
D R A G I C A VA S I L E S K A A N D  G E R H A R D  K L I M E C K

TUNNELING



QUANTUM EFFECTS

• Quantum-mechanical space quantization
• Tunneling
• Quantum Interference

In all but the smallest devices quantum-mechanical 
space quantization effects and tunneling play dominant 
role and they can be captured with quantum correction 
models

Quantum interference dominates the operation of 
resonant tunneling diodes and fully quantum transport 
approaches are needed to treat this device.



TREATMENT OF TUNNELING

• WKB Approximation
• Transfer Matrix Approach

• Piece-Wise Constant Potential Barrier Approximation
• Piece-Wise Linear Potential Barrier Approximations



WENTZEL-KRAMERS-BRILLOUIN
(WKB) APPROXIMATION



IMPORTANT APPLICATIONS IN WHICH 
WKB APPROXIMATION IS USED

• Tunneling Breakdown in normal diodes (reverse 
biased diode)

• Tunnel (Esaki) diode (forward + reverse bias)
• Scanning Tunneling Microscope
• Gate Leakage in MOSFET Devices



A. BREAKDOWN MECHANISMS IN A DIODE

• Junction breakdown can be due to:

� tunneling breakdown

� avalanche breakdown

• One can determine which mechanism is responsible for the 

breakdown based on the value of the breakdown voltage VBD :

� VBD < 4Eg/q  →→→→ tunneling breakdown

� VBD > 6Eg/q  →→→→ avalanche breakdown

� 4Eg/q  < VBD < 6Eg/q  →→→→ both tunneling and 

avalanche mechanisms are responsible



• Tunneling breakdown occurs in heavily-doped pn-

junctions in which the depletion region width W is about 

10 nm.

W

EF

EC 

EV 

Zero-bias band diagram: Forward-bias band diagram:

W

EFn

EC 

EV 

EFp 



EFn

EC 

EV 

EF

p

Reverse-bias band diagram: • Tunneling current (obtained by 

using WKB approximation):

Fcr � average electric field in

the junction

• The critical voltage for 

tunneling breakdown, VBR, is 

estimated from:
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B. TUNNEL (ESAKI) DIODE

Nobel Prize in Physics 1973

Leo Esaki



(ESAKI) TUNNEL DIODE (TD)

• Simplest tunneling device
• Heavily-doped pn junction

• Leads to overlap of conduction and valence bands

• Carriers are able to tunnel inter-band
• Tunneling goes exponentially with tunneling distance

• Requires junction to be abrupt



BAND-TO-BAND TUNNELING IN A 
TUNNEL DIODE
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FIGURES OF MERIT
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DIRECT VS. INDIRECT TUNNELING

Direct Indirect

Indirect materials require phonons to tunnel, thus 
reducing the probability of a tunneling event



C. SCANNING TUNNELING 
MICROSCOPE



D. WKB APPROXIMATION 
EXPLAINED

• The Wentzel-Kramers-Brillouin (WKB) approximation is a 
“semiclassical calculation” in quantum mechanics in 
which the wavefunction is assumed an exponential 
function with amplitude and phase that slowly varies 
compared to the de Broglie wavelength, λ, and is then 
semiclassically expanded

• While Wentzel, Kramers and Brillouin developed this 
approach in 1926, earlier in 1923 Harold Jeffreys had 
already developed a more general method of 
approximating linear, second-order differential equations 
(the Schrodinger equation is a linear second order 
differential equation)



WKB APPROXIMATION EXPLAINED, 
CONT’D

• While technically this is an “Approximate Method” not an 
“Exact solution” to the Schrodinger equation, it is very 
close to simple plane wave solutions that we discussed 
while describing transmission coefficient calculation in 
piece-wise constant potential barriers

• The WKB method is most often applied to 1D problems 
but can be applied to 3D Spherically Symmetric 
problems as well (see Bohm 1951)

• The WKB approximation is especially useful in deriving 
the tunnel current in a tunnel diode



BASIC IDEA OF THE METHOD

• The WKB approximation states that since in a constant 
potential, the wavefunction solutions of the Schrodinger 
equation are of the form of simple plane waves, then

• Now, if the potential U=U(x) changes slowly with x, the 
solution of the Schrodinger equation can also be written 
of the general form

where φ(x)=xk(x). 
- For the constant potential case, φ(x)=±kx so the 
phase changes linearly with x
- In a slowly varying potential φ(x) should vary slowly 
from the linear case ±kx
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BASIC IDEA OF THE METHOD, 
CONT’D

• For the two cases, E>U and E<U, let k(x) be defined as 
(so we only have to solve the problem once)
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WENTZEL-KRAMERS-BRILLOUIN (WKB) 
APPROXIMATION

• Starting from the 1D Schrödinger equation

• And substituting the general solution for slowly-varying 
potentials, one gets the following differential equation
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WENTZEL-KRAMERS-BRILLOUIN 
(WKB) APPROXIMATION

• The WKB approximation assumes that the 
potentials are slowly varying in space

• Then the 0th order approximation assumes
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Wentzel-Kramers-Brillouin (WKB) 
Approximation

• If a higher order solution is required, then we 
solve 

• Then the 1th order approximation assumes
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Wentzel-Kramers-Brillouin (WKB) 
Approximation

1. In order to apply the WKB approximation we only 
need to know the shape of the potential since 

2. For slowly varying U(x) the first order and the 
zero order approximation give almost the same 
result as 
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Wentzel-Kramers-Brillouin (WKB) 
Approximation

3. The WKB approximation breaks down where E~U 
(classical turning points) in which case the wavevector 
k(x) approaches zero but the derivative does not and 
there in fact the argument in (2) does not hold 

Under these circumstances, connection formulas must 
be applied to tie together regions on each side of the 
classical turning point. 
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E. EXAMPLE: GATE LEAKAGE
gate leakage

tunnelling current



GATE LEAKAGE

� For sub-micrometer devices, due to smaller oxide thickness, there is 
significant conductance being measured on the gate contact.  The finite 
gate current gives rise to the following effects:

� Negative => degradation in the device operating characteristics with 
time due to oxide charging; larger off-state power dissipation

� Positive => non-volatile memories utilize the gate current to program 
and erase charge on the “floating contact” – FLASH, FLOTOX, 
EEPROM

� There are two different types of conduction mechanisms to the insulator 
layer:

� Tunneling:  Fowler-Nordheim or  direct tunneling process

� Hot-carrier injection:  lucky electron model or Concannon model

Electron is emitted into the oxide 
when it gains sufficient energy to 
overcome the insulator/semicon-
ductor barrier.

• Similar to the lucky electron model, but 
assumes non-Maxwellian high energy tail on 
the distribution function.

• Requires solution of the energy balance 
equation for carrier temperature.



TUNNELING CURRENTS

� Three types of tunneling processes are schematically shown below
(courtesy of D. K. Schroder)

• For tox ≥ 40 Å, Fowler-Nordheim (FN) tunneling dominates
• For tox < 40 Å, direct tunneling becomes important
• Idir > IFN at a given Vox when direct tunneling active
• For given electric field: - IFN independent of oxide thickness

- Idir depends on oxide thickness

φφφφB Vox > φφφφB
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FN FN/Direct Direct
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SIGNIFICANCE OF GATE LEAKAGE
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� As oxide thickness decreases, the gate current becomes more 
important.  It eventually dominates the off-state leakage current  (ID at 
VG = 0 V)

� The drain current ID as a function of technology generation is shown 
below (courtesy of D. K. Schroder)



FOWLER-NORDHEIM TUNNELING
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� The difference between the Fermi level and the top of the barrier is 
denoted by ΦB

� According to WKB approximation, the tunneling coefficient through this 
triangular barrier equals to:
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FOWLER-NORDHEIM TUNNELING

� The final expression for the 
Fowler-Nordheim tunneling 
coefficient is:

� Important notes:

� The above expression 
explains tunneling process 
only qualitatively because 
the additional attraction of 
the electron back to the plate 
is not included

� Due to surface 
imperfections, the surface 
field changes and can make 
large difference in the results
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Calculated and experimental tunnel 
current characteristics for ultra-thin oxide 
layers.

(M. Depas et al., Solid State Electronics, Vol. 
38, No. 8, pp. 1465-1471, 1995)



TRANSFER MATRIX 
APPROACH



TUNNELING: TRANSFER MATRIX 
APPROACH

Within the Transfer Matrix approach one can assume to 
have either

• Piece-wise constant potential barrier
• Piecewise-linear potential barrier



PIECE-WISE CONSTANT 
POTENTIAL APPROXIMATION



Piece-Wise Constant Potential Barrier (PCPBT 

Tool) installed on the nanoHUB



The Approach at a Glance



The Approach, Continued

Slide property of Sozolenko.



PIECE-WISE LINEAR POTENTIAL 
APPROXIMATION



PIECE-WISE LINEAR APPROXIMATION 

• This algorithm is implemented in ASU’s code for modeling 
Schottky junction transistors (SJT)

• It approximates real barrier with piece-wise linear 
segments for which the solution of the 1D Schrodinger 
equation leads to Airy functions and modified Airy functions

• Transfer matrix approach is used to calculate the energy-
dependent transmission coefficient

• Based on the value of the energy of the particle E, T(E) is 
looked up and a random number is generated. If r<T(E) 
than the tunneling process is allowed, otherwise it is 
rejected.



The Approach at a Glance
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Simulation Results for Gate Leakage in SJT
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TSU-ESAKI FORMULA FOR THE 
CURRENT CALCULATION



DERIVATION OF THE TSU-ESAKI 
FORMULA

Energy barrier with two electrodes which 
can be used to describe the ECB or HVB 
processes.



ASSUMPTIONS

• Effective mass approximation. The different masses 
corresponding to the band structure of the considered 
material are lumped into a single value for the effective mass. 
This is denoted by meff in the electrodes and mdiel in the 
dielectric layer.

• Parabolic bands. The dispersion relation in semiconductors 
is approximated by 

• Conservation of parallel momentum. Only transitions in the 
kx direction are considered, the parallel wavevector k|| = kyey + 
kzez is not altered by the tunneling process.
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CURRENT CALCULATION

• The net tunneling current from Electrode 1 to Electrode 2 can be 
written as the net difference between current flowing from Side 1 to 
Side 2 and vice versa:

• The current density through the two interfaces depends on the 
perpendicular component of the wavevector kx, the transmission 
coefficient Tc, the perpendicular velocity vx, the density of states gc

and the distribution function at both sides of the barrier:
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CURRENT CALCULATION, CONT’D

• In this expression it is assumed that the transmission coefficient only 
depends upon the momentum perpendicular to the interface. The 
density of states g(kx) is:

• Where g(kx,ky,kz) denotes the three-dimensional density of states in 
momentum space. Considering the quantized wavevector
components within a cube of side L yields for the density of states 
within the cube:
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CURRENT CALCULATION, CONT’D

• For the parabolic dispersion relation, the velocity and 
energy components in the tunneling direction obey:

• Hence, the expressions for the current density become:
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CURRENT CALCULATION, CONT’D

• Using polar coordinates for the parallel wavevector
components

• The current density evaluates to:
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The total energy is sum of longitudinal part Ex and transverse part Eρ.



CURRENT CALCULATION, CONT’D

• Evaluating the difference, the net current through the 
interface equals:

• This expression is usually written as an integral over the 
product of two independent parts which only depend 
upon the energy perpendicular to the interface: The 
transmission coefficient Tc(Ex) and the supply function 
N(Ex)
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TSU-ESAKI FORMULA

• The expression in the previous slide is known as the Tsu-
Esaki formula.

• The supply function describes the difference in the supply of 
carriers at the interfaces of the dielectric layer. Following the 
definition of the current, the supply function is given by:

• The occupancy functions f1 and f2 are defined near the 
interfaces. Since the exact shape of these distributions is 
usually not known, approximate shapes are commonly used. 
Furthermore, it is assumed that the distributions are isotropic. 
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SUPPLY FUNCTION

• In equilibrium, the energy distribution function of 
electrons and holes is given by the FERMI-DIRAC 
statistics

• Which can be derived from statistical mechanics. 
Separating the longitudinal and the transverse energies 
E=Ex+Eρ, and splitting the integral N(Ex)=ξ1(Ex)-ξ2(Ex), 

the values of ξ1 and ξ2 become:
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SUPPLY FUNCTION

• The last expression can be integrated analytically using:

• Then the total supply function is:
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