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Advantages and disadvantages of models

O

Range of Validity of Different Methods
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Applications
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Boltzmann Transport Equation

O

* In its most general form, the BTE equals to:

af+v -V f+(—e)é-V f—af | =
ot ot

= ZZ[S,-(ﬁ',ﬁ)f(F,ﬁ',t) =S;(p, ) f(r, p,1)]

i=l p'

» The collision integral on the RHS can be expressed
as:

RHS = > [S,(p'.p)f (7, p'.0]- f (7, ﬁ,nZZs (p.p")

p'i=l p' i=l

D. K. Ferry, “Semiconductors” (Macmillan, New York, 1991).




Path Integral Solution of the BTE

O

» The path integral solution of the Boltzmann
Transport Equation (BTE), where L=NAt and
t =nAt, is of the form:

fu()=At Z fu(P)S,; (P, p+eE(N —m)At)e "%

m=0 “_ s
—

g (p+eE(N —m)Ar)

K. K. Thornber and Richard P. Feynman, Phys.
Rev. B 1, 4099 (1970).




Path Integral Solution of the BTE

O

» The two-step procedure is then found by using
N=1, which means that t=At, 1.e.:

fiHy=AtY (0 (p)S,;(p',p+ eEA/t)e‘m
P ~

g,(p+ekAr)

Integration over a trajectory,
i.e.probability that no
Intermediate function that describes :(r:na;tienr;ggrzclzztfrred within
the occupancy of the state (p+eEAt) (FREE FLIGHT)
at time t=0, which can be changed +
due to scattering events (SCATTER)

Rees, H. D., 1969, J. Phys. Chem. Solids 30, 643.




Path Integral Solution of the BTE

O

Using path integral formulation to the BTE we
have shown that one can decompose the solution
procedure into two components:

Carrier free-flights that are interrupted by scattering
events

k(t)=k(0)—e(vxB+E)t/h

Memory-less scattering events that change the
momentum and the energy of the particle instantaneously




Ways of solving the BTE

O

» Single particle Monte Carlo Technique
Follow single particle for long enough time to collect
sufficient statistics
Practical for characterization of bulk materials or inversion
layers

» Ensemble Monte Carlo Technique

MUST BE USED when modeling SEMICONDUCTOR
DEVICES to have the complete self-consistency built in

and , The Monte Carlo method for the solution of charge
transport in semiconductors with applications to covalent materials, Rev. Mod. Phys. 55, 645
- 705 (1983).




Bulk MC Flow-Chart

parameters initialization
readin()

!

scattering table construction
sc_table()

!

carriers initialization
init()

l

histograms calculation
histograms()

Free-Flight-Scatter
free_flight_scatter()

B

-dt2 =dt3
dte2 dt3 histograms calculation .
Call drift(dt2) A I . histograms() Optional
dte2=dte2+dt3
dte=dte2
ede dte2 dt3 write data
write()

dte < At ?

I I=1+Ar no Time t exceeds maximum
simulation time &




ASU’s Particle-Based Device Simulator
(Vasileska Group)

O

Initialization includes Random Dopant Distribution and
Unintentional Trap Specification

Initialize Material Parameters
and Device Structure

N o

Monte Carlo Kernel:
free-flight-scatter Perform
Particle-Mesh
Coupling Solve Energy Balance Equations
For Acoustic and Optical Phonons

| Solve Poisson Equation

| Molecular Dynamics Phonon Monte
Carlo is Currently

l Being Implemented

| Collect Results




The Monte Carlo Method
: Non-parabolicitdand Full-Band -

1 023 N 1 1 L] 1 I 1 -g A
[ 10
| \ = Fuldispersion Kmfl'(?; o
Bonaparabollc g N ,g Current work
— o N ~] & oersi Fischetti®
a1 R N & LA+TA dispersion _
> 2 fixed optical Fischer?
@ o g {LA only)
E 10 full band -: g LA no dispersion Canali’ Jacoboni? Tang®
- ] £ fixedintervalley anal Yamada® Sano®
O
= Analytic Analytic Full band
{parabolic) {non-parabolic)
Electron Band Model
21
1 0 [ 1 1 1

0 0.5 1 1.5 2 25 3 35
Energy [eV]

E. Pop, R. W. Dutton and K. E. Goodson, JOURNAL OF APPLIED
PHYSICS VOLUME 96, NUMBER 9 1 NOVEMBER 2004




Particle Based Device
Simulators

O

INCORPORATION OF THE SHORT-RANGE
COULOMB INTERACTION




K-Space Approach

O

START Long-range portions of the electron-electron
T and electron-impurity interactions
Initialize Data
> Short-range portions of the electron-electron
and electron-impurity interactions
Compute Charge
v
Solve 3D Poisson Equation Additional scattering mechanisms in the
T k-space portion of the Monte Carlo

no

Carrier Dynamics

Simulation time

Collect Data
]
STOP

transport kernel

— = v

Problems:

© E-E and E-| interaction terms need to be re-
evaluated frequently to take into account
changes in the distribution function and the
screening length.

® Calculation of the distribution function is
CPU intensive and cannot account for local
variations in the electron density.




Real-Space Approach

O

» Requires 3D device simulator, otherwise the method fails

» There are several variants of this method
Corrected Coulomb approach developed by Vasileska and Gross
Particle-particle-particle-mesh (p3m) method by Hockney and Eastwood
Fast Multipole method

* Corrected Coulomb approach and p3m method are almost equivalent in
philosophy, FMM is very different

» Treatment of the short-range Coulomb interactions using any of these three
methods accounts for:

Binary collisions + plasma (collective) excitations
Screening of the Coulomb interactions

Scattering from multiple impurities at the same time which is very
important at high substrate doping densities




Simulation Methodologies

O

( Start )
Method Complexity T
P3M FMM :

Initial condition

O(N+MlogM) |  O(N) !

Poisson (ILU)
¥

N=Number of particles . |
M=Number of Mesh Points EMC FNiM
: . | d
Computation time oW g Elwc
Machine: P-4 , 2GHz v
Mesh points: 64X24X24 Eiiaiog Assknment ke
Particles: 690 v v
. . . Poisson (ILU) FMM
Time for each iteration 1
~24 sec <lsec l
End End




Corrected Coulomb Approach

O

e
—_——0— ® Double-counting of the
target fixed Coulomb force is eliminated
electron electron

® Limitation: must use uniform
mesh spacing

4
10 l'll[llll[l'lllllllll]lllllilllzg

: _ ; © The generated look-up table
. = - 3 gives us information about the

== 10 nm mesh size

Coulomb field .

proper cut-off range

electron
®

|Electric field| [kV/cm]
S,

Distance from target particle [nm]

R, must be greater than
2x the mesh spacing

W. J. Gross, D. Vasileska and D. K. Ferry, "IEEE Electron Device Lett. 20, No. 9, pp.463-465 (1999).




Corrected Coulomb Approach — Cont’d

O

® The use of the simple Coulomb interaction in the source and
drain regions leads to electron trapping which, in turn,
prevents the filling of the channel with electrons.

® The carrier trapping can be eliminated through the use of
modified short-range Coulomb correction force.

W. J. Gross, D. Vasileska and D. K. Ferry, "VLSI Design, Vol. 10, pp. 437-452 (2000).

- 103: llllllll | LI B B B | I B L e s — 60 [T i |"|‘r LI ]
5 | ; 3 sof | Tl
S [ Corrected force for { = _ B
X 402 : 10 nm mesh size | > 40F o > —
- e ] N, T Coulomb field o . ST SR
i) O 30 R
[ & " L e
e 1 i (O} N ~_;': s .(b_): a
N - —e— linear
o 10 e 228 el - - - - fixed (c)
= © i —¥ — Coulomb (d)
8 'dj 10F ¥ ----i--- Poisson
— > N
E 100 Ll 111 1 | | I I I N I S S M B AR L (N O R | < K 1 1 1 I\Iv..-[ ? q I_-‘-l ‘ |"'"'-F"_I "' 1
0 5 10 15 0.0 0.5 1.0 1.5 2.0
Distance from target particle [nm] Time [ps]




Corrected Coulomb Approach — Cont’d

O

® Doping of the N*- regions: 2500 T Y _
ND+ - 1019 cm'3. .w i Experimental data .
- ©  Bulk Monte Carlo results .
® Mesh: uniform mesh spacing in all 2‘ 2000 - 4 Resistor simulations E
directions equa| to 10 nm. NE A  Resistor simulations - mesh force only E
® Cases considered: a 1500{;_ A 9
® Mesh force only - 10005_ e, A =3 = 5 z
® Mesh force + short-range e * a 1
e—e and e—i interaction Fo . i B R i
terms B i . o
S r %, .,
0_ ] . o 7] & i
0.3 um | 1018 10" 108
Doping [cm-9]
I
ND I ND+ ® The mesh force only does not give the
I

correct doping dependence of the low-field
electron mobility.

b 4

Low-field mobility: p=

Varift ® The inclusion of the short-range interaction
terms gives simulation low-field mobility data
in agreement with experimental values.




P3M Approch

O

20E+08 corr Coul
: —Ref. Force F;7" =F;"" - R;
16E+08 | —Coul.Force
E FCoui R. W. Hockney and J. W.
- - —Corr. Force Eastwood, Computer
s 12E+08 | Simulation Using Particles
~ i (New York, McGraw-Hill,
2, o s B 1981).
Qo ole+ul T
(3] [
(o] [
W 4.0E+07 ¢t
0.0E+00
-4.0E+07 Lo .

0 1 2 3 4 5 6
Distance [nm]

Reference force replaces the mesh force and needed to avoid double
counting of the short-range force.

The reference force should be equal to the mesh force inside the SR
domain and equal to the Coulomb force outside the SR domain.

Roger W. Hockney, James W. Eastwood, Computer Simulation Using Particles, Taylor & Francis.



P3M Approach — Cont’d

O

Smoothing of the total interparticle force between the long-and short-
range domains can be thought of as ascribing a finite size to particle i.

A sphere with uniformly decreasing density profile, S(r) is a good choice
for smoothing in three dimensions.

l A5 (r‘"—r), r<r,/2
2

S(1) =1 nrsr4
0, otherwise ,
q:4 ; 2r
R,(r) =20 x — (2245 — 2248 + 708" +48° ~218%) g nd Oswse B
4me 35 Sr Vsr
Ry(r )_q‘q’ 3512();——224 8965 — 84052 + 22483 + 708" —48E° +7E8) 1, [2<r<r,
4me
g4; 1
R..(r)= E5F e >,
U() Ane  p?




FMM Approach

O

@ Introduced by Rokhlin & Toeaha. SIRg = e EHN @ Consider the following binary tree structure induced by a
Greengard in 1987, R T i uniform subdivision of the unit interval:
@ Called one of the 10 most [0.1]
significant advances in " y ;
computing of the 20'h [0,1/2] [1/2,1]
century. sy o — T~
i [0,1/4] [1/4,1/2] [1/2,3/4] [3/4,1]
@ For a given precision ¢, the Idea of Multilevel FMM
FMM achieves the evaluation R [0.1/8) [1/8,1/4] [1/4,3/8) [3/8,1/2] [1/2,5/8] [5/8,3/4] [3/4,7(8] [7/8.1]
in O(M+N) operations. —\ /( \ 2 ]\ £

@ Edelman: "FMM is all about

, @ To approximately evaluate s(x) in the panel [1/25/8], we
adding functions”.

have:

$(x) = 513/8.1/2)(%) +51/2,5/8) (%) + 5[5/8 347 (%)

V. Rokhlin and L. Greengard, J. Comp. Phys.,

Vol. 73, pp. 325-348, 1987. 111743810+ 73/4,7/81 (%) + 7/ 11 (X) + 10 1/47(X)

L. Greengard and V. Rokhlin. On the Efficient Implementation of the

Fast Multipole Algorithm. Department of Computer Science Research
Report 602, Yale University (1988).




@ Introduced by Rokhlin & JRE e singlei el EMM @ Consider the following binary tree structure induced by a
Greengard in 1987. T el T ien uniform subdivision of the unit interval:
ources ‘" > SNIM;SI:U:ZNT\ Points
@ Called one of the 10 most 1 [ y } [0.1]
5 TR 2t OO FNERUE] | (U PR gy -, 008
N q
2\ i
°(x)=2 1

=11 % =y :|
N P

= Z q; Z Ve (y,- )¢ k (x ) distant particles local particles
i=1 k=1
P N multipole moment local expansion

=2 0k ()2 4w ()
k=1 i=1 translation

P

=2 0 (x)4,

k=1 local point
L Greengard and V. Rokhlin, © AFast Algorithm for Particle distant particles local particles
Simulations®, J. Comp. Phys. V. 135, 280-292 (1997).




FMM Approach

O

1. A detailed/comprehensive discussion may be found in:
@ Infroducedt L. Greengard and V. Rokhlin, “A Fast Algorithm for Particle Simulations”, > induced by a
Greengard in  Jour. Comp. Physics, Vol. 135, pp. 280-292, 1997.
@ Called one of
~ioeifio-es - 2 Here we present a first-order correction method for the channel
charges with the method of images:

For a point charge q lying in a dielectric e1 distance x = d from the plane

D (x ) — boundary between e1 and a second dielectric e2, the given charge plus an image
charge q(e1-e2)/(e1+e2) placed at x=-d with all space filled by a dielectric e1 may
be used to compute the potential for any point x > 0.

q(e1-€2)/(e1+&2)

-d £2
_ x=0
d &1
x>0 *'\ .
L Greengard . observation articles
Simulations’ i
q point




Resistor Simulations

O

Resistor Simulation:

1600
Method Time/iteration
— -
ﬁmgu : 2. 05 O P3*M 39 sec
T 1000 £ FMM 17 sec
2 500
>
= 600 No. of monopole charges: ~22000
e ——Exp. ;
° = P3M Mesh:40 x 25 x 25
s 400 ¢ 4 Corr. Coul.
o FMM
200 F o PM only
o BulkMC
[] "

1.E+14 1 E+15 1.E+16 1E+17 1E+18 1 E+19 1.E+20

Doping Density [/cm’]

» Uniform mesh (40 x 25 x 25)
» An external field of 1kV/cm was applied to ensure linear region of operation.

» The drift velocity was averaged over 5ps with an interval time of 0.1 ps. The first 1.5 ps data were
discarded.

H.R. Khan, D. Vasileska, S.S. Ahmed, C. Ringhofer and C. Heitzinger, Journal of Computational Electronics, Vol. 3, Nos. 3-4, pp. 337-340 (2005).




Particle-Based Device
Simulators

O

INCORPORATION OF SELF-HEATING EFFECTS




ASU (Vasileska) Model for Self-Heating Effects

é e i & i "
q

5} k+a—k k—k+ C
[a—“’p(q)-VrJg =Z{We,qq_> ‘Wa,(? q}+[_g)
t k ot p—p

J. Lai and A. Majumdar, “Concurent
thermal and electrical modeling of
submicrometer silicon devices”, J.
Appl. Phys. , Vol. 79, 7353 (1996).

oT, 3nke(T.-T, \ nm*v: I
Cpp L0 = B[e L]Jr d_CLO{Lo AJ:

ot 2 \ T 1o 2T, 10 Tr0-4
oT fe =10 Snk, | T. —T;
CATsz'(kAVTA)*”CLO( = A]“‘ B( - LJ-
ct Tro-4 - Te-L

K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov, IEEE Transactions on Electron Devices, vol. 55, issue 6, pp. 1306-1316, June 2008.




Exchange of variables between the two kernels

Part|C|e MOdeI CarIoDe\\:rice

Simulator l
Find: T (i,j)=Ta(i,j) and T o(i,j)

Select the scattering table with
“coordinates”: (T.(i.j)=TLo(i,j))

. Phonon Energy Generate a random number and
FI u |d M Od e I Balance Equations choose the scattering mechanism
Solver for a given electron energy

Energy (eV)

SI/BOX..
| interface

X,

T =~ o
Isource. T ... channel--




Various factors that affect the thermal conductivity value

Phonon Phonon Phonon Phonon
Boundary Imperfection Impurity Electron Mﬁ:ﬂ;:‘ém
Scattering Scattering Scattering Scattering PASSIVATION OXIDE
1 IMPERFECTION PHONON PHONON \ s
@)
ds O Q
PHONON  pooNON IMPURITY ATOM ELECTRON
v
2 & & ".'.. ; —
e Tt ol lexof -4 of_a=2 " SILICON SUBSTRATE
K@) =15 )-([ s 0{ eXp( ZA(T)COSGJCOS [2/1(T)cose o et ok ) v
A(T) = 4,(300/T) 80
p— 0 oo experimental data 'c
135 5\; full lines: BTE predictions ‘ - 150 T = 300 K
W= e VwkK & N dashed lines: empirical model E "
S 60/ thin lines: Sondheimer =
£ E 100
2
. =
Vasileska/Raleva 3 Q
[ =
Model for the 8 é 50
S (o]
Thermal g - _——"[ e enesentsTuov
Conductivity _'g g L —(TA)™ A  Asheghi et al., (1998)
‘ ‘ = o = n Zheng et al. (1996)
300 400 500 600 w 100 1000
[t

SOl LAYER THICKNESS (nm)
Temperature (K)

Ashegi, Leung, Wong, Goodson, Appl. Phys. Lett. 71, 1798 (1997)




Particle-Based Device
Simulators

O

INCORPORATION OF SPIN




Spin-Orbit Effects

O

» Generating spin polarized currents in nanowires and
constrictions

» Band structure in 2DEG

»Transverse Electron Focalization (TEF) in systems with SO-

» Rashba SO-coupling

coupling
»Spin accumulation ( Spin Hall Effect in ballistic mesoscopic
systems) Heterostructures:
E E E
The atomistic effect:
Z
M=—2—g5 H=-M:B B:lvxE Z NV N
mc c —r ky — .'vkv > ky
spm—degener:'.te:A Zeeman splitting RashbaAq)Immg
H="5 §.B=—"5 _§.yxE=—"5_5.pxvg(r) L = =
2mc 2mc 2m’c 2 o nl
E, = + 1B E = +ak
T 2m 2m

The Thomas precession effect

The SO-coupling preserves the time reversal symmetry




Rashba Spin-Orbit Coupling

ehe -p X &

(a)

V. jiSO 22
i A m-c

+ +

T+ + +

+ + o+ o+

+ + + +

+ + + o+

+ + + o+

|
¥
y

P material

R. Winkler*

Institut fir Technische Physik ITI, Universitdt Erlangen-Nirnberg, Lst. filr Theoretische Festkorperphysik, Staudtstr. 7,
D-91058 Erlangen, Germany

Physica E 22 (2004) 450454

Rashba spin splitting and Ehrenfest’s theorem H 50 :%( p y O P p xO- y )

Can be controlled with external
gates

ol

GaAs/AlGaAs 0.5-1 meV nm Nitta ef al. PRL 78 (1997)

InSb/InAlISb 5-10 meV nm Miller et al PRL 90 076807 (2003)




What are the Proper Transport
Models at the Nanoscale?

O

Quantum Transport

Click to LOOK INSIDE!

Computational
Electronics

Uragica Vasilerka-Kafobriska
Stephien Gaodnick

SyNTHESES LECTURES ON
Cf)lll'f TENTIONAL ’:-H CTROMAGNETICS

Grace Hopper — first
woman programmer

COMPUTEL

L]

Computational Electronics

Semi-Classical and Quantum
Device Modeling and Simulation

i

=5 ")

- 4
i

D. Vasileska + S.M. Goodnick * G. Klimeck
o=




What do we cover 1n this section?

O
Quantum Transport
x Solution of the Schrodinger Equation Using Usuki Method
« Green’s Functions
o Recursive Green’s Function Approach
o Contact Block Reduction Method and its applications




Quantum Transport

O

USUKI METHOD




Transfer Matrix Approach on the Example of RTD

O

n*GaAs AlAs AlAs n*GaAs

E

emitter Eo collector




How to calculate the transfer matrix 77

IIIIIIIIII
IIIIIIIIII
IIIIIIIIII
IIIIIIIIII
IIIIIIIIII 1

IIIIIIIIII e ——
1 1 1 I I I I 1 1 1 1 1

divide the active region into N slices




How to calculate the transfer matrix

r?

r.LL N discretize the potential

consider a boundary between slices i and i+1:

__ i i | § L i write down solutions for slices i and i+1

()
P (2)

..-ui _-.ai
— Aie"‘=z+B.,;e k.2
it _ikitl,

= C'.,;+1e”°= “+ Dje

1 1 1
1 e ——
1 1

divide the active regior into N slices

ERIVAVAVA N IAVAVAVA SN ol
B, NN | AN Dy

i i+1

A\ 4

use the continuity conditions

P (z) = PH(z)

0 i _ 0 iy,
a—zv’b (2:) = 3_z¢ +1(ZZ)

to calculate transfer matrix 7;
between slices i and i+1




VAVAVA NG
SAVAVAVAR S

total transfer matrix:

() =7(s)

1/t5 —r* /¢
—r/t 1/t

= (4 1)

Transfer matrix is numerically unstable

Scattering matrix S
is numerically stable:

C A
(5)=5(2)
outgoing states

iIncoming states




Exercise for PCPBT

O

* From one well, to two wells to 5 wells (energy bands forma-
tion)

Potertial Eseegy (¢V)
o o o
- L -
L 2 1

Erangy (V)
o
[
2 'l 2

Refresh Window Pop: Refresh Window | Pop:
gy 9= A Resk [Rescnince P umnce o
o‘
r 04
-....
03 5 e
o
s
=
=02
-
} 1 - ot
-
01 -
— |




Usuki Method Explained

O

Calculate conductance using finite difference grid

Wavefunction and potential defined on
discrete grid points

J=M+1 | | | | | | | transmitted

incident ' waves
waves
Y
reflected
waves
X
J=o0
1=0 i=N

slice in x direction - discrete problem
involves translating from one slice to the next.

Grid spacing: a<< A

Slides Courtesy of Richard Akis, ASU.




Obtaining transfer matrices from the discrete SE
apply Dirichlet boundary conditions on upper and lower boundary:

Wi =0 =Vi j=m+1=0 Vim =M

_ _ _ Yim-1
Wave function on ith slice

can be expressed as a vector =) 7, =

Discrete SE now becomes a matrix equation i1
relating the wavefunction on adjacent slices: Vil I=

(1b) HyuW,—t¥;,—t¥,_, = EVY,

[(V; y +41) —t 0
—t (Vi +41) —t

where: Hg =

-t (Vi +41) —t

0 —t (Vi1 +40)




(1b) can be rewritten as: ¥, :(

Combining this with the trivial equation

v
2 ~
( ) |:’//i+1:|

where

Modification for a perpendicular

magnetic field (0,0,B) :

B enters into phase factors
important quantity:
flux per unit cell

V=V,

e
Vi

0 -1

!

—_

j'//i —V

one obtains:

Is the transfer
matrix relating
adjacent
slices

I

—

o (P(HEi —E))
4




An aside — how the Peierl’s substitution appears
in a tight-binding Hamiltonian

k — —iV —eA/h, U — Wexp (—i27A -1r/dg),

_____________________________________

______________________________________

£ N
) ! An
ﬁfé\_f_'?;_'?}_(_ef%‘f??’i{m hn|+ef i m-1n )\ I
L — g~y
magnetic field (Peierls substitution) ' ;
®-----@----- ,__ﬂ;l




w W '
Solving the eigenvalue problem: T{ 1} = /1[ 1} yields the modes on the

left side of the system

Yo Yo

i, (%)

Mode eigenvectors have the generic form:
A, (D), ()| <«— redundant

There will be M modes that propagates to the right (+) with eigenvalues:
A (+)=e*m m=1,-q propagating
m ’ 9 ’

A, (H)=e "M m=q+1,--- M evanescent

There will be M modes that propagates to the left (+) with eigenvalues:

ﬂm (_) — e—ikma , m = 1, RN q propagating
ﬂm (-)= e"me .m=qg+1,--- M evanescent
defining Uy =l () - @,()] and A =diagll(x) - A,(D)]

Complete matrix of eigenvectors: [, , = LUJF /lU }
U U
+Uy AU




Transfer matrix equation for translation across entire system
l | —
N
<4
Unit matrix
e _ waves incident
i=N .
Transmission matrix from left have unit
\ / amplitude
t y I
0 = Ui Ty Ty - T Uy, reflection
/ € matrix
Zero matrix T T
no waves incident
from right Converts back to
mode basis Converts from mode basis
to site basis
2e? v, 2
G= TZV_ bom| e
mmu M




Variation on the cascading scattering matrix technique method
Usuki et al. Phys. Rev. B 52, 8244 (1995)

Boundary condition- waves of > 0,00 _ 0,0) _
unit amplitude incident from right G =L =0

(i+1,0) (i+1,0) (i,0) (i,0)
C1 C2 _ T Cl CZ P
— 4 i
0 || 0 ||

I 0 plays an
Iteration scheme P, = p p.l anla'ogous

for interior slices i1 i2 role :
W.0) to Dys_on s
i.0) 9 Recursive

Function

approach

Final transmission matrix for

_ ( + +)‘1[ N+1 +( + +)—1]_1
entire structure is given by t=—-\U"A C-U\Ua

A similar iteration gives the reflection matrix




After the transmission problem has been solved,
the wave function can be reconstructed

It can be shown that:

Po,=w,= [WN,l o Wk o WN,M]
wave function on column N resulting from the kth mode

One can then iterate

backwards through the structure: Vi = P, +P,y

i+1

The electron density at each point is then given by:

‘ 2

q
n(x,y)=n(,j)= Z‘l/jijk
k=1




First propagating mode for an irregular potential

U(+) for B=0.7T i (4) for B=0 T

1.4

1.2F = —
a |
U1j
08r
Mode functions no longer
| . |1 simple sine functions
confining
0.4+ ) -
potential
02r 2
0 ! L L 1 |
0 . 40 80

general formula for velocity of mode m
_e : B ) obtained by taking the expectation
Vm = h er sin(2k,, =27 j )”mf value of the velocity operator with
J respect to the basis vector.




Example — Quantum Dot Conductance as a Function of Gate voltage

> 08
D) r . . .
= I\ Conduction band profile E, Simulation gives _comparable
B e 2D electron density to that
3 i Energy of the :
< 04 ground subband measured experimentally
= i 5
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g | N=——(E;” —E))~4x10" ¢m™?
=] bl = b 2m
Q " Fermi level Eg
@) i
22—t
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z-axis [um]

Potential felt by 2DEG- maximum of electron distribution ~7nm below interface

y
06 T3
08

X (pm)

V,=-0.7V

Potential evolves smoothly- calculate a few as a function of V, and
create the rest by interpolation
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gate voltage (volts)

Subtracting out a background that removes
the underlying steps you get periodic
fluctuations as a function of gate voltage.

| Same simulations also reveal that certain scars
| may RECUR as gate voltage is varied. The
__| resulting periodicity agrees WELL with that of the

conductance oscillations

* Persistence of the scarring at zero magnetic field
indicates its INTRINSIC nature

= The scarring is NOT induced by the application
of the magnetic field




Quantum Transport

O

RECURSIVE GREEN’S FUNCTIONS APPROACH




Tight-Binding Hamiltonian

O

Divide the whole 1D device structure into points which interact with neighboring points
through a coupling constant.

In the tight-binding method one can take the basis functions to be any set of localized
functions such as atomic s- and p-orbitals, Wannier functions, and so forth.

A common approximation used to describe the Hamiltonian of layered structures consists
of non-vanishing interactions only between nearest neighbor layers. That is, each layer i
interacts only with itself and its nearest neighbor layers i-1 and i+1.

Then, the single particle Hamiltonian of the layered structure is a block tri-diagonal
matrix, where diagonal blocks represent the Hamiltonian of layer i and off-diagonal
blocks represent interactions between layers i and i+1:

e E:

17, H,
1,2 —_

[+
I




Matrix Representation of the Kinetic Equations

EI-H-%,-X, |G =1

|Q

>,< :Qr (Z>B< +Z>,< ) Qa

= =Scat

l-‘z', i-1 £i+1,i

|
' oo
oNoNoNoNo NN N B B N J 000, 00000
2 1,12 i i+ N-1N 1 2
Left Contact | _ Device , | Right Contact |

, Recursive-Green’s-function analysis of wave propagation in two-dimensional
nonhomogeneous media, .Phys. Rev. E 47, 2927 - 2933 (1993).




Recursive Green’s Function Method at Work

O

1. Divide the system into leads and internal domain

-~ -0-

2. Calculate the Green’s Function of the internal structure
using the Dyson Equation g=g°+g°Vg

M7=

--\
\--I

S. Datta, From Atom to Transistor, Cambridge University Press.




Recursive Green’s Function Method at Work

O

3. Calculate Green’s functions of the semi-infinite
leads - Surface Green’s function (self energy)

<€ >

4. Use the Dyson Equation to connect the two
domains of the system

2
2 2 ? 2 2 ? 2 .2

v
1,1 2,2
I I 2AL1 tl
-‘ - L
am -—

r'U
I XL =18
, )




Recursive Green’s Function Method at Work

O

Left-connected Lr \ ‘
Green’s function: £21,1 § 11 l L1 El-
Lr
§q+1,q+1 (Aq+1 g+l Aq+1 q gq g—9 ,q+1 )
Rr
Right-connected AN NE W lN N

Green’s function:

Lr Lr r Lr
Green’s functions needed , g *+g (Aq,q+1gq+1,q+1éq+l,q ) 14
for transmission coeffi-

q.9

cient and electron density

. Rr Rr r Rr
calculations - & T8 (éqﬂﬂ Qq,q AMH ) g

q+l,g+1 —g+l,g+1 q.9




[ ] [ ] [ ]
Example: Simulation of a RTD with NEMO1D
NEMO1D: InGaAs/AlAs RTDs
V744 #1, Nom.; 07117107 ml, Sim.: 09/18/09 ml V744 #2, Nom.: 0717008 ml, Sim.: 091810 ml
18000 : . — 16000 ——— : . .
oI, blas ——
16000 | f1 14000 | Simulation —e—
H 14000 | : 7 - ¥ oooo | Fev Biss —
4 12000 F ¢
£ 10000 } -
S soo0 | . .
g ;
= 6000 | . '
5 ano0 |, y .
© oom0 | g 4
I:I 1 1 1 1
0 02 04 06 08 1 O 0z 04 06 08 1
Applied Bias (V) Applied Bias (V)
744 #3, Nom.: 0717009 ml, Sim.: 091811 ml 744 #4, Nom.: 071710 m], Sim.: 091812 ml
9000 : . : : 2000 : : : .
§ 8000 | Forw. Bias ~. 6000 - Forw. Bias —— E
| Simulation Slmulaton —e—
g 7000 Rev. Bias % 7000 I "pev. Biag —
2 5000 < g000
%‘ 5000 %‘ 5000
£ 4000 & 4000
= 3000 = 3000
£ 2000 S 2000
[ ] O
1000 1000
0 0 —
0 02 04 06 08 1 0 02z 04 06 08 1
Applied Bias (V) &pplied Bias (V)

G. Klimeck, private communication..



Example: Simulation of a Nanowire MOSFET with OMEN

O

OMEN: Modeling of Nanowire Transistors

ld-¥g Characteristics 3D electron density for Vd=0.6

T . | ' T T | electron density for = 1-Vd=0.6Y-Vg=0V
0 02 04 06

Vg (V)

Simulation result for formation of inversion channel (electron density) and
attainment of threshold voltage (IV) in a nanowire MOSFET. Note that the
threshold voltage for this device lies around 0.45V

_G. Klimeck, private communication.. ...




Quantum Transport

O

CONTACT BLOCK REDUCTION METHOD




Direct Solution of the Problem is Time Consuming

O

The retarded Green’s function of an open system:

G'(E)=[1E-H] =[IE-H' -]
where = closed system Hamiltonian, = self-energy matrix

The Dyson equation,

describes closed system (decoupled device)

To determine Green’s function of an open system

we need to invert a huge matrix

D. Mamaluy, D. Vasileska, M. Sabathil, T. Zibold, and P. Vogl, “Contact block reduction
method for ballistic transport and carrier densities of open nanostructures”, Phys. Rev. B

71, 245321 (2005).




The CBR Algorithm

O

of an open system in CBR formalism:

L (G0 G| [ A AGY,
Ghe  Gh | |-AucAGL +Ghe —ALcACL + Gy

is the contact portion of the

where, D

index D denotes the interior device region
index C denotes the contact ( boundary ) region

>The left upper block [€F fully determine the transmission function
>The left lower block [€ffldetermines density of states, charge density etc.




Transmission Coefficient and Electron Density

O

e Transmission Function

T, (E)=Tr(I'"'G"T"G")

CBR Formalism
T (E)=TrT.GIT\GE), where GF =[1-G°S,.|'G) T =i, -]

» Local Density of States Function
(r,F) = <r |G"T'G" | r>/27r

CBR Formalism

1 2
P (I‘, L ) — % Z ‘GrB;n I‘mm,

- r|a)(a|m' ~
—<r|es;CBs|m>—;<E_>€<a+m> (m'| B! | m)

n=0"




Complexity of CBR vs. Other Algorithms

O

Method Computational cost

Transfer matrix + QTBM N, xO0 (N o L)

NanoMOS (Purdue University) N, x N, x 0([ Ny N, ]2) ~ N, X O(N%TAL)

3
QDAME (IBM, S. Laux) Nyons XO(N2,, )+ Ny x 0 (NT/?)TAL)

CBR Nyopa, X 0N )+ Ny X 0Ny, )

gen

Notations

N, : number of energy steps;

N,y - number of grid points CBR WINS ! ! !

N, : number of eigenvalues




What are the Proper Transport
Models at the Nanoscale?

O

Atomistic Simulations

Click to LOOK INSIDE! Computational Electronics

Semi-Classical and Quantum
Device Modeling and Simulation

Computational — ™ '
Electronics .

L s il

| s -:-'_ |
Pt I L';'Il!] I

D. Vasileska * S.M. Goodnick * G. Klimeck

Grace Hopper — first SYNTHESIS LECTURES 0N
Cblll‘t TENTIONAL El’l CTROMAGNETICS

weman programmer @

COMPUTEL




First Principles Calculations

O

Atomistic

74

Finite Pericdic

Centinuum

P T

Quasi-classical

Semi-empirical QM

Ab initio QM

— | T =

Hartree-Fock

Deiisity functional

Quantum Monte Carlo

~
~
~
~
~
~
~
~
~
~
~

Localized Basis

ASW, (FP)LMTC, FLAPW

\

Pseudcpoteiitial plane wave




Self-Consistent Tight Binding Calculations

O

[A. Di Carlo et. al., Solid State Comm. 98, 803 (1996); APL 74, 2002 (1999)]

X
Y’L_’z

The electron and hole densities in each 2D layer are given by:

//

c //>‘2.f(Ec _Fn)

|Ek// | f(Fh_Ev))

/I

The influence of free carrier charge redistribution and macroscopic
polarization fields are included by solving the Poisson equation:

d
dz

d

= D(z)=—

dz

(

d
—s—V,+P
dz

. _ boundary
)_e(p_’HND _NA) * conditions

b H=H.+V, > |Ek,)

A. Di Carlo, Private Communication.




Boundary Conditions for Transport

O

active region where symmetry is lost
The transport problem is: +

contact regions (semi-infinite bulk)

active
region

contact

Open-boundary conditions can be treated within several schemes:

* Transfer matrix
» Green Functions

These schemes are well suited for localized orbital approach like TB

A. Di Carlo, Private Communication.




Conclusions

O

» Nanoelectronics has revolutionized in many ways our every
day life.

It has made significant impact in fields like medicine in
terms of diagnostics and surgical interventions.

* There are many alternative paths and ways in which future
nanoelectronics research might go.

» Atomistic simulations will definitely be of crucial
importance and need for understanding future
nanoelectronic devices

» Parallel computing will be essential for performing multi-
million atomistic simulations.




