INTRODUCTION TO QUANTUM
COMPUTATION




What 1s quantum computation?

= New model of computing based on quantum
mechanics.

= More powerful than conventional models.

* Yield new ideas for future computing devices
and cryptography




In the beginning..

= Paul Benioff (1980):

Emulates a TM by quantum
devices (sketchy & cryptic)

» Richard Feynmann (1981):
Can a computer simulate

physics? (No)

\\ = Richard Feynmann (1983)
Quantum mechanical
computer
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Quantum bit

Consiac
com

er the 2 dimensional vector space on the
nlex C2, with orthonormal basis |0>=(z,0)”

and

1>=(0,1)".

For any v=(a,b), w=(c,d), define the inner product
<wl|v>=w*.vi=a*c+b*d , where a* and b* denote
the complex conjugate of aand b




Quantum bit

If for any v in the vector space (3, we define a
norm ||v||, as the square root of <v|v>, we have a
Hilbert space, let denote it H>.

Any vector | > in H2 is the state of a
or




Quantum bit

11> = >-dimensional vector

of length 1.
= Basis states o>, |1>.
N

= Arbitrary state:

0> oo>+f3|1>,

- o, B complex
o>+ [BI*=1.




Physical quantum bits

= Nuclear spin = orientation of atom’ s
nucleus in magnetic field.

T=]o> =1

= Photons in a cavity.
= No photon = |o>, one photon = |1>




Physical quantum bits

= Energy states of an atom
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ground state excited state

= Polarization of photon




4-dimensional quantum

states

= H4the 4-dimensional quantum system can be
constructed as the tensor product of H? x H?

= Basis |0o>, |01>, [10>, 11>, where |0o0>=|0>X|0>;
lo1>=|o>|1>; |[10>=[1>|0>; [12>=|1>|1>.

* The basis can also be represented by:
0>, |1>, [2>, 3>

= General state

O,y |0>+00 [1>+0L, [ 2> +0L,[3>,
with |o [N 2+...+ o |A2=1




General quantum states

k-dimensional quantum system (as product of two k/2
dimensional quantum systems)

Basis |o>, |1>, ..., |k-1>
General state
o |o>+o [1>+... 400 _|k-1>,
ot [N 2+, 4 oy [N 2=1

2Kdimensional system can be constructed as a tensor
product of k quantum bits.




Unitary transformations

= Linear transformations that preserve vector
norm.

= |n 2 dimensions, linear transformations that
preserve unit circle (rotations and reflections).




Examples




Examples

= Hamamard-Walsh transform W:




Examples

= Not-controlled C_:
C, |ab>=|b a+b> if b=0,
C,|ab>=|ab> if b=1
i.e. C|oo>=|oo>C |o1>=|01>
C,|10>=|11> C_|12>=|10>




Linearity

= Bit flip
Xlo>—|1>
X[1>—|0o>

By linearity,
o|0>+B|1>— af|1>+B|0>
Sufficient to specify X|0>, X|1>.




Examples




Interference: constructive-
Destructive

Example: W(W/|o>)= |o>




Interference: constructive-
Destructive

Example: W(W/|o>)= |o>

|o>




Interference: constructive-
Destructive

Example: W(W/|o>)= |o>

|o>
1/+/2 x%‘
|lo> / |1>




Interference: constructive-
Destructive

Example: W(W|o>)= o>

0>
NN
o o> / o\




Measurements

= Measuring o
o with probabi
1 with probabi

o>+P|1> in basis [0>, |1> gives:
ity |odf?,

14Y

ty

= Measurementc

lo> or |1>.

BI=.

nanges the state: it becomes

= Repeating measurement gives the same

outcome.




Measurements

10>

AN

Probability 1/2 |

11>

Probability 1/2




General measurements

" Let |y >, | v,>be two orthogonal one-qubit
states.
= Then,

[W> = 0| Wo> + 0 W, >
= Measuring | ¥> gives | w.> with probability
[oAR
= This is equivalent to mapping |y >, | w,> to
|o>, |1> and then measuring.




Measurements

y

Probability 1




Measurements

N

. Probability 1/2
Probability 1/2




Measurements

= Measuring
o |1>+00 2>+, +0 k>

in the basis |1>, [2>, ..., |[k> gives |i> with

probability |o.|2.

= Any orthogonal basis can be used.




Partial measurements

If in H*, we have a system in state

l\y>=0_|oo>+0r_ |01>+ o, |10>+0 11>,

if we measure the
= it will yield |o> with probability |ot, |>+|,[|?
= and it will yield |1> with probability

(o RS fa (VO




Partial measurements:

example
Measure the first bit:

1/4+1/4= / \




(or Bell)

= |mportant state in quantum computing
|0t>=1/+/2(|oo>+|11>)

. if we measure a system
in state |0™> then with probability 1/2 will be
in state |oo> and with probability 1/2 will be in
state [11>




Quantum gates: (C,,

C) a%b

Quantum gates are always reversible




Quantum circuilts

1N
N

Input: lab>
Output: 1/72(10b>+(-1)PI1—b>)




EPR-States

The previous circuit gives all EPR-
states:

= On |00> gives

= On |10> gives
= On |01> gives
= On |11> gives

Or>=1/+/2(
O—>=1/+/2(
P>=1//2(

O >=1//2(

00>+

00>~
01>+

11>)
11>)

10>)

01>-|10>)




Classical vs. Quantum

Classical bits:

= can be measured
completely,

are not changed by
measurement,

can be copied,
can be erased.




No-cloning theorem

* |t does not exist any quantum gate U:HZggH2

such that for any state general state |y> and
any chosen |s>: U( [ws>)=| v v >.

" ) If so, AU s.t. U(|ws>)=|ywy>.
Choose a |y >:
U(ly>x [s>)=|y>x [y>
U(lw > X?S>)=|\|I’ > x?\p’ >
& O




Taking the dot product of previous system
<Yy’ > = (<yly’ >)*.
Which only has solution if hy> = |y’ >
or |w> and |y> are orthogonal.




Teleportation

= A and B generate one pair EPR

|0t>=1//2(Jo0>+|11>), A keeps the first
qubit




Teleportation

= A and B generate one pair EPR

\(])+>:1/\/2(\00>+ 11>), A keeps the first
qubit and B keeps the second one




Teleportation

= A and B generate one pair EPR

|0t>=1//2(|00>+|11>), A keeps the first
qubit and B keeps the second one

= Later A wishes to send B the state ly> =
Ol Wo> + O W >.




Teleportation circuit-1

XMZ ZMI

hyo>= hydt> =120 0-(1 0>+ 1)+ Bl 0>+ 1>))




Teleportation circuit-2

XMZ ZMI

hy >=1/2(00=(10>+H1>)+ (11 (10>+1>))




Teleportation circuit-3

XMZ ZMI

W,>=1/2[o(10>+1>) (100>+11>)+ B (10>—11>) (110>+I01>)]




Re-arranging:
/\__;Y/]\‘
> =1/2[(100>(al0>+ B [1>)]

Y2

—_— A,
+1/72[(101>(od 1>+ B 10>)]

— B
+1/2[(110>(0l0>— P 11>)]

+1/2[(111>(d1>— B 102)]

V4



Teleportation circuit-4

XMZ ZMI

A mades measuraments on its two bits




oo>t
o1>t
10>t

nen B
nen B
nen B

11>t

nen B

oIt O
oIt O
oIt O

oIt O

0>+
1>+
0>—
1>—

If the measurament gives:

1>=|y>
0>
1>
0>




When B receives the measurament
from A:

1.- if loo> then B has

2.- if |o1> then B does X(a|1>+] |0>)=
3.- if [10> then B does Z(at|0>— 3 [1>)=

4.- if |12> then B does Z[X(a|1>—[|0>)]=




Remarks

A and B teleport a quantum state (no the
qubit)

Teleportation is not a clonation

During the teleportation the original state is
destroyed

To implement teleportation of a stateis a
routine experiment in a Lab.




Quantum Cryptography




Cryptography

Setting: A (Alice) and B (Bob) want to
interchange messages, and they send them
encrypted with a key.

The message is first converted into a sequence
of integers M=m_,...m,,.




One time pad

= Before exchanging messages, A and B meet
and create a pad which every page has 100
random integer between o and a-1, where a
is the size of the alphabet.

= Each one of them, has a copy of the pad.

= The security of the scheme relies in the fact
that nobody else should have access to the
pad




For A to send M to B:

= A chooses a page p. Chooses the first N
integers k_....ky in p.

= Acreates an encryptedtextE :{el. : .eN}

where e. = (m; + k;) mod a

= Asendsto B (E,p)




For B to recover M

= Blooks p. Finds the first N integers k_....ky in
o}
* Foreache,inE, torecover M,

m. = (e, — k) mod a




Public key cryptography

A creates a public key P, and a secret key S, s.t.
for any message M :

PA(SA(M)) = 5,(PA(M))
B also creates P; and Sy
For Atosend Mto B : sends Py(M).

When B receives Pg(M), does Si(Pg(M)) = M.




Public key




hamir Adlerman




* Choose large p and q. Compute N =pq

* Find d which is co—prime with (p—1)(g—1)
= Compute es.t. ed =1 (mod (p—1)(g-1))




= Toencrypt M=m_,...m. use P=(e,N)
e=mfmodN

= TodecryptE={e,...ey} use S=(d,N)

m,=m<mod N




Quantum Crypto : Bennet,
Brassard (1984) BB84

Instead of using Q.M. for information storage,
apply for information transmission




Key distribution

= Alice and Bob want to create a shared secret

key by communicating over an insecure
channel.

* Needed for symmetric encryption (one-time
pad, DES etc.).




Heisenberg Uncertainty
Principle

= For certain pairs of observables (for ex.
Position/momentum) knowing the value of one
observable, makes the value of another
observable more uncertain.

= Therefore, any measurement of the output
state that yields information in a classical way,
produces a destruction of the remaining
information.




The Qubit as polarization of
photon

= Photon: orthogonal electromagnetic fields.

Polarized photon: electric field oscillates in
desired plane (o, 45, 90, 135)

Rectilinear polarization: electric field
oscillates o/q0

Diagonal polarization: ellectric field oscillates

45/135
RN




© and 1 as polarized photons

Polarizec

Polarizec

= To encoc

| OG assume:

photon at o and 45 represent
photon at 34 and 135 represent
e a {0,1}, place a photonina

particular polarization state. Using a Pockel
cell (a polarization dependent switch)




Pockel switch

000010000001011




Pockel switch

Diagonal

00001000000101




Pockel switch

0000100000010




Pockel switch

Rectilinear

000010000001




Pockel switch

00001000000




Pockel switch

0000100000




Pockel switch

000010000




Pockel switch

| AN AT NN




To measure polarization

Given an stream of photons, to measure the
polarization use a (calcium carbonate)
which has the property of being birefringent

We can set the calcite polarization axis:
= Rectilinear (+) o/q0

= Diagonal (/) 45/135




Calcite




Calcite




Calcite




Calcite




Calcite




Calcite




Calcite




Calcite

With probability 1/2:

NN S SN T
SN NS




Calcite

With probability 1/2:

/NN .|
SN

+ (90)




Calcite

With probability 1/2:

SN/
SN N/

+ (90)




Calcite

With probability 1/2:




Calcite

With probability 1/2:




Calcite

With probability 1/2:




Calcite

With probability 1/2:




Quantum key
distribution(QKD)

: use non-orthogonal quantum states
to encode information.

Given a single photon in one state

— /N

Heisenberg principle forbid from simultaneously

measuring accurately the polarization (32

and +




QKD (BB84)

= A creates a random string of {o,1}.

= For each bit A encodes using/ or + (each time
selecting/ or + randomly)

= Asends to B the created photons (by open
channel)




QKD (BB84)

= When B receives the string of polaritzed
photons, for each one chooses an orientation

for his calcite, and measures the polarization
of each photon

= Notice, he must guess the correct/ or + for
the calcite




BB84

= Qveran insecure channel, A tells B the
polarizer orientation of a subset S of bits

= B tells A the calcite orientations he used for
bits in S.

* Forthe bitsin S they agree in the orientation,
A tells B what bit should he have obtain




BB84

= |f they disagree in one bit (which both set to
the same polarization, this means E has read
the polarization sent by A (with the wrong

orientation of the calcit) , which will happen
with probability 1/4.

= Therefore if they agree in 200%, the
probability of eavesdropping is 1-(3/4)>, which
for large S is small




BB84

* Once the channelis secure, A tells B what
orientations used for each bit

= B compares his orientations with A, in the

ones they agree the bit B has must coincide
with A.




Example QKD A:

110 010 010001000101




Example QKD A:

Generates random orientations (Pockell)

110 010 010001000101

XX XX41XX 4+ X4+X+4+ X X+ X




Example QKD A:

POLARIZED OUTPUT
110 01001000100 0101

XX XX41XX 4+ X4+X+4+ X X+ X




Example QKD B:

B gets a stream:




Example QKD B:

Chooses randomly orientations to calcite




Example QKD B:

11111 0100001101101




Example QKD:

A selects S:
1 O

X X




Example QKD:

B proves which orientations coincide for S:
01




Example QKD:

B proves which orientations coincide for S:
1 01 0

X X X
+ X+  +




Example QKD:

To test for eavesdroppers:

1 O 1 O1

X X

X X
X + +  X-
1 01




Example QKD A:

A reveals her orientations:

X XX+X X4 X+ X X+ X




Example QKD A:

B checks his orientations:

—+ X+ X




Example QKD A:

B checks his orientations:

- X X4+ X+ X
- X X- |




Example QKD A:

B looks at his bits:

_X X_
_X X_

-+

X +

X




(for one time pad)




MIT implementation of

S—

‘i‘ =,
IR & :
v

P = Bl * —
oot
LlA
AlSRIVC SELM  perasos
Fraes s




QKD summary

= Key distribution requires hardness
assumptions classically.

= QKD based on quantum mechanics.

= Higher degree of security.




QKD implementations

MIT (BB84), 1992.
Many others
Currently: 67km, 1000 bits/second.

Commercially available: Id Quantique, since
2002.
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Quantum Computation




Deutsch Problem and Deutsch
Jozsa solution

/ L
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Quantum parallelism: Deutch
Problem

= et f:{o,1}_>{o,1}, which takes 24h. to
compute with a classical computer. We wish
to decide if f(0)=f(1) or they are different.




Input: Ixy>

Output:Ixypt(x)>




Power of Quantum Paralleism

Input: [x>® (10> -11>)/42
Output: I¥> =Ix>& (I04+H(x)>-114 f(x)>)/\2

As 1(x)={0,1}
If £(x)=0 the second qubit 1s (I0>-[1>) /v2

If f(x)=1 the second qubit 1s ([1>-10>) /~2




P>= x> (-1 (10> -11>)/\2

Theretore, we could decide the output of U, with
only one computation of (x)







¥ >=(|0>+1>)/N2 X (J0>+1>)/2




Problem: find the expresion for ¥ >

\\4

U;




Further Lines of

study/research
= Shor algorithm for factorization

= Grover ‘s algorithm for search

= Quantum walks

Andris Ambainis: Quantum walks and their
algorithm applications




