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Where is Coulomb Scattering Important:
Heavily doped bulk systems

Semiconductor devices
- Nanoscale MOSFETs

- MESFETs

- PN Diodes

- BJTs

- Contact regions of FD SOI devices, Dual-gate
transistors, FINFETS

- HEMTs -> remote Coulomb scattering is important.
Since remote Coulomb scattering is much weaker, we
have very high mobilities in HEMT structures that are
used in RF applications



Location of the Channel in Different FET Types
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lonized impurity scattering is due to:

(lonized donors/acceptors, substitutional impurities, charged
surface states, etc.)

* The potential due to a single ionized impurity with net charge
Zels:
_Ze”

Vi (r) - 4mer

/

mks units

* In the one electron picture, the actual potential seen by
electrons is screened by the other electrons in the system.



What is Screening?

Ap - Debye screening length

Q\
!

screening cloud \1 —rl Ay
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Ways of treating screening:

« Thomas-Fermi Method
static potentials + slowly varying in space

« Mean-Field Approximation (Random Phase Approximation)
time-dependent and not slowly varying in space




Screening is the damping of caused by the

presence of mobile carriers.
It is an important part of the behavior of charge-carrying )
such as ionized gases (classical ) and
in :
In a fluid composed of electrically charged constituent particles,
each pair of particles interact through the )
719>
— .)]_ .
4meqg |r|”

In reality, these long-range effects are suppressed by the flow
of the fluid particles in response to electric fields. This flow
reduces the effective interaction between particles to a short-
range "screened" Coulomb interaction.

For example, consider a fluid composed of electrons. Each
electron possesses an electric field which repels other electrons.
As a result, it is surrounded by a region in which the density of
electrons is lower than usual. This region can be treated as a
positively-charged "screening hole". Viewed from a large
distance, this screening hole has the effect of an overlaid
positive charge which cancels the electric field produced by the
electron. Only at short distances, inside the hole region, can the
electron's field be detected.



The first theoretical treatment of screening, due to and ( ), dealt with a
stationary point charge embedded in a fluid. This is known as electrostatic screening.

Consider a fluid of electrons in a background of heavy, positively-charged ions. For
simplicity, we ignore the motion and spatial distribution of the ions, approximating them as
a uniform background charge. In , this model is referred to as

Let p denote the of electrons, and ¢ the . At first, the
electrons are evenly distributed so that there is zero net charge at every point. Therefore,
¢ is initially a constant as well.

We now introduce a fixed point charge Q at the origin. The associated is
Qo(r), where o(r) is the . After the system has returned to equilibrium,
let the change in the electron density and electric potential be Ap(r) and A@(r) respectively.
The charge density and electric potential are related by the first of ,
which gives

S A i/ 1 | |
—V7[A¢(r)] = —[Qb(r) — e Ap(r)].

€0

To proceed, we must find a second independent equation relating Ap and A¢. There are
two possible approximations, under which the two quantities are proportional: the Debye-
Hilckel approximation, valid at high temperatures, and the Fermi-Thomas approximation,
valid at low temperatures.



ps(r) =" (r) exp [1(; )]

where kg is Boltzmann's constant. Perturbing in @

eAp . Egk&A(ﬁ
where

der [_pe?
ko B \/ngBT

Debye-Huckel approximation




In the Fermi-Thomas approximation, we maintain the system at
a constant and at low temperatures. (The
former condition corresponds, in a real experiment, to keeping
the fluid in electrical contact at a fixed with

.) The chemical potential uy is, by definition, the energy
of adding an extra electron to the fluid. This energy may be
decomposed into a kinetic energy T and the potential energy -
e@. Since the chemical potential is kept constant,

Ap = AT — eAp = 0.

If the temperature is extremely low, the behavior of the
electrons comes close to the model of a

. We thus approximate T by the kinetic energy
of an additional electron in the free electron gas, which is
simply the E-. The Fermi energy is related to the
density of electrons (including spin degeneracy) by



1 4 h*k2
=2 xky , Ep=—-
P= 273 = om
Perturbing to first order, we find that
Ap~ 2P AE
P = EF F-

Inserting this into the above equation for Ay yields
2 .
eAp — égk‘a A¢

where

def | 3e7p me?k;
ke = -

EUEF Egﬁ“ho

Is called the Fermi-Thomas screening wave vector.



Our results from the Debye-Hlckel or Fermi-Thomas
approximation may now be inserted into the first Maxwell
equation. The result is

[372—-L§]cﬂr\==-— o(r)

€0
which i1s known as the screened Poisson equation. The solution i1s
Qs
o(r) e
degr

which is called a screened Coulomb potential. It is a Coulomb
potential multiplied by an exponential damping term, with the
strength of the damping factor given by the magnitude of kO, the
Debye or Fermi-Thomas wave vector. Note that this potential has
the same form as the :
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Brooks-Herring Approach




 For the scattering rate due to impurities, we need for Fermi’s
rule the matrix element between initial and final Bloch states

(M, X' Vi(r)nk) = jdru,, € X Vi(r) nkelkr

Since the u's have periodicity of lattice, expand in reciprical
space

=XV [dre™V(r)e" e Uy (G)
=XV [cre™ "V (r)e" e [ty o (1), (1)
Q

« For impurity scattering, the matrix element has a 1/q type
dependence which usually means G#0 terms are small

=V [dre* "V (r)e™" jdr Uyt e (1) (1) = Vi(q)l’ffn‘f’



* The usual argument is that since the u's are normalized within
a unit cell (i.e. equal to 1), the Bloch overlap integral /, is
approximately 1 for n’=n [interband(valley)]. Therefore, for
iImpurity scattering, the matrix element for scattering is
approximately

Z’e*
K|V, (t)k)* =V.(q) =
K ,(r)‘ >‘ ‘ ,(Q)‘ Vz(q2+7\.2)€§0

where the scattered wavevector is: q =k —k’

: V =volume

 This is the scattering rate for a single impurity. If we assume
that there are N;impurities in the whole crystal, and that
scattering is completely uncorrelated between impurities:
ka’ ~ leze4 _ n,zze4
i T2 (A2, 222 2, 22).2
V0 + N s VIGT+ 2

where n;is the impurity density (per unit volume).




small angle scattering

From M. Lundstrom, private communication.



* The total scattering rate from k to k” is given from Fermi’'s
golden rule as:

kK =\ e (
Vilg® + 2 2,
If 0 is the angle between k and k’, then:
g=k-k|=k>+k"—2kk'cos® =2k*(1-cos6)

« Comments on the behavior of this scattering mechanism:

- Increases linearly with impurity concentration
- Decreases with increasing energy (k?), favors lower T
- Favors small angle scattering

- lonized Impurity-Dominates at low temperature, or room
temperature in impure samples (highly doped regions)

5(Ek’ - Ek)

* Integration over all k” gives the total scattering rate I, :
o nZze'm* 4k*
k — 2 2313 | ~2(41L2 2
SRESCh k _CID (4k + qD )_

, gp=1/A




examine result

2rg*N, S(E’—E)
hxse,Q (4 P’
h2

S(p.p’) =

2
sin” /2 + 1/ Li,]

1) S(Pap’)"’Nl

2) S(p.p’)~q" @

3) S(p.p’)~1/E”

From M. Lundstrom, private communication.



examine result

\ 2mg*N S(E’-E)
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From M. Lundstrom, private communication.



momentum relaxation time

1 P
—=ZS(p,p')(l—cosa) o=
T, >

2
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Tm (E) ~ E3/2
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From M. Lundstrom, private communication.



Brooks-Herring mobility

un = % I‘ln

From M. Lundstrom, private communication.
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Doping Dependence of the Mobility




Conwell-Weiskopf approach

2ng*N, S(E'—E)

S(p.p’)= unscreened Coulomb
U TR0 (4p? 2 tential
s€o (,&fg sin? /2 potentia
| S(p,p’)—)oo as oa—0
O
P | T p’
there is @ minimum b—>ee b= 1 N7
deflection angle, oy, 2




Conwell-Weiskopf approach

1672m x 1

N,q* 1n(1+ygw)_

72 = bm/(qz/gmcseoE)

312
E

7, (E)=

From M. Lundstrom, private communication.



Neutral Impurity Scattering:

 This scattering mechanism is due to unionized donors, neutral
defects; short range, point-like potential.

« May be modeled as bound hydrogenic potential.

« Usually not strong unless very high concentrations
(>1x107%/cms).

* |t is a dipole type of interaction and is weaker than direct
Coulomb interaction

l - 20607 N,

TN c“mgme( 1 + 2ae)
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Mobility modeling can be separated in
three parts:

Low-field mobility characterization for
bulk or inversion layers

High-field mobility characterization to
account for velocity saturation effect

Smooth interpolation between the low-field
and high-field regions



Phonon scattering:

- Simple power-law dependence of the temperature

- Sah et al. model:
acoustic + optical and intervalley phonons
combined via Mathiessen’s rule

. TL —TMUN Table 3-27. User-Specifiable Parameters for the Constant Low-Field Mobility Model
M, o = MUN| 300 | Statement Parameter Default Units
MOBILITY MUN 1000
- TL —TMUP MOBILITY MUP
-upO = MUP| ;()'6 MOBILITY TMUN 1.5
TMUP 1.5

Ionized impurity scattering:
- Conwell-Weiskopf model
- Brooks-Herring model

Low-Field Models for Bulk Materials



Combined phonon and ionized
impurity scattering:
- Dorkel and Leturg model:
temperature-dependent phonon
scattering +
ionized impurity scattering + carrier-
carrier interactions

- Caughey and Thomas model:

temperature independent phonon
scattering + ionized impurity scattering
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Table 3-29. User-Specifiable Parameters for Equations 3-175 and 3-176

Statement Parameter Default Units
MOBILITY MU1N.CAUG 55.24 cm?/ (V- s)
MOBILITY MULP.CAUG 49.7 cm?/ (V- s)
MOBILITY MU2N . CAUG 1429.23 cm?/ (V- s)
MOBILITY MU2P.CAUG 479.37 cm?/ (V- s)
MOBILITY ALPHAN.CAUG 0.0 arbitrary
MOBILITY ALPHAP.CAUG 0.0 arbitrary
MOBILITY BETAN. CAUG -2.3 arbitrary
MOBILITY BETAP. CAUG -2.2 arbitrary
MOBILITY GAMMAN.CAUG -3.8 arbitrary

Table 3-29. User-Specifiable Parameters for Equations 3-175 and 3-176

Statement Parameter Default Units
MOBILITY GAMMAP .CAUG -3.7 arbitrary
MOBILITY DELTAN.CAUG 0.73 arbitrary
MOBILITY DELTAP.CAUG 0.70 arbitrary
MOBILITY NCRITN.CAUG 1.072x10%7 cm3
MOBILITY NCRITP.CAUG 1.606x10%7 cm3




- Sharfetter-Gummel model:

phonon scattering + ionized impurity
scattering (parameterized expression -
does not use the Mathiessen’s rule)

- Arora model:

similar to Caughey and Thomas, but with
temperature dependent phonon
scattering
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Table 3-30. User-Specifiable Parameters for Equations 3-177 and 3-178

Statement Parameter Default Units
MOBILITY MUIN.ARORA 88.0 cm2/ (V-s)
MOBILITY MU1P.ARORA 54.3 cm?/ (V-s)
MOBILITY MU2N.ARORA 1252.0 cm2/ (V-s)
MOBILITY MU2P.ARORA 407.0 cm2/ (V-s)
MOBILITY ALPHAN.ARORA -0.57
MOBILITY ALPHAP.ARORA -0.57
MOBILITY BETAN.ARORA -2.33

Table 3-30. User-Specifiable Parameters for Equations 3-177 and 3-178
Statement Parameter Default Unlts
MOBILITY BETAP.ARORA -2.33
MOBILITY GAMMAN . ARORA 2.546
MOBILITY GAMMAP .ARORA 2.546
MOBILITY NCRITN.ARORA 1.432x10Y7 cm™3
MOBILITY NCRITP.ARORA 2.67x1017 e
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Neutral impurity scattering:
- Li and Thorber model:

mobility component due to neutral
impurity scattering is combined with the
mobility due to lattice, ionized impurity
and carrier-carrier scattering via the
Mathiessen’s rule



The field-dependent mobility model provides smooth transition
between low-field and high-field behavior

H(E) =— = PRy B = 1 for electrons
IJ{%EJ B = 2 for holes

VSCZZ

V. IS modeled as a temperature-dependent quantity:

7
S SO 5.3 (U,

1+0.8 exp(TLj
600

Field-Dependent Mobility



