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Coulomb Scattering

� Where is Coulomb Scattering Important:
◦ Heavily doped bulk systems
◦ Semiconductor devices
� Nanoscale MOSFETs

� MESFETs

� PN Diodes

� BJTs

� Contact regions of FD SOI devices, Dual-gate 
transistors, FinFETS

� HEMTs -> remote Coulomb scattering is important. 
Since remote Coulomb scattering is much weaker, we 
have very high mobilities in HEMT structures that are 
used in RF applications
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Ionized impurity scattering is due to:

(Ionized donors/acceptors, substitutional impurities, charged 

surface states, etc.)

• The potential due to a single ionized impurity with net charge 

Ze is:

• In the one electron picture, the actual potential seen by 

electrons is screened by the other electrons in the system.
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What is Screening?
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λD - Debye screening length

Ways of treating screening:

• Thomas-Fermi Method
static potentials + slowly varying in space

• Mean-Field Approximation (Random Phase Approximation)
time-dependent and not slowly varying in space
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� Screening is the damping of electric fields caused by the 
presence of mobile charge carriers. 

� It is an important part of the behavior of charge-carrying fluids, 
such as ionized gases (classical plasmas) and conduction
electrons in metals. 

� In a fluid composed of electrically charged constituent particles, 
each pair of particles interact through the Coulomb force,

� In reality, these long-range effects are suppressed by the flow 
of the fluid particles in response to electric fields. This flow 
reduces the effective interaction between particles to a short-
range "screened" Coulomb interaction.

� For example, consider a fluid composed of electrons. Each 
electron possesses an electric field which repels other electrons. 
As a result, it is surrounded by a region in which the density of 
electrons is lower than usual. This region can be treated as a 
positively-charged "screening hole". Viewed from a large 
distance, this screening hole has the effect of an overlaid 
positive charge which cancels the electric field produced by the 
electron. Only at short distances, inside the hole region, can the 
electron's field be detected.



� The first theoretical treatment of screening, due to Debye and Hückel (1923), dealt with a 
stationary point charge embedded in a fluid. This is known as electrostatic screening.

� Consider a fluid of electrons in a background of heavy, positively-charged ions. For 
simplicity, we ignore the motion and spatial distribution of the ions, approximating them as 
a uniform background charge. In condensed matter physics, this model is referred to as 
jellium.

� Let ρ denote the number density of electrons, and φ the electric potential. At first, the 
electrons are evenly distributed so that there is zero net charge at every point. Therefore, 
φ is initially a constant as well.

� We now introduce a fixed point charge Q at the origin. The associated charge density is 
Qδ(r), where δ(r) is the Dirac delta function. After the system has returned to equilibrium, 
let the change in the electron density and electric potential be ∆ρ(r) and ∆φ(r) respectively. 
The charge density and electric potential are related by the first of Maxwell's equations, 
which gives

� To proceed, we must find a second independent equation relating ∆ρ and ∆φ. There are 
two possible approximations, under which the two quantities are proportional: the Debye-
Hückel approximation, valid at high temperatures, and the Fermi-Thomas approximation, 
valid at low temperatures.



Debye-Hückel approximation 

� In the Debye-Hückel approximation, we maintain the system in 
thermodynamic equilibrium, at a temperature T high enough 
that the fluid particles obey Maxwell-Boltzmann statistics. At 
each point in space, the density of electrons with energy j has 
the form



Fermi-Thomas approximation 

� In the Fermi-Thomas approximation, we maintain the system at 
a constant chemical potential and at low temperatures. (The 
former condition corresponds, in a real experiment, to keeping 
the fluid in electrical contact at a fixed potential difference with 
ground.) The chemical potential µ is, by definition, the energy 
of adding an extra electron to the fluid. This energy may be 
decomposed into a kinetic energy T and the potential energy -
eφ. Since the chemical potential is kept constant,

∆µ = ∆T − e∆φ = 0.

� If the temperature is extremely low, the behavior of the 
electrons comes close to the quantum mechanical model of a 
free electron gas. We thus approximate T by the kinetic energy 
of an additional electron in the free electron gas, which is 
simply the Fermi energy EF. The Fermi energy is related to the 
density of electrons (including spin degeneracy) by





Screened Coulomb interactions 

� Our results from the Debye-Hückel or Fermi-Thomas 
approximation may now be inserted into the first Maxwell 
equation. The result is

� which is called a screened Coulomb potential. It is a Coulomb 
potential multiplied by an exponential damping term, with the 
strength of the damping factor given by the magnitude of k0, the 
Debye or Fermi-Thomas wave vector. Note that this potential has 
the same form as the Yukawa potential.



Brooks-Herring Approach



• For the scattering rate due to impurities, we need for Fermi’s 

rule the matrix element between initial and final Bloch states

Since the u’s have periodicity of lattice, expand in reciprical 

space

• For impurity scattering, the matrix element has a 1/q type 

dependence which usually means G≠0 terms are small
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• The usual argument is that since the u’s are normalized within 

a unit cell (i.e. equal to 1), the Bloch overlap integral I, is 

approximately 1 for n′=n [interband(valley)].  Therefore, for 

impurity scattering, the matrix element for scattering is 

approximately

where the scattered wavevector is:

• This is the scattering rate for a single impurity.  If we assume 

that there are Ni impurities in the whole crystal, and that 

scattering is completely uncorrelated between impurities:

where ni is the impurity density (per unit volume). 
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From M. Lundstrom, private communication.



• The total scattering rate from k to k′ is given from Fermi’s 

golden rule as:

If θ is the angle between k and k′, then:

• Comments on the behavior of this scattering mechanism:

- Increases linearly with impurity concentration

- Decreases with increasing energy (k2), favors lower T
- Favors small angle scattering

- Ionized Impurity-Dominates at low temperature, or room 

temperature in impure samples (highly doped regions)

• Integration over all k′ gives the total scattering rate Γk :
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From M. Lundstrom, private communication.
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Doping Dependence of the Mobility

Electron and hole mobility in bulk silicon at T=300K.



From M. Lundstrom, private communication.



From M. Lundstrom, private communication.



Neutral Impurity Scattering:

• This scattering mechanism is due to unionized donors, neutral 

defects; short range, point-like potential.

• May be modeled as bound hydrogenic potential.

• Usually not strong unless very high concentrations 

(>1x1019/cm3).

• It is a dipole type of interaction and is weaker than direct 

Coulomb interaction



http://engineering.dartmouth.edu/microeng/otherweb/henning/papers/mobility.pdf



Mobility Modeling

Mobility modeling can be separated in 
three parts:
◦ Low-field mobility characterization for 
bulk or inversion layers

◦ High-field mobility characterization to 
account for velocity saturation effect

◦ Smooth interpolation between the low-field 
and high-field regions



Low-Field Models for Bulk Materials

Phonon scattering:

- Simple power-law dependence of the temperature

- Sah et al. model:
acoustic + optical and intervalley phonons 

combined via Mathiessen’s rule

Ionized impurity scattering:

- Conwell-Weiskopf model

- Brooks-Herring model



Combined phonon and ionized 
impurity scattering:

- Dorkel and Leturg model: 

temperature-dependent phonon 
scattering +
ionized impurity scattering + carrier-
carrier interactions

- Caughey and Thomas model:

temperature independent phonon 
scattering + ionized impurity scattering







- Sharfetter-Gummel model:

phonon scattering + ionized impurity 
scattering (parameterized expression –
does not use the Mathiessen’s rule)

- Arora model:

similar to Caughey and Thomas, but with 
temperature dependent phonon 
scattering
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Neutral impurity scattering:

- Li and Thorber model: 

mobility component due to neutral 
impurity scattering is combined with the 
mobility due to lattice, ionized impurity 
and carrier-carrier scattering via the 
Mathiessen’s rule



Field-Dependent Mobility

The field-dependent mobility model provides smooth transition 

between low-field and high-field behavior

vsat is modeled as a temperature-dependent quantity:
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