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Outline
• Introduction
• Lattice vibrations and phonons
• The vibrating string

– Interfaces between dissimilar strings: acoustic 
mismatch

– Discrete masses and the vibrational 
eigenspectrum

• General thermal transport theory
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Applications of Nanoscale Energy Transport
Energy conversion

photovoltaics thermoelectrics PEMFC fuel cell
absorptivity (photon-electron 

coupling), 
electron-phonon coupling

Seebeck coefficient, thermal 
conductivity, electrical conductivity

H2, O2, and H2O transport 
in nanopores
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Applications of Nanoscale Energy Transport

 

 

• Cooling of electronics
• Laser manufacturing
• Bio systems
• Atmospheric heating

transistor laser manufacturing
phonon-phonon scattering,
Phonon-boundary scattrering, 
electron-phonon scattering

photon-electron interaction, 
electron-phonon coupling
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Principal Energy Carriers

• Phonon:  quantum of lattice vibrations
– acoustic phonon: contributes to sound
– optical phonon: infrared active or Raman active

• Electron: charged particle surrounding the nucleus
– responsible for chemical bonding

• Fluid particle: single atoms or molecules in constant 
random motion
– ideal gas: elastic collisions, forces of attraction are negligible
– liquids: intermolecular forces

• Photon: quantum of electromagnetic fields
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Nano for Energy
• Increased surface area
• Interface and size effects 

Photons
Λ > 10 nm

Λ~100-10,000 nm

Phonons
Λ~10-100 nm

λ~1 nm

Electrons
Λ~10-100 nm
λ~10-50 nm

Λ---Mean 
free path 

λ---wavelength

Molecules
Λ ∼ 1−100 nm

λ~1 nm

Slide courtesy 
of G. Chen
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Carrier Distribution Functions 
(Occupation Number)

M. Kaviany, 
Heat Transfer 
Physics, 2008. 
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Outline
• Introduction
• Lattice vibrations and phonons
• The vibrating string

– Interfaces between dissimilar strings: acoustic 
mismatch

– Discrete masses and the vibrational 
eigenspectrum

• General thermal transport theory
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• Consider two neighboring atoms that share a 
chemical bond

• The bond is not rigid, but rather like a spring 
with an energy relationship such as…

Lattice Vibrations

r0

U

r

r0
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• Near the minimum, the energy is well 
approximated by a parabola

– u = r – r0 and   g = spring constant

• Now consider a one-dimensional chain of 
atoms

Lattice Vibrations, cont’d

21
2

U gu=

a

spring
constant

g

atom,
mass

m
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• Harmonic potential energy is the sum of 
potential energies over the lattice

• Equation of motion of atom at location u(na)

• Simplified notation

Lattice Energy and Motion
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• Seek solutions of the form

• Boundary conditions
– Born-von Karman: assume that the ends of the 

chain are connected
• uN+1 = u1

• u0 = uN

Lattice Motion, cont’d

( ){ }( ) ~ expnu t i Kna t− ω

1
2

N
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• Then the boundary conditions become

• Let λ be the vibration wavelength, λ = aN/n

• Minimum wavelength, λmin = 2a = 2(lattice 
spacing)

Lattice Motion, cont’d

K = wave vector
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• Substitute exponential solution into equation of 
motion

• Solve for ω

• This is the dispersion relation for acoustic phonons
– relates phonon frequency (energy) to wave vector 

(wavelength)

Lattice Equations of Motion
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• Changing K by 2π/a leaves u unaffected
– Only N values of K are unique
– We take them to lie in -π/a < K < π/a

Dispersion Curve

ω(K)

K

π/a- π/a 

2(g/m)1/2
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• Phase velocity: c = ω/K
• Group velocity: vg = ∂ω/∂K = a(g/m)1/2cos(Ka/2)
• For small K:

• Thus, for small K (large λ), group velocity equals 
phase velocity (and speed of sound)

• We call these acoustic vibration modes

Wave Velocities
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• For K = ±π/a, the group velocity is zero
– why?

– neighbors are 180 deg out of phase

• The region -π/a < K < π/a is the first Brillouin zone 
of the 1D lattice

• We must extrapolate these results to three 
dimensions for bulk crystals

Notes on Lattice Vibrations

{ } { }1 exp exp cos sin 1n

n

u iKa i i
u

+ = = π = π + π = −
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Outline
• Introduction
• Lattice vibrations and phonons
• The vibrating string

– Interfaces between dissimilar strings: acoustic 
mismatch

– Discrete masses and the vibrational 
eigenspectrum

• General thermal transport theory
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Displacement of a Loaded String

• Consider a generic ODE of the form

– Where the prime (‘) denotes a derivative

• With boundary conditions
(u is displacement)

• Example: a loaded string (k = a = b = 0, u is 
displacement)

Load, f(x)
Note: in this case, f
is the downward 
force per unit length 
per force of string 
tension

See Greenberg, Foundations of Applied 
Mathematics, Prentice-Hall, 1978.
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Example 2: Dynamic String

• Now consider a vibrating string with fixed-end 
boundary conditions

• Where y is displacement, μ is mass density of the 
string, and T is tension

• We are interested in the natural frequencies of 
vibration, and therefore assume:

L
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Conversion of PDE to ODE

• The governing equation then becomes

• With boundary conditions

• Compare to our general equation for static 
displacement:
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Vibrating String Solution

• We find that many different 
wavelengths λn will satisfy a solution 
of the form

– Where λn = 2L/n, and each n represents 
a different mode of vibration

• Let v be a speed defined by the 
tension and mass density AP French, Vibrations and Waves, 1971
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Vibrating String, cont’d
• The corresponding frequencies for each n are

• And the overall solution becomes

– Where the last equality defines the wavevector
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Progressive Waves

• Consider the following 
trigonometric identity

• Applied to our previous 
displacement result… AP French, Vibrations and Waves, 1971
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An Interface between Different Strings 
under the Same Tension

• Consider an arbitrary, rightward 
displacement pulse from the 
left string (mass density μ1, 
velocity v1) defined as f1(t –
x/v1)
– A portion of this pulse will reflect

at the interface, becoming a 
leftward wave in the left string, 
g(t + x/v1)

– The remainder will transmit into 
the right string as a rightward 
moving wave f2(t – x/v2) AP French, Vibrations and Waves, 197
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Interface, cont’d
• The transverse displacements in each string are

• With boundary conditions
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Interface Solution

• Solving for f2 and g1 in 
terms of f1

• Observations
– If v1=v2, then nothing is reflected (all transmitted)
– If v2=0 (infinite mass), all is reflected

AP French, Vibrations and Waves, 197
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Interface Energy Flow

• So far, we’ve focused on displacements (y, f, g) 
and velocities (v), but our prime focus is 
energy, specifically the rate of energy flow

• The ratio of energy reflected at the interface 
to that incident becomes
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Interface Impedance and Transmission

• Most commonly, an acoustic impedance is 
defined, as

• Then, the normal-direction boundary 
transmittance τb,1-2 becomes

– This is called the Acoustic Mismatch Model 
(AMM) (Little, W. A., 1959, Can. J. Phys. 37, 334)
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Discrete Masses

• Now consider the problem of two different 
atomic chains joined at an interface

m1 m1 m1

g1 g1g1 m
2

g2 g2g? g2m
2

m
2

ω

K
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Dispersion for Point Masses
• Recall our earlier relation

– where
• Near the origin (K0), the dispersion is linear (as 

for the continuous stringconst velocity)
• Near the shortest wavelengths (longest 

wavevectors), the curve becomes flat (low 
velocity)

• This is the vibrational eigenspectrum
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Acoustic Mismatch for Discrete Mass 
Chains

• The group velocity in a given chain portion i is

• Then an acoustic impedance of each chain can 
be defined as

• And an acoustic boundary transmittance can 
be calculated as
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Outline
• Introduction
• Lattice vibrations and phonons
• The vibrating string

– Interfaces between dissimilar strings: acoustic 
mismatch

– Discrete masses and the vibrational 
eigenspectrum

• General thermal transport theory
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General Analysis of Heat Flow

• Consider a perfect, free-standing 
quantum wire over which a small 
temperature difference (δT) is applied

• In the absence of scattering, the net heat flow 
through the wire would be

Carrier wavevector, px/ħ

Sum over all polarizations or bands
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K-Space to Frequency Space

• For 1D problems, the conversion is very simple 
because vg = dω/dk

• Convenient outcome: the flux term no longer 
contains velocity explicitly
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Phonon Thermal Conductance 
and Conductivity

• The thermal conductance (GQ= JQ,net/δT) under perfect transmission 
is independent of the wire length L

• Each active branch produces a ‘quantum’ of thermal conductance 
(Rego and Kirczenow, Phys Rev Lett 81 232, 1998)
– Measured by Schwab et al. (Nature 404 974, 2000)

• …and the thermal conductivity is therefore length-dependent (and 
temperature-dependent)

• Where A is the effective cross-sectional area

Bose-Einstein statistics for
phonons
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The Quantum of 
Thermal Conductance

• Consider only a single acoustic phonon polarization 
and perform the conductance integral 
(from ω = 0 to ∞)

• Rego and Kirczenow [Phys Rev Lett 81 232 (1998)] 
showed that each such branch provides a fixed thermal 
conductance that depends only on the temperature T

• This quantity represents the maximum thermal 
conductance that a given phonon branch can provide, 
even with none of the usual loss mechanisms (e.g., 
impurity scattering, umklapp scattering)
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Inclusion of Scattering

• General expression for conductance

• Some postulates concerning internal device 
(diffusive) scattering
– Expect transmission function Ξ(k) to decrease with 

increasing device length L and with decreasing 
scattering length λ(k)

– Rudimentary model: 

Scattering 
(transmission)

function



Birck Nanotechnology Center Nanoscale Transport Research Group 40

Model Correction

• Problem: as L0, rudimentary model predicts 
Ξ∞ (not physical)

• Correction*:

• Corrected model satisfies quantum 
conductance criterion, Ξ1 as L0, and also 
reverts to the rudimentary model for large L 

*see Datta, Electronic Transport in 
Mesoscopic Systems Cambridge 
University Press, Cambridge, 1995
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Diffusive Heat Flow

• 3D thermal conductivity κ from kinetic theory:

• Apply Landauer form of conductance with 
vg=const and Ξ=λ/(λ+L)≈λ/L (assumed << 1) for 
phonons (μ=0)

Constant that 
depends on 
dimensionality
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Example: Carbon Nanotube Thermal 
Conductivity

• vg ≈ 1x104 m/s (for Si, vg ≈ 0.6x104 m/s)
• λ > 1000 nm at room temp (for Si, λ ≈ 50 nm)
• κ ≈ 5000 W/mK at room temp (for Si, κ ≈ 150 

W/mK)
• Largest factor is the increase in mean free 

path (λ) (Berber et al. Phys. Rev. Lett. 84 4613, 
2000)
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Conclusion: A ‘Toy’ Transmission 
Function 

Zhang et al. Num. Heat Transfer B 51 333 (2007) 

See https://www.nanohub.org/tools/greentherm

https://www.nanohub.org/tools/greentherm�
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nanoHUB Tool: Atomistic Green’s Function 
1D Atomic Chain Simulation

https://www.nanohub.org/tools/greentherm

https://www.nanohub.org/tools/greentherm/�
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