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Reciprocal Lattice

Issues that are addressed in this chapter
include:

» Bragg law

> Scattered wave amplitude
» Brillouin Zones

» Fourier analysis of the basis



1 Bragg Law

W. L. Bragg presented a simple explanation of the
diffracted beams from a crystal based on a specular
reflection from planes of atoms.

The difference in the paths
traversed by the two beams
shown in the figure is:

2dsin = nA




Listed below are some additional notes on the

Bragg reflection:

Although the reflection from each plane is
specular, only for certain values of 6 will the
reflections from all planes add up in phase to
give a strong reflected beam.

Each plane reflects only 103 to 10° of the
Incident radiation, i.e. it is not a perfect reflector.
Hence, 103 to 10° planes contribute to the
formation of the Bragg-reflected beam in a
perfect crystal.

The composition of the basis determines the
relative intensity of the various orders of
diffraction.




2 Scattered Wave Amplitude

a Reciprocal Lattice Vectors

The electronic number density is a periodic function in
space with a period equal to the lattice translation

vector T, i.e.
nr+7T)=n()

This means that one can use a Fourier series
expansion to represent in 1D n(x) as
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In 3D, we have
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The set of reciprocal lattice vectors that lead to electron
density invariant under lattice translations is found from
the condition:

G G
The reciprocal lattice vectors that satisfy the above
requirement are of the form

G = Vlbl +V2b2 +V3b3
where v,, v, and v, are integers and
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Q Diffraction Condition

The TEM maps the direct lattice, whereas the diffraction
pattern of the lattice is a map of the reciprocal lattice of
the crystal. The above statement is clarified with the

following theorem:
The set of reciprocal lattice vectors G determines the
possible x-ray reflections.

r = The scattering wave amplitude
d L w s given by:
2N V(O

= an(r)e_iAk'r
, " When G=AKk, then F=Vng, i.e.
k has significant value when the

difference in lattice vectors
equals the RLV.




= | et us now elaborate on this condition for the
case of elastic scattering:

G=Ak=k'k 52k-G+G?2 =0

a The Laue Equations

The original result that Ak=G can also be expressed to
give the Laue equations, that are obtained by taking the
dot product of both Ak and G with a,, a, and ag:

Ak-a; =2mv;, i=123

Note that x-ray difraction can be
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3 Brillouin Zones and Reciprocal Lattice to SC,
BCC and FCC Iattice

A Brillouin zones

A Brillouin zone is defined as a Wigner-Seitz primitive
cell in the reciprocal lattice and gives geometric
interpretation of the diffraction condition.

= The Brillouin construction exhibits
all wavevectors k that can be
Bragg reflected by the crystal.

= The constructions divide the
Fourier space into fragments, out
of which the first Brillouin zone is
of greatest importance.




Q Reciprocal Lattices to SC, FCC and BCC
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4 Fourier Analysis of a Basis

a Structure and Atomic Form Factors
Recall that the scattering amplitude equals to

F= [dVn(r)e 6T = NS,
cell

where S; is the structure factor defined as an integral
over a single unit cell.

If we write the electron density as a superposition of the
electron densities in the cell, taking into account the # of
atoms per basis, we have

S
n(r)= 2 n;(r-rj)
j=1
where s is the # of atoms in the unit cell.




Substituting this back gives
\) .
S¢=3Y [dVnj(r-rjeC"

J=lcell
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where f; is the atomic form factor. Now if we specify G
andr; as

G= Vlbl +V2b2 +V3b3 and l']' = xjal + y]-az + z]-a3
we get:
SG _ i fje—2fci(xjv1+ij2+zjv3)
j=1
Note that S; can be complex, because the scattering
intensity involves the magnitude squared of S;.




The atomic form factor can also be written in the
following form for spherically-symmetric electron

density 00 > sin(Gr)

fj=47tjnj(r)r dr
0

Gr

That means that when n(r)=2o(r), then f=Z, i.e. f; is the
ratio of radiation amplitude scattereoll by the electron
distribution to that scattered by a localized electron.

Q Examples of Structure Factor Calculations

(a) BCC lattice

For a BCC lattice, we have two atoms per init cell
located at (000) and (1/2 2 12). The structure factor
IS then:

SG _ b n e—ni(vl +vs +v3)b(




= The structure factor is maximum Sg = 2f when the
sum of the indices is even, i.e. V{+V,+V;=2n .

= The structure factor is Sg = 0 when the sum of the
indices is 0dd, i.e. V{+V,+Vs=2n+1 .

(b) FCC lattice

For a FCC lattice, we have four atoms per init cell
located at (000), (0 V2 2), ("2 0 V2) and (212 0). The
structure factor is then:

SG — b_l_e—ﬂ:i(vlﬂzz) _|_e—7ti(v1+v3) +e—ni(v2+v3)lf

= When all indices are even or odd, then S = 4f.

= When the indices are partially even and partially
odd, then S; = 0.

To summarize, in a FCC lattice, no reflections occur
when the indices are partially even and partially odd.




