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Reciprocal Lattice 

Issues that are addressed in this chapter 
include:

� Bragg law

� Scattered wave amplitude

� Brillouin Zones

� Fourier analysis of the basis



1 Bragg Law

W. L. Bragg presented a simple explanation of the 
diffracted beams from a crystal based on a specular 
reflection from planes of atoms.

d
dsinθ

θ

θ

The difference in the paths

traversed by the two beams 

shown in the figure is:

2dsinθ = nλ



Listed below are some additional notes on the 
Bragg reflection:

� Although the reflection from each plane is 
specular, only for certain values of θ will the 
reflections from all planes add up in phase to 
give a strong reflected beam.

� Each plane reflects only 10-3 to 10-5 of the 
incident radiation, i.e. it is not a perfect reflector.  
Hence, 103 to 105 planes contribute to the 
formation of the Bragg-reflected beam in a 
perfect crystal.

� The composition of the basis determines the 
relative intensity of the various orders of 
diffraction.



2 Scattered Wave Amplitude

� Reciprocal Lattice Vectors
The electronic number density is a periodic function in 
space with a period equal to the lattice translation 
vector T, i.e.

This means that one can use a Fourier series 
expansion to represent in 1D n(x) as

where:
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In 3D, we have

The set of reciprocal lattice vectors that lead to electron 
density invariant under lattice translations is found from 
the condition:

The reciprocal lattice vectors that satisfy the above 
requirement are of the form

where v1, v2 and v3 are integers and 
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� Diffraction Condition
The TEM maps the direct lattice, whereas the diffraction 
pattern of the lattice is a map of the reciprocal lattice of 
the crystal.  The above statement is clarified with the 
following theorem:

The set of reciprocal lattice vectors G determines the 
possible x-ray reflections.

� The scattering wave amplitude

is given by:

� When G=∆k, then F=VnG, i.e. 

has significant value when the 

difference in lattice vectors

equals the RLV.
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� Let us now elaborate on this condition for the 
case of elastic scattering:

� The Laue Equations
The original result that ∆k=G can also be expressed to 
give the Laue equations, that are obtained by taking the 
dot product of both ∆k and G with a1, a2 and a3:
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Note that x-ray difraction can be 
used to map all the reciprocal 
lattice vectors by changing θ.



3 Brillouin Zones and Reciprocal Lattice to SC, 

BCC and FCC lattice

� Brillouin zones
A Brillouin zone is defined as a Wigner-Seitz primitive 
cell in the reciprocal lattice and gives geometric 
interpretation of the diffraction condition.

� The Brillouin construction exhibits 

all wavevectors k that can be 

Bragg reflected by the crystal.

� The constructions divide the 

Fourier space into fragments, out 

of which the first Brillouin zone is 

of greatest importance.



� Reciprocal Lattices to SC, FCC and BCC
Direct lattice Reciprocal lattice Volume
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4 Fourier Analysis of a Basis

� Structure and Atomic Form Factors
Recall that the scattering amplitude equals to

where SG is the structure factor defined as an integral 
over a single unit cell.

If we write the electron density as a superposition of the 
electron densities in the cell, taking into account the # of 
atoms per basis, we have

where s is the # of atoms in the unit cell.

G
i

cell

NSedVnF =∫= ⋅− rG
r)(

)()(
1

j

s

j
jnn rrr −∑=

=



Substituting this back gives

where fj is the atomic form factor.  Now if we specify G
and rj as

we get:

Note that SG can be complex, because the scattering 
intensity involves the magnitude squared of SG.
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The atomic form factor can also be written in the 
following form for spherically-symmetric electron 
density

That means that when n(r)=Zδ(r), then fj=Z, i.e. fj is the 
ratio of radiation amplitude scattered by the electron 
distribution to that scattered by a localized electron.

� Examples of Structure Factor Calculations

(a) BCC lattice
For a BCC lattice, we have two atoms per init cell 
located at (000) and (1/2 ½ ½). The structure factor 
is then:

( )
∫π=
∞

0

2 sin
)(4 dr

Gr

Gr
rrnf jj

( )[ ]feS
vvvi

G
3211

++π−+=



� The structure factor is maximum SG = 2f when the 
sum of the indices is even, i.e. v1+v2+v3=2n .

� The structure factor is SG = 0 when the sum of the 
indices is odd, i.e. v1+v2+v3=2n+1 .

(b)  FCC lattice
For a FCC lattice, we have four atoms per init cell 
located at (000), (0 ½ ½), (½  0 ½) and (½ ½ 0). The 
structure factor is then:

� When all indices are even or odd, then SG = 4f.

� When the indices are partially even and partially 
odd, then SG = 0.

To summarize, in a FCC lattice, no reflections occur 
when the indices are partially even and partially odd.
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