of a RTD with NEMO1D

NEMO1D: InGaAs/AlAs RTDs

G. Klimeck, private communication..



Example: Simulation of a Nanowire MOSFET with OMEN

OMEN: Modeling of Nanowire Transistors

G. Klimeck, private communication..

Simulation result for formation of inversion channel (electron density) and
attainment of threshold voltage (IV) in a nanowire MOSFET. Note that the
threshold voltage for this device lies around 0.45V



CONTACT  BLOCK  REDUCTION  METHOD

Quantum Transport



Direct Solution of the Problem is Time Consuming

The retarded Green’s function of an open system:
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To determine Green’s function of an open system

we need to invert a huge matrix

The Dyson equation,

( )E0G describes closed system (decoupled device)

( ) ( ) ( ) ( )
1

,R E E E E
−

 = − 
0 0

G I G GΣ

( )
10

0

E E i
E iα α η

α α
η

ε η +

−

=

 ≡ − + =  − +
∑0

G I Hwhere ,    Eαα α=0
H

where      ⇒⇒⇒⇒ closed system Hamiltonian ,     ⇒⇒⇒⇒ self-energy matrix0
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D. Mamaluy, D. Vasileska, M. Sabathil, T. Zibold, and P. Vogl, “Contact block reduction 
method for ballistic transport and carrier densities of open nanostructures”, Phys. Rev. B 
71, 245321 (2005).



The CBR Algorithm

of an open system in CBR formalism:
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index D denotes the interior device region 
index C denotes the contact ( boundary ) region            

�The left upper block       fully determine the transmission functionR

CG

�The left lower block        determines density of states, charge density etc.R
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Transmission Coefficient and Electron Density

� Transmission Function

� CBR Formalism

� Local Density of States Function

� CBR Formalism
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Complexity of CBR vs. Other Algorithms

Method Computational cost 

Transfer matrix + QTBM ( )3
E TOTALN O N×  

NanoMOS (Purdue University) ( ) ( )3
2 5

TOTAx y LE z EN O NN O N N N × × ≈ ×   

QDAME (IBM, S. Laux)  ( ) ( )32 2
TOTAL eigen E TOTALN O N N O N× + ×  

CBR ( ) ( )2
TOTAL eigen E TOTALN O N N O N× + ×  

Notations  

EN : number of energy steps; 

TOTALN : number of grid points  

eigenN : number of eigenvalues  

 

 

CBR WINS !!!



Semiclassical Transport Approaches

Quantum Transport

Atomistic Simulations

What are the Proper Transport 
Models at the Nanoscale?



First Principles Calculations



Self-Consistent Tight Binding Calculations

A. Di Carlo, Private Communication.



Boundary Conditions for Transport

A. Di Carlo, Private Communication.



Conclusions

� Nanoelectronics has revolutionized in many ways our every 
day life.

� It has made significant impact in fields like medicine in 
terms of diagnostics and surgical interventions.

� There are many alternative paths and ways in which future 
nanoelectronics research might go.

� Atomistic simulations will definitely be of crucial 
importance and need for understanding future 
nanoelectronic devices

� Parallel computing will be essential for performing multi-
million atomistic simulations.


