Reciprocal Lattice

Dragica VasileskaandGerhard Klimeck

Issues that are addressed in this chapter include:

► Bragg law

- > Scattered wave amplitude
- **Eillouin Zones**
- Fourier analysis of the basis

W. L. Bragg presented a simple explanation of the diffracted beams from a crystal based on a specular reflection from planes of atoms.

The difference in the paths traversed by the two beams shown in the figure is:

$$
2\text{dsin}\theta = n\lambda
$$

Listed below are some additional notes on the Bragg reflection:

- **EXECT:** Although the reflection from each plane is
specular, only for certain values of 8 will th specular, only for certain values of θ will the reflections from all planes add up in phase to give a strong reflected beam.
- \odot Each plane reflects only 10⁻³ to 10⁻⁵ of the
incident radiation i.e. it is not a perfect refle incident radiation, i.e. it is not a perfect reflector.Hence, 10³ to 10⁵ planes contribute to the formation of the Bragg-reflected beam in a perfect crystal.
- The composition of the basis determines the
relative intensity of the various orders of relative intensity of the various orders of diffraction.

□ Reciprocal Lattice Vectors
The electronic number denoitu is

The electronic number density is a periodic function in space with a period equal to the lattice translation vector **T**, i.e.

$$
n(\mathbf{r}+\mathbf{T})=n(\mathbf{r})
$$

This means that one can use a Fourier series expansion to represent in $1D$ n(x) as

$$
n(x) = n_0 + \sum_{p>0} \left[C_p \cos(2\pi px/a) + S_p \sin(2\pi px/a) \right] = \sum_p n_p e^{i2\pi px/a}
$$

where:

$$
n_p = \frac{1}{a} \int_0^a dx n(x) e^{-i2\pi px/a}
$$

In 3D, we have

$$
n(\mathbf{r}) = \sum_{\mathbf{G}} n_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}} \rightarrow n_{\mathbf{G}} = \frac{1}{V_c} \int_0^a dV n(\mathbf{r}) e^{-i\mathbf{G} \cdot \mathbf{r}}
$$

The set of **reciprocal lattice vectors** that lead to electron density invariant under lattice translations is found fromthe condition:

$$
n(\mathbf{r} + \mathbf{T}) = \sum_{\mathbf{G}} n_{\mathbf{G}} e^{i\mathbf{G} \cdot (\mathbf{r} + \mathbf{T})} = \sum_{\mathbf{G}} n_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}} e^{i\mathbf{G} \cdot \mathbf{T}} = n(\mathbf{r}) \text{ when } e^{i\mathbf{G} \cdot \mathbf{T}} = 1
$$

The reciprocal lattice vectors that satisfy the above requirement are of the form

$$
\mathbf{G} = v_1 \mathbf{b}_1 + v_2 \mathbf{b}_2 + v_3 \mathbf{b}_3
$$

where v_1 , v_2 and v_3 are integers and

$$
\mathbf{b}_{i} = 2\pi \frac{\mathbf{a}_{j} \times \mathbf{a}_{k}}{\mathbf{a}_{i} \cdot (\mathbf{a}_{j} \times \mathbf{a}_{k})}, \ i = x, y, z \rightarrow \mathbf{b}_{i} \cdot \mathbf{a}_{j} = 2\pi \delta_{ij}
$$

Q Diffraction Condition
The TEM result the direct **I**

The TEM maps the direct lattice, whereas the diffraction pattern of the lattice is a map of the reciprocal lattice of the crystal. The above statement is clarified with the following theorem:

The set of reciprocal lattice vectors **G** determines the possible x-ray reflections.

 The scattering wave amplitudeis given by:

> $\int dV n(\mathbf{r}) e^{i(\mathbf{k}-\mathbf{k}')\cdot \mathbf{r}}$
= $\int dV n(\mathbf{r}) e^{-i\Delta \mathbf{k} \cdot \mathbf{r}}$ $F = \int dV n(\mathbf{r}) e^{i(\mathbf{k} - \mathbf{k}^{\prime})}$

 $= \int dV n(\mathbf{r}) e^{-i\Delta \mathbf{k} \cdot \mathbf{r}}$ $=\int dV n(\mathbf{r})e^{-i\mathbf{r}}$

 When **G**=∆**k**, then F=Vn**G**, i.e. has significant value when the difference in lattice vectorsequals the RLV.

Let us now elaborate on this condition for the case of elastic scattering:

$$
\mathbf{G} = \Delta \mathbf{k} = \mathbf{k'} - \mathbf{k} \rightarrow 2\mathbf{k} \cdot \mathbf{G} + G^2 = 0
$$

Q The Laue Equations
The existed result that AL

The original result that ∆**k**=**G** can also be expressed to give the Laue equations, that are obtained by taking the dot product of both ∆**k** and **G** with \mathbf{a}_1 , \mathbf{a}_2 and \mathbf{a}_3 :

$$
\Delta \mathbf{k} \cdot \mathbf{a}_i = 2\pi v_i, \quad i = 1, 2, 3
$$

Note that x -ray difraction can be used to map all the reciprocal lattice vectors by changing θ.

3 Brillouin Zones and Reciprocal Lattice to SC, BCC and FCC lattice

□ Brillouin zones

A Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lattice and gives geometric interpretation of the diffraction condition.

- The Brillouin construction exhibits all wavevectors k that can be Bragg reflected by the crystal.
- The constructions divide the Fourier space into fragments, out of which the first Brillouin zone is of greatest importance.

□ Reciprocal Lattices to SC, FCC and BCC Direct lattice **Reciprocal lattice** Volume $SC \left(\mathbf{a} - a \mathbf{v} \right)$ $(\mathbf{b} - (2\pi/a) \mathbf{v})$ FCC \mathbf{C} | $\mathbf{a}_1 = \frac{1}{2} a(\mathbf{x} + \mathbf{y})$ BCC $\overline{\mathcal{L}}$ ۱ $\left\{ \right\}$ \int ===**azayax***aaa*321 $(y+z)$ $(z + x)$ ۱ $\overline{\mathcal{C}}$ $\bigg\{$ \int =+=+=+**azxayzaxy***aaa*21 $3 - 3$ 21 $2-1$ 21 $1 (x+y-z)$ $(-\mathbf{x} + \mathbf{y} + \mathbf{z})$ $(\mathbf{x}-\mathbf{y}+\mathbf{z})$ $\overline{\mathcal{C}}$ $\bigg\{$ \int =+=++=+−− **axyzaxyzaxyz***aaa*21 $3 - 3$ 21 $2-1$ 21 $1 \begin{cases} \mathbf{b}_1 = (2\pi/a)\mathbf{x} \\ \mathbf{b}_2 = (2\pi/a)\mathbf{y} \\ \mathbf{b}_3 = (2\pi/a)\mathbf{z} \end{cases}$ in the contract of the contrac $\left\{ \right\}$ \int =π=π=π**bzbybx***aaa*2/ 2/ 2/ 321 $y_2 = (2\pi/a)y$ (2 π/a) $(y+z)$ $(\mathbf{x} + \mathbf{z})$ $(\mathbf{x} + \mathbf{y})$ $\bigg($ $\bigg\{$ \int $=$ $\frac{2\pi}{1}$ (χ + =+=+πππ $\mathbf{b}_3 = \frac{2\pi}{\mathbf{X}} \times \mathbf{X}$ **ybxzbyz***aaa*2 $3 - 3$ 2 $2-1$ 2 $1 - 1$ $(-x+y-z)$ $(\mathbf{x}-\mathbf{y}+\mathbf{z})$ $(\mathbf{x} + \mathbf{y} - \mathbf{z})$ $\bigg($ $\bigg\{$ \int =+=+=+πππ**bxyzbxyzbxyz***aaa*2 $3 - 3$ 2 $2-1$ 2 $1 - 1$ 3 $2\pi/a$) π/ *a* $(2\pi/a)$ 3 $2(2\pi/a)$ 2π/ *a* $(2\pi/a)^3$ 42π/*a*

□ Structure and Atomic Form Factors Recall that the scattering amplitude equals to

$$
F = \int dV n(\mathbf{r}) e^{-i\mathbf{G} \cdot \mathbf{r}} = N S_G
$$

where S_G is the **structure factor** defined as an integral
over a single unit coll over a single unit cell.

If we write the electron density as a superposition of the electron densities in the cell, taking into account the # of atoms per basis, we have

$$
n(\mathbf{r}) = \sum_{j=1}^{S} n_j(\mathbf{r} - \mathbf{r}_j)
$$

where s is the # of atoms in the unit cell.

Substituting this back gives

$$
S_G = \sum_{j=1}^{S} \int dV n_j (\mathbf{r} - \mathbf{r}_j) e^{-i\mathbf{G} \cdot \mathbf{r}}
$$

=
$$
\sum_{j=1}^{S} e^{-i\mathbf{G} \cdot \mathbf{r}_j} \int dV n_j(\rho) e^{-i\mathbf{G} \cdot \rho} = \sum_{j=1}^{S} e^{-i\mathbf{G} \cdot \mathbf{r}_j} f_j
$$

where **fj** is the **atomic form factor**. Now if we specify **G**and **rj** as

 $\mathbf{G} = v_1 \mathbf{b}_1 + v_2 \mathbf{b}_2 + v_3 \mathbf{b}_3$ and $\mathbf{r}_i = x_i \mathbf{a}_1 + y_i \mathbf{a}_2 + z_i \mathbf{a}_3$ we get: $= v_1 b_1 + v_2 b_2 + v_3 b_3$ and $\mathbf{r}_j = x_j \mathbf{a}_1 + y_j \mathbf{a}_2 + z_j \mathbf{a}_3$

$$
S_G = \sum_{j=1}^{S} f_j e^{-2\pi i (x_j v_1 + y_j v_2 + z_j v_3)}
$$

Note that S_G can be complex, because the scattering $\frac{1}{2}$ intensity involves the magnitude squared of $S_{\rm G}.$

The atomic form factor can also be written in the following form for spherically-symmetric electron density $=4\pi \int r(r) r^2 \frac{\sin(Gr)}{r^2}$ π⁄π ∫ ∞0 $4\pi \overset{\infty}{\mathfrak{f}} n$; $(r)r^2 \overset{\text{sin}}{=}$ $(r)r^2 \frac{\sin(\theta)}{r} dr$ *GrGr* $f_j = 4\pi$ $\int n$ *rrj j*

That means that when *n* $\dot{\mathbf{r}}$ $(r) = Z$ δit means that when *n*(*r*)=Zδ(*r*), then f_j=Z, i.e. f_j is the
ratio of radiation amplitude scattered by the electron jdistribution to that scattered by a localized electron.

 \Box Examples of Structure Factor Calculations (a) BCC lattice

 For a BCC lattice, we have two atoms per init cell located at (000) and (1/2 $\frac{1}{2}$ $\frac{1}{2}$). The structure factor is then:

$$
S_G = \left[1 + e^{-\pi i (v_1 + v_2 + v_3)}\right]_f
$$

- \blacksquare The structure factor is maximum $S_G = 2f$ when the sum of the indicas is oven i.e. $y_1 + y_2 = 2f$ sum of the indices is even, i.e. $v_1+v_2+v_3=2n$.
- \blacksquare The structure factor is $S_G = 0$ when the sum of the
indicas is add i.e. y_{U} i.y. $y_{U} = 2p + 1$ indices is odd, i.e. $v_1+v_2+v_3=2n+1$.

(b) FCC lattice

 For a FCC lattice, we have four atoms per init cell located at (000), (0 ½ ½), (½ 0 ½) and (½ ½ 0). The structure factor is then:

$$
S_G = \left[1 + e^{-\pi i (v_1 + v_2)} + e^{-\pi i (v_1 + v_3)} + e^{-\pi i (v_2 + v_3)}\right]f
$$

- \blacksquare When all indices are even or odd, then $S_G = 4f$.
- \blacksquare When the indices are partially even and partially odd, then $\rm S_{G}$ = 0.
- To summarize, in a FCC lattice, no reflections occur when the indices are partially even and partially odd.