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Introduction



Units:

•Charge: Q (Coulomb=A.s)

•Charge density ρ (C/m3)

•Electric Field: E (V/m)

•Magnetic Field: H (A/m)

•Electric Displacement: D (C/m2)

•Magnetic Induction: B (Tesla =V.s/m2)

•Current: I (A)

•Current density J(A/m2)



Material Equations
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RF Devices and the need for 
computational electromagnetics



RF MOSFETs – Does This Work?

Traditional opinion:  The Si MOSFET is a slow device not 
suitable for RF operation

Truth: - The Si MOSFET is commonly slower than a III-V FET 
with comparable gate length

- VLSI electronics: Continuous scaling, i.e., shrinking of 
MOSFET size (gate length)

- Continuous scaling made Si MOSFETs not only smaller, 
but also much faster

Today:   The submicron MOSFET is capable of 
GHz operation!



MOSFET Scaling

Evolution of Si VLSI: Moore's Law
Minimum feature size and memory 

bits per chip vs year

New MOSFET concepts for future generationsIntels new Trigate MOSFETs
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Important Trends:

• Continuous increase of  the frequency limits, i.e. fT and fmax (III-V’s)
• Increase of output power (wide bandgap transistors)
• Low-cost RF transistors for consumer mass markets (Si-based)

The Evolution of RF Transistors
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Overview - Material Properties

Si GaAs InGaAs* 4H SiC 6H SiC GaN

EG, eV 1.1 1.4 0.7 3.2 3 3.4

EBR, 105 V/cm 5.7 6.4 4 33 30 40

µµµµ0, cm2/Vs 710 4700 7000 610 340 680

vpeak, 107cm/s 1 2 2.5-3 2 2 2.5

vsat, 107cm/s 1 0.8 0.7 2 2 1.5-2

κκκκ, W/cm-K 1.3 0.5 0.05 2.9 2.9 1.2**

Important for high fT and fmax and low noise:
Fast carriers (i.e. µ0, vpeak , vsat)

Important for high output power:
- high breakdown field and voltage, i.e. wide bandgap
- high thermal conductivity

*In0.47Ga0.53As
** Saphir 0.43 Data for n-type bulk material, ND = 1017 cm-3



Si and III-V‘s Wide bandgap semiconductors

Stationary velocity-field characteristis (v-E )
Bulk material
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Carrier Transport (Electrons)

- Lower velocity at low fields
- Higher velocity at high fields



Carrier Transport in Bulk GaN
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 Exp. up to 1996

 Exp. since 1997

 Fit Farahmand

 Fit Mnatsakanov

This work :
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 Upper limit fit
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Carrier Transport in Bulk GaN
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MESFETs and HEMTs

Substrate
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Drain

n-type active layerL

n+ cap

Gate

n+ cap

Source

Substrate

Barrier / buffer

Channel layer

Drain

BarrierL

n+ cap

Gate

n+ cap

2DEG channel

Source

MESFET
Metal-Semiconductor FET
Channel: n-dotierte aktive Schicht

HEMT
High Electron Mobility Transistor
Channel: twodimensional electron

gas (2DEG) at the inter-
face channel layer - barrier



2DEGs

Two-Dimensional Electron Gas - 2DEG

Gate

n  barrier layer (e.g. Al  Ga    As)+
x 1-x

Undoped channel layer
(e.g. GaAs)

(e.g. GaAs)
S.I. substrate
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2DEG electrons are spatially 
separated from the donator ions

high mobility!



Properties of 2DEGs

Heterojunction Type µ0, cm2/Vs nS, cm-2 ∆∆∆∆EG, eV ∆∆∆∆EC, eV

Al0.3Ga0.7As/GaAs 5400 1.4 x 1012 0.38 0.22

Al0.3Ga0.7As/In0.2Ga0.8As 6400 2.2 x 1012 0.58 0.41

In0.52Al0.48As/In0.53Ga0.47As 10 000 3.0 x 1012 0.71 0.52

Al0.3Ga0.7N/GaN 1 400 1.3 x 1013 0.6 0.42

III-V heterostructures: - more In in the channel layer leads to higher mobility µ0

- larger ∆∆∆∆EC causes a higher higher sheet concentration nS

AlGaN/GaN:                  - lower mobility than III-V's
- rather moderate ∆∆∆∆EC but extremely high nS - WHY ?



2DEGs in AlGaN/GaN Structures

• Electronegativity
polar nature of the bonds in AlGaN and GaN

• Deviation of the GaN and AlGaN crystal
structure from the ideal structure:
spontaneous polarization

• Different spontaneous polarizations in AlGaN and GaN
gradient of the polarization at the interface

• Difference in the lattice constants in AlGaN and GaN
strained AlGaN additional polarisation component: 
piezoelectric polarization
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2DEGs in AlGaN/GaN Structures
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At the AlGaN/GaNinterface occurs a positive net charge 

+ σσσσ leading to the formation of a 2DEG in the GaN.
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• Only a small portion of the
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Measured 2DEG sheet concentration nS in AlxGa1-xN/GaN 
heterostructures vs. Al content x

2DEGs in AlGaN/GaN Structures

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

 

 

 Exp. (undoped structures)

 Exp. (doped structures)
n

S
, 

1
0

1
3
 c

m
-2

Al Content



Carrier Transport in AlGaN/GaN 2DEGs
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SiC and GaN MESFETs
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Frequency limits of SiC and GaN MESFETs vs. gate length

fT fmax

Record performance

Transistor type fT, GHz fmax, GHz

SiC MESFET 28 (L = 0.45 µm, 2002) 50 (L = 0.45 µm, 1998)

GaN MESFET 28 (L = 0.25 µm, 2002) 55 (L = 0.25 µm, 2002)



SiC MESFETs

Air bridges

4H SiC Wafer
(thinned to 100 µm)

Source Vias

Experimental SiC MESFET (J. W. Palmour et al., Tech. Dig. IEDM, pp. 385-388, 2001, Cree)

Current Record Performance (Output Power)
Pout = 120 W bei 3 GHz (1999)
PDout = 7.2 W/mm bei 3.5 GHz (2002)



AlGaN HEMTs - Frequency Limits
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(for comparison data of GaAs pHEMTs are also shown 

fT fmax

Record performance

Transistortyp fT, GHz fmax, GHz

AlGaN HEMT 121 (L = 0.12 µm, 2002) 195 (L = 0.15 µm, 2002)

GaAs pHEMT 151 (L = 0.10 µm, 1989) 290 (L = 0.10 µm, 1990)



AlGaN/GaN HEMTs - Evolution of Output Power

Output power PoutOutput power density PDout

Continuous Improvement 

of PDout und PD in recent years
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AlGaN/GaN HEMTs - Output Power Density PDout

Influence of the substrate material

HEMTs on SiC substrates show considerably 
higher output power density. 

Reason: Excellent thermal conductivity of SiC.
Note: Currently GaN substrates are not available.
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Output Power vs. Frequency

Comparison of competing RF FETs

Up to 10 GHz:

• The best AlGaN HEMTs show 30-fold (!) power density of III-V FETs

• The best SiC MESFETs show (5-8)-fold power density of III-V FETs
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WE  NEED  TO  S O LVE  MAXWELL ’ S EQUAT I ONS  TO  B E  A B L E  
TO  P R ED I C T  R F BEHAV IOR  O F  THE  DEV I C E S  P R E S ENTED  

I N  TH I S  S E C T I ON .

THE  QUE S T I ON  I S :  
HOW  DO  WE  DO  THAT ?

THE  AN SWER  I S :  
C OMPUTAT I ONAL  E L EC TROMAGNET I C S .

Lessons Learned!



Computational 
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Expanding    and    into the Cartesian components:

Note, only first order derivatives are needed.
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Solving both E and H fields, in time and space.
=> Both E and H field boundaries can be used

Solving both E and H fields => more robust

=>Unique field features (e.g. singularities)

Yee Cell centres its E and H fields in 3D.
FD expressions are central in nature and 2nd order accurate.

Continuity of the tangential E and H fields across 

boundaries.

Implicit enforce the two Gauss laws.

Yee Algorithm centres its E and H fields in time.

The Yee Algorithm



Yee Cell centres its E and H fields in 3D.

The Yee Cell



Yee Algorithm centres its E and H fields in time.

=> Time stepping is fully explicit.

FD expressions for the time derivatives are 

central in nature and 2nd order accurate.

Time stepping algorithm is nondissipative.

The Yee Time stepping



To keep the overview especially when considering 

3D expressions Yee used the following notation 

which will be used for the FDTD equations.

The Yee Notation
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Using same procedure as for the 1D case we obtain:

For the case with equal spatial sampling:
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Many geometries of interest are defined in “open” regions

where the spatial domain of the computed field is unbounded

in one or more coordinate directions.

No computer can store an infinite amount of data!

A suitable boundary condition on the outer perimeter of the

domain Ω must be used to simulate its extension to infinity.

ABC (Absorbing boundary conditions)



We need a boundary condition that permits all outward

propagating numerical waves to exit Ω as if the simulation

were performed on a computational domain of infinite

extent.

We must suppress spurious reflections of the outgoing

numerical waves to an acceptable level.

ABC (Absorbing boundary conditions)



We terminate the outer boundary of the space lattice in an 

absorbing material medium.

This is analogous to the physical treatment of the walls of an 

anechoic chamber.     

PML (Perfectly Matched Layer) ABC



The innovation of Berenger’s PML is that plane waves of

arbitrary incidence, polarization, and frequency are matched

at the boundary.

A novel split-field formulation of Maxwell’s equations is

derived.

By choosing loss parameters consistent with a dispersionless

medium, a perfectly matched planar interface is derived.

PML (Perfectly Matched Layer) ABC




