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Applications of Nanoscale Energy Transport
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Applications of Nanoscale Energy Transport

Cooling of electronics
Laser manufacturing
Bio systems
Atmospheric heating
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Phonon-boundary scattrering, electron-phonon coupling

electron-phonon scattering




U.S. Energy Flow Trends — 2002
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Principal Energy Carriers

Phonon: quantum of lattice vibrations
— acoustic phonon: contributes to sound
— optical phonon: infrared active or Raman active

Electron: charged particle surrounding the nucleus
— responsible for chemical bonding

Fluid particle: single atoms or molecules in constant
random motion

— ideal gas: elastic collisions, forces of attraction are negligible
— liquids: intermolecular forces

Photon: quantum of electromagnetic fields




Nano for Energy

e |ncreased surface area
e |nterface and size effects
free path

Molecules . Photons
A~ 1-100 nm A>10nm
A~1 nm A~100-10,000 nm
A---wavelength
—
Slide courtesy . .

of G. Chen Electrons

A---Mean

A~10-100 nm A~10-100 nm
A~1 nm

A~10-50 nm




M. Kaviany,
Heat Transfer
Physics, 2008.

Carrier Distribution Functions

(Occupation Number)

Table 1.2. Thermal equilibrium particle (energy occupancy) distribution (statistical)
function f?(E;), i = p, e. f. ph, and its temperature dependence for different

eNergy carriers.

Attributes Phonon Electron Fluid Particle Photon
(and Hole)
Kp ' {up _ & Xe. Py mpﬁ
P A eoO—> f o—’ ph =\
Energy wave vector Ky Wave vector K., momentum py. frequency wyp.
presenta- or frequency wp, in conduction and  kinetie, potential, polarization
tion modes and polar-  valence bands, and electronic
ization spins energy states
Particle Bose-Einstein Fermi-Dirac Mazxwell- Bose-Einstein
type (Boson) (Fermion) Boltzmann (M-B) (Boson)
Nature of particles are indis- particles are in- particles are dis- particles are
particle tinguishable, inte-  distinguishable, tinguishable, and  indistinguish-
ger spin (angular  odd, half-integer any number of able, integer
momentum), and  spin (angular  particles may  spin  (angular
any number of par- momentum) and oceupy a given —momentum),
ticles may oceupy . obey  the Pauli  eigenstate  (clas-  and any num-
given eigenstate exclusion principle  sical particle or  ber of particles
{only one particle non-degenerate may ocoupy
may be found in a  limit) a given eigen-
given eigenstate) state
1 1 1 1
Equilibrinum 15 T D 1o
distribution Py s _H St phy _
(occu- EKP'LE,BTJ 1 expl( T )+1 PE;CBTJ expllkBTJ' 1
pancy)
function,

f71E)
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Lattice Vibrations

* Consider two neighboring atoms that share a

chemical bond ‘ ‘
lo

e The bond is not rigid, but rather like a spring
with an energy relationship such as...

y R
lo




Lattice Vibrations, cont’d

e Near the minimum, the energy is well
approximated by a parabola

1
U==qu°
29

—u=r—r, and g=spring constant

e Now consider a one-dimensional chain of
atoms spring atom,

constant mass




Lattice Energy and Motion

 Harmonic potential energy is the sum of
potential energies over the lattice

Y ham =—gz {u[na]—u[(n +1)a]}

* Equation of motlon of atom at location u(na)

d?u(na)  ou™T

F=m — =
dt ou(na)

=—g{2u(n Ja-u[(n-1)a]-u[(n+Da]}

e Simplified notation
d°u_
M p—




Lattice Motion, cont’d

e Seek solutions of the form
u, (t) ~ exp{i (Kna - ot)}

 Boundary conditions

— Born-von Karman: assume that the ends of the

chain are connected o @ @
* Une = Uy ® ®
. Uy = U, O O
e . O,
N 1




Lattice Motion, cont’d

 Then the boundary conditions become
u, -~ exp{i[K(N + l)a — o)t]}

u ~ exp {i[Ka - o)t]}
—>1= exp[iKNa] — KNa =27n,

where # 1s an integer

e Let A be the vibration wavelength, A = aN/n

K2 _2m K = wave vector
o aN A
e Minimum wavelength, A
spacing)

= 2a = 2(lattice

min




Lattice Equations of Motion

e Substitute exponential solution into equation of

motion . | | |
_mmzel(Kna—mt) =—(g [2 _ e—lKa . e|Ka :| e|(Kna—oat)

=-2g(1-cosKa) glKna-e)

e Solve for

e Thisis the dispersion relation for acoustic phonons

— relates phonon frequency (energy) to wave vector
(wavelength)




Dispersion Curve

e Changing K by 21t/a leaves u unaffected
— Only N values of K are unique

— We take them to lie in -nt/a < K < t/a
» ©(K)

= ﬂ:l/ a TcI/a




Wave Velocities

Phase velocity: ¢ = o/K

Group velocity: v, = 0w/0K = a(g/m)Y2cos(Ka/2)
Forsmall K i =3 Q‘K‘

K—0 m

> 1im vy =a |~ =
K—0 m K

Thus, for small K (large A), group velocity equals
phase velocity (and speed of sound)

We call these acoustic vibration modes

6))
=C




Notes on Lattice Vibrations

e For K=+m/a, the group velocity is zero
— why?  Un+1
Un

=exp{iKa}=exp{in}=cosn +isinn=-1

— neighbors are 180 deg out of phase

e Theregion -n/a < K< m/ais the first Brillouin zone
of the 1D lattice

 We must extrapolate these results to three
dimensions for bulk crystals
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Displacement of a Loade

d String

See Greenberg, Foundations of Applied
Mathematics, Prentice-Hall, 1978.

e Consider a generic ODE of the form

u'+ku = £(x)
— Where the prime () denotes a derivative
* With boundary conditions #(x=0)=a
(u is displacement) u(x=L)=b

* Example: a loaded string (k=a=b=0, uis

displacement)

—-_—
—
—
—
L]
-
=S -— o =
_— e s e ==

Note: in this case, f
Is the downward
force per unit length
per force of string
tension




Example 2: Dynamic String

* Now consider a vibrating string with fixed-end
boundary conditions

Oy _udy “ >

ox> T o
e Where y is displacement, p is mass density of the
string, and T is tension

e We are interested in the natural frequencies of
vibration, and therefore assume:

y(x,t)=u(x)cos(wt)




Conversion of PDE to ODE

 The governing equation then becomes
d2
> ,u —u=>0
dx T
 With boundary conditions

u(0)=u(L)=0

e Compare to our general equation for static
displacement:

u'+ku = £(x)




Vibrating String Solution

 We find that many different

wavelengths A will satisfy a solution
of the form

u (x)=A sin [”Lﬂj = 4 sin

— Where A, =2L/n, and each n represents
a different mode of vibration T

simple modes (n = 1,
2,3,5). (From D, C.
Miller, The Science
of Musical Sounds,

* Letvbe aspeeddefined by the =%~
tension and mass density

AP French, Vibrations and Waves, 1971

23



Vibrating String, cont’d

 The corresponding frequencies for each n are

ni 27
0, =—V=—1Y
L A

n

e And the overall solution becomes

y (x,t)=u (x)cos(w t)=A sin (iﬂj cos(m,t)=A,sin(K, x)cos(,1)

n

— Where the last equality defines the wavevector

K, ="

n ﬂ

n




Progressive Waves

* Consider the following
trigonometric identity ol |

wabe pfice regflecied
Praedivg wane, £
(o) Resaltarr sronding B8
wisd (il reode) 8

. 1. . .
sin@cos g = S [sin(@— @) +sin(6+ )] o paionm ot 8

e Applied to our previous === |
d iS p I aCEme nt resu |t' e AP French, Vibrations and Waves, 1971

y,(x,t)=A,sin(K, x)cos(o,t)

_ % sin(K,x —o,t)+sin(K,x+ o,t)

e '
rightward lefiward _




An Interface between Different Strings
under the Same Tension

e Consider an arbitrary, rightward
displacement pulse from the
left string (mass density ,,
velocity v,) defined as f,(t —
X/v,)

— A portion of this pulse will reflect

at the interface, becoming a
leftward wave in the left string,

g(t +x/v,)
— The remainder will transmit into

the right string as a rightward AR T
moving wave f,(t — x/v,) AP French, Vibrations and Waves, 19




Interface, cont’d

 The transverse displacements in each string are

n(x,t)=f, (f - £J+ g(f + 1}
vl vl

V,(x,1)= 1, (t_iJ

V,

 With boundary conditions

1(0.0)=»,(0.) and %o,r):%(o,r)
X

OX




Interface Solution

* Solving for f, and g, in

terms of f,

A=

V)

g(t) =22 1f(r)
_|_

v,

f()

e Observations

ich

Fig. 84 Photographs of pilees enconnrering the
bowndary besween two media. {a) Pulss passing from a
light spring (right) to a heaoy spring. Ar die junciio
the prise is paviially transevitied and pariially reflected.
Yout will pote shat she veffocted pidse {5 apide dowtr,
{b) PalsiFassing from a feauy spring (lefe) 1o a light
spring, At the jumetion the pulse Lr pariinlly tramivresd
and partially refleered, The veflected pulse Is right side
(e Prdse o a spring veflected from a junetion with
@ very light (ead, The whale pilse retwrns righy side
g, The flwering of pletives fndicates S the particles
af the v are mocing af fgh speed as e palse
magses, Con pow derarmine the oireetion of tir maodion
div gach of e fromes? (Photograpie from Pliysical
Seifemee Siudy Comnities, Physics, Heath, Rosion,
1965

If v=v,, then nothing is reflected (all transmitted)
— If v,=0 (infinite mass), all is reflected

AP French, Vibrations and Waves, 19

28



Interface Energy Flow

e So far, we've focused on displacements (y, f, g)
and velocities (v), but our prime focus is
energy, specifically the rate of energy flow

1

P=—1y" v
2luymax

 The ratio of energy reflected at the interface
to that incident becomes

2 2
Pfl 1 v, +V,




Interface Impedance and Transmission

e Most commonly, an acoustic impedance is

defined, as T
L=—=\Tu

N
 Then, the normal-direction boundary

transmittance To,12 becomes

g -7, 47 7,
Ty, =1—-=] =1- = NG
A Z + 7, (Zl +7,)

— This is called the Acoustic Mismatch Model
(AMM) (Little, W. A., 1959, Can. J. Phys. 37, 334)




Discrete Masses

* Now consider the problem of two different
atomic chains joined at an interface

e o —




Dispersion for Point Masses

Recall our earlier relation

29 (l-cosK a. |
o (K I)\/ A 1.14) =2 fé sin(%Kmal.)‘
’ ’ m m ‘
K - 2Tn
— where " aN

Near the origin (K—=>0), the dispersion is linear (as
for the continuous string—> const velocity)

Near the shortest wavelengths (longest
wavevectors), the curve becomes flat (low
velocity)

This is the vibrational eigenspectrum




Acoustic Mismatch for Discrete Mass
Chains

 The group velocity in a given chain portioniis

Vgl.(Kl.;Q)) — 6—a) = 4, o COS(KIGIJ
| oK 4m, 2

 Then an acoustic impedance of each chain can
be defined as

Z,(K;0)= b
v,
 And an acoustic boundary transmittance can
be calculated as 47,7,
T, ()=

(Z,+2,)
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General Analysis of Heat Flow

 Consider a perfect, free-standing
guantum wire over which a small N
temperature difference (6T) is applied

* In the absence of scattering, the net heat flow
through the wire would be

Sum over all polarizations or bands

N e _
JQx,net = Z{Vg,p[l;i,p M] 5fi0(5T)dkx
P

i \

Carrier wavevector, p,/h




K-Space to Frequency Space

 For 1D problems, the conversion is very simple
because v, = dw/dk

_ Y [Ei, _M] , dw
Joxner = ; { ;T of (6T)d—kxdkx

oo

= z ) £y =] 8 (8T)dw

27T
p O
 Convenient outcome: the flux term no longer
contains velocity explicitly




Phonon Thermal Conductance
and Conductivity

* The thermal conductance (Gg=J, ,./6T) under perfect transmission
is independent of the wire length L

ks T '
Go(T) = 25—%2/0 fS e (x)%e x?dx
p

k3 1 o L
= on T Bose-Einstein statistics for
p

phonons
e Each active branch produces a ‘quantum’ of thermal conductance
(Rego and Kirczenow, Phys Rev Lett 81 232, 1998)

— Measured by Schwab et al. (Nature 404 974, 2000)

e ...and the thermal conductivity is therefore length-dependent (and
temperature-dependent)

- rate of heat flow (W) _ LGy (T)
area (m°) x temperature gradient (K/m) A

e Where A is the effective cross-sectional area




The Quantum of
Thermal Conductance

e Consider only a single acoustic phonon polarization
and perform the conductance integral
(from ® = 0 to )

e Rego and Kirczenow [Phys Rev Lett 81 232 (1998)]
showed that each such branch provides a fixed thermal
conductance that depends only on the temperature T

. kpm
GQ

e This quantity represents the maximum thermal

conductance that a given phonon branch can provide,

even with none of the usual loss mechanisms (e.g.,
impurity scattering, umklapp scattering)




Inclusion of Scattering

Scattering

* General expression for conductance (transmission)

£ (ru function
00 k Zip T E. (k)=
Gy(T)= 3 [ 27t po(rye [ TLAL

p O ¢ BT

d

2

=

e Some postulates concerning internal device
(diffusive) scattering

— Expect transmission function =(k) to decrease with
increasing device length L and with decreasing
scattering length A(k)

— Rudimentary model: =(k) = Ak)

L




Model Correction

e Problem: as L20, rudimentary model predicts
=—>o° (not physical)

e Correction™: () A(k)
- AMk)+ L

 Corrected model satisfies quantum
conductance criterion, =21 as L—=0, and also
reverts to the rudimentary model for large L

*see Datta, Electronic Transport in
Mesoscopic Systems Cambridge
University Press, Cambridge, 1995




Diffusive Heat Flow

3D thermal conductivity k from kinetic theory:

K=%vag)\,

* Apply Landauer form of conductance with
v,=const and ==M\/(A+L)=A/L (assumed << 1) for
phonons (u=0)

K

LG, L AE [ E,(K) of . _ Cv2

b
A, A, fL Qm)* JT A,

P

\ a,v
Constant that

depends on
dimensionality




Example: Carbon Nanotube Thermal
Conductivity

K=%vag)\,

v, = 1x10* m/s (for Si, v, = 0.6x10* m/s)
A > 1000 nm at room temp (for Si, A = 50 nm)

K = 5000 W/mK at room temp (for Si, k = 150
W/mK)

Largest factor is the increase in mean free

path (A) (Berber et al. Phys. Rev. Lett. 84 4613,
2000)




Conclusion: A ‘Toy” Transmission
Function

1 1\"\ /f ""\ '.f‘ . *
AR v/ k p )
-~ _\\ . ! |
: . : \ |
Contact1 :  Device . Contact2 - 0.8~ NS
: : I
! ! |
f ; =" 1
*—0—0 000 © 9 o6l ‘.
LCB LC LD D RD RC RCB % 1
(a) Schematic diagram of a homogeneous chain E :
s s B 04r |
Contact1 | Device . Contact2 % — Homogeneous case il
i i ; " — - Heterogeneous case 1 \
..... OO._._."OO 02l " Heterogeneous case 2 'u‘
\
LCB LC LD D RD RC RCB I \
(b) Schematic diagram of a heterogeneous chain. | \\'r- |
U 1 1 — L
0 2x10" 4x10" 6x10"

Angular frequency, o (rad/s)

See https://www.nanohub.org/tools/greentherm

Zhang et al. Num. Heat Transfer B 51 333 (2007)



https://www.nanohub.org/tools/greentherm�

nanoHUB Tool: Atomistic Green’s Function
1D Atomic Chain Simulation

% | nanoHUB . E=REoN X

left contact atom Simulate |

device atoms

Result: |C0nductancef@uantum Conductance j @
right contact atom

atomlc bond In left contact region (left contact spring constant)
atomic bond between device atoms (device spring constant)

atomic bond in right contact region (right contact spring constant)

A AN atomic bond between contact atom and device atom
simulated system
3

Fa 1 "

@GN

1] o

:::000

0& —

06 —
hiumber of device atoms: |:|3

left contact spring constant (MNAm): -32

device spring constant (mej:-SZ

right contact spring constant (Mém): -32

04—

02—

Thermal Conductance/Guantum Conductance

left contact atom mass in atomic mass units:|:|23

i - - . ' | ' | i |
device atom mass in atomic mass unlts.|:|23 200 400 B0

right contact atom mass in atomic mass units:|:|23 Temperature (k)

result

IJava Applet Window

https://www.nanohub.org/tools/greentherm



https://www.nanohub.org/tools/greentherm/�
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