INTRODUCTION TO QUANTUM COMPUTATION

What is quantum computation?

- New model of computing based on quantum mechanics.
- More powerful than conventional models.
- Yield new ideas for future computing devices and cryptography

In the beginning...

- Paul Benioff (1980):

Emulates a TM by quantum devices (sketchy \& cryptic)

- Richard Feynmann (1981): Can a computer simulate physics? (No)
- Richard Feynmann (1983)

Quantum mechanical computer

Bibliography

- Nielsen and Chuang: Quantum Computation and Quantum Information. Cambridge Univ. Press, 2002.
- C. Williams and S. Clearwater: Ultimate Zero and One. Computing at the Quantum Frontier. Copernicus, 2000.

Quantum bit

Consider the 2 dimensional vector space on the complex C^{2}, with orthonormal basis $|0\rangle=(1,0)^{\top}$ and $\mid 1>=(0,1)^{\top}$.
For any $v=(a, b), w=(c, d)$, define the inner product $\langle w \mid v\rangle=w^{*} . v^{\top}=a^{*} c+b * d$, where a^{*} and b^{*} denote the complex conjugate of a and b

Quantum bit

If for any v in the vector space C^{2}, we define a norm ||v||, as the square root of $\langle v \mid v\rangle$, we have a Hilbert space, let denote it H^{2}.
Any vector | $\psi>$ in H^{2} is the state of a quantum bit or qubit

Quantum bit

- 2-dimensional vector of length 1.
- Basis states |0>,|1>.
- Arbitrary state:

$$
\alpha|0>+\beta| 1>,
$$

- α, β complex

$$
|\alpha|^{2}+|\beta|^{2}=1 .
$$

Physical quantum bits

- Nuclear spin = orientation of atom' s nucleus in magnetic field. $\uparrow=|0\rangle, \downarrow=|1\rangle$.
- Photons in a cavity.
- No photon = |0>, one photon = |1>

Physical quantum bits

- Energy states of an atom

- Polarization of photon

$$
\uparrow \rightarrow \uparrow
$$

4-dimensional quantum
 states

- H^{4} the 4 -dimensional quantum system can be constructed as the tensor product of $\mathrm{H}^{2} \times \mathrm{H}^{2}$
- Basis |00>, |01>, |10>, |11>, where |00>=|0>x|0>; $|01>=| 0\rangle|1>;|10>=|1>| 0>$; $| 11>=|1>| 1>$.
- The basis can also be represented by: $|0>,|1>,|2>| 3>$,
- General state

$$
\begin{gathered}
\alpha_{0}\left|0>+\alpha_{1}\right| 1>+\alpha_{2}|2\rangle+\alpha_{3} \mid 3>, \\
\text { with }\left|\alpha_{0} \wedge^{\wedge} 2+\ldots+\right| \alpha_{3} \wedge^{2} 2=1
\end{gathered}
$$

General quantum states

- k-dimensional quantum system (as product of two k/2 dimensional quantum systems)
- Basis |0>,|1>, ..., |k-1>
- General state

$$
\begin{gathered}
\alpha_{0}\left|0>+\alpha_{1}\right| 1>+\ldots+\alpha_{k-1} \mid k-1>, \\
\left|\alpha_{0}\right|^{\wedge} 2+\ldots+\mid \alpha_{k-1} \wedge_{2}{ }^{\wedge}=1
\end{gathered}
$$

- 2^{k} dimensional system can be constructed as a tensor product of k quantum bits.

Unitary transformations

- Linear transformations that preserve vector norm.
- In 2 dimensions, linear transformations that preserve unit circle (rotations and reflections).

Examples

- Bit flipX: |0>

$$
|1\rangle \quad|-\rangle
$$

- Shift Z: |0> - -0>
|1> - |1>

Examples

- Hamamard-Walsh transform W:

Examples

- Not-controlled C_{10} :
$C_{10}|a b>=| b a+b>$ if $b=0$,
$C_{10}|a b>=| a b>$ if $b=1$
i.e. $C_{10}\left|00>=\left|00>C_{10}\right| 01>=\right| 01>$

$$
C_{10}\left|10>=\left|11>C_{10}\right| 11>=\right| 10>
$$

Linearity

- Bit flip

$$
\begin{aligned}
& X|0>\rightarrow| 1\rangle \\
& X|1>\rightarrow| 0>
\end{aligned}
$$

\&By linearity,

$$
\alpha|0>+\beta| 1>\rightarrow \alpha|1>+\beta| 0>
$$

\&SUfficient to specify $\mathrm{X}|0>, \mathrm{X}| 1>$.

Examples

Interference: ConstructiveDestructive

Example: W(W|0>)= |0>

Interference: ConstructiveDestructive

Example: W(W|0>)= |0>

 |0>
Interference: ConstructiveDestructive

Example: W(W|0>)= |0>
|0>

Interference: ConstructiveDestructive

Example: W(W|0>)= |0> |0>

Measurements

- Measuring $\alpha|0>+\beta| 1>$ in basis |0>, |1> gives: o with probability $|\alpha|^{2}$, 1 with probability $|\beta|^{2}$.
- Measurement changes the state: it becomes |0> or |1>.
- Repeating measurement gives the same outcome.

Measurements

General measurements

- Let $\left|\psi_{0}>,\right| \psi_{1}>$ be two orthogonal one-qubit states.
- Then,

$$
|\psi\rangle=\alpha_{0}\left|\psi_{0}>+\alpha_{1}\right| \psi_{1}>.
$$

- Measuring $\mid \psi>$ gives $\left|\psi_{i}\right\rangle$ with probability $\left|\alpha_{i}\right|^{2}$.
- This is equivalent to mapping $\left|\psi_{0}>,\right| \psi_{1}>$ to |0>, |1> and then measuring.

Measurements

Measurements

Measurements

- Measuring

$$
\alpha_{1}\left|1>+\alpha_{2}\right| 2>+\ldots+\alpha_{k} \mid k>
$$

in the basis |1>, |2>, ..., |k> gives |i> with probability $\left|\alpha_{i}\right|^{2}$.

- Any orthogonal basis can be used.

Partial measurements

If in H^{4}, we have a system in state
$\left.\left|\psi>=\alpha_{00}\right| 00\right\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11} \mid 11>$,
if we measure the first qubit

- it will yield $\mid 0>$ with probability $\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}$
- and it will yield |1> with probability $\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}$.

Partial measurements: example

Measure the first bit:
$1 / 4+1 / 4=1 / 2$

EPR (or Bell) state

- Important state in quantum computing

$$
\left|\phi^{+}>=1 / \sqrt{2}(|00\rangle+\mid 11>)\right.
$$

Important property: if we measure a system in state $\mid \phi^{+}>$then with probability $1 / 2$ will be in state |oo> and with probability $1 / 2$ will be in state |11>

Quantum gates: C_{10}

Quantum gates are always reversible

Quantum circuits

Input: lab>
Output: $1 / \sqrt{ } 2\left(\left|0 b>+(-1)^{b}\right| 1 \neg b>\right)$

EPR-States

The previous circuit gives all EPRstates:

- On |00> gives $\left|\phi^{+}>=1 / \sqrt{ } 2(|00\rangle+|11\rangle)\right.$
- On |10> gives $\mid \phi^{-}>=1 / \sqrt{2}(|00>-| 11>)$
- On |01> gives $\left|\varphi^{+}\right\rangle=1 / \sqrt{ } 2(|01>+| 10>)$
- On |11> gives $\left|\varphi^{-}>=1 / \sqrt{ } 2(|01\rangle-|10\rangle)\right.$

Classical vs. Quantum

Classical bits:

- can be measured completely,
- are not changed by measurement,
- can be copied,
- can be erased.

Quantum bits:

- can be measured partially,
- are changed by measurement,
- cannot be copied,
- cannot be erased.

No-cloning theorem

- It does not exist any quantum gate $\mathrm{U}: \mathrm{H}^{2} \mathbf{X} H^{\mathbf{2}}$ such that for any state general state $\mid \psi>$ and any chosen $|s>: ~ U(\mid \psi s>)=| \psi \psi>$.
- (Proof) If so, $\exists \mathrm{U}$ s.t. U(| $\mid \psi s>$)=| $\psi \psi>$.

Choose a | $\psi^{\prime}>$:

$$
\begin{aligned}
& \mathrm{U}(|\psi>\times| s>)=|\psi>x| \psi> \\
& \mathrm{U}\left(\left|\psi^{\prime}>\times \mathrm{x}\right| \mathrm{S}>\right)=\left|\psi^{\prime}>\times \mathrm{x}\right| \psi^{\prime}>
\end{aligned}
$$

Taking the dot product of previous system $\left\langle\psi \mid \psi^{\prime}\right\rangle=\left(\left\langle\psi \mid \psi^{\prime}\right\rangle\right)^{2}$.
Which only has solution if $|\psi\rangle=\left|\psi^{\prime}\right\rangle$ or $\mid \psi>$ and $\mid \psi>$ are orthogonal.

Teleportation

- A and B generate one pair EPR $\left|\phi^{+}>=1 / \sqrt{2}(|00\rangle+|11\rangle)\right.$, A keeps the first qubit

Teleportation

- A and B generate one pair EPR $\left|\phi^{+}\right\rangle=1 / \sqrt{2}(|00\rangle+|11\rangle)$, A keeps the first qubit and B keeps the second one

Teleportation

- A and B generate one pair EPR $\left|\phi^{+}>=1 / \sqrt{2}(|00\rangle+|11\rangle)\right.$, A keeps the first qubit and B keeps the second one
- Later A wishes to send B the state $|\psi\rangle=$ $\alpha_{0}\left|\psi_{0}>+\alpha_{1}\right| \psi_{1}>$.

Teleportation circuit-1

Teleportation circuit-2

Teleportation circuit-3

Re-arranging:

$$
\begin{aligned}
\psi_{2}> & =1 / 2[(\mid 00>(\overbrace{\alpha|0>+\beta| 1>}) \\
& +1 / 2[(\mid 01>(\overbrace{(\alpha|1>+\beta| 0>}^{\gamma_{1}})] \\
& +1 / 2[(\mid 10>(\overbrace{\alpha|0>-\beta| 1>}^{\gamma_{2}})] \\
& +1 / 2[(\mid 11>(\underbrace{\alpha|1>-\beta| 0>}_{\gamma_{4}})]
\end{aligned}
$$

Teleportation circuit-4

A mades measuraments on its two bits

If the measurament gives:

1.- |oo> then B has qubit $\alpha|0\rangle+\beta|1>=| \psi>$
2.- |01> then B has qubit $\alpha|1>+\beta| 0>$
3.- |10> then B has qubit $\alpha|0>-\beta| 1>$
4.- |11> then B has qubit $\alpha|1>-\beta| 0>$

When B receives the measurament

 from A :1.- if $\mid 00>$ then B has $\mid \psi>$
2.- if $|01\rangle$ then B does $X(\alpha|1>+\beta| 0\rangle)=|\psi\rangle$
3.- if $\mid 10>$ then B does $Z(\alpha|0>-\beta| 1>)=\mid \psi>$
4. - if $\mid 11>$ then B does $Z[X(\alpha|1>-\beta| 0>)]=\mid \psi>$

Remarks

- A and B teleport a quantum state (no the qubit)
- Teleportation is not a clonation
- During the teleportation the original state is destroyed
- To implement teleportation of a state is a routine experiment in a Lab.

Quantum Cryptography

Cryptography

Setting: A (Alice) and B (Bob) want to interchange messages, and they send them encrypted with a key.
The message is first converted into a sequence of integers $\mathrm{M}=\mathrm{m}_{1}, \ldots \mathrm{~m}_{\mathrm{N}}$.

One time pad

- Before exchanging messages, A and B meet and create a pad which every page has 100 random integer between o and a-1, where a is the size of the alphabet.
- Each one of them, has a copy of the pad.
- The security of the scheme relies in the fact that nobody else should have access to the pad

For A to send M to B:

- A chooses a page p. Chooses the first N integers $\mathrm{k}_{1} \ldots . \mathrm{k}_{\mathrm{N}}$ in p .
- A creates an encrypted text $\mathrm{E}=\left\{\mathrm{e}_{1} \ldots \mathrm{e}_{\mathrm{N}}\right\}$ where $\mathrm{e}_{\mathrm{i}}=\left(\mathrm{m}_{\mathrm{i}}+\mathrm{k}_{\mathrm{i}}\right) \bmod \mathrm{a}$
- A sends to B (E,p)

For B to recover M :

- B looks p. Finds the first N integers $k_{1} \ldots . k_{N}$ in p.
- For each e_{i} in E, , to recover M , $^{\text {, }}$

$$
\mathrm{m}_{\mathrm{i}}=\left(\mathrm{e}_{\mathrm{i}}-\mathrm{k}_{\mathrm{i}}\right) \bmod \mathrm{a}
$$

Public key cryptography

A creates a public key P_{A} and a secret key $\mathrm{S}_{\mathrm{A} \boldsymbol{\prime}}$ s.t. for any message M :

$$
P_{A}\left(S_{A}(M)\right)=S_{A}\left(P_{A}(M)\right)
$$

B also creates P_{B} and S_{B}
For A to send M to B : sends $P_{B}(M)$.
When B receives $P_{B}(M)$, does $S_{B}\left(P_{B}(M)\right)=M$.

Public key

$\mathrm{P}_{\mathrm{B}}(\mathrm{M})$

$$
\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}} \cdots
$$

Rivest Shamir Adlerman

RSA

- Choose large p and q. Compute $\mathrm{N}=\mathrm{pq}$
- Find d which is co-prime with ($\mathrm{p}-1$)($\mathrm{q}-1$)
- Compute e s.t. ed $=1(\bmod (p-1)(q-1))$

$$
\begin{aligned}
& P=(e, N) \\
& S=(d, N)
\end{aligned}
$$

RSA

- To encrypt $\mathrm{M}=\mathrm{m}_{1}, \ldots \mathrm{~m}_{\mathrm{N}}$. use $\mathrm{P}=(\mathrm{e}, \mathrm{N})$

$$
e_{i}=m_{i}^{e} \bmod N
$$

- To decrypt $\mathrm{E}=\left\{\mathrm{e}_{1} \ldots \mathrm{e}_{\mathrm{N}}\right\}$ use $\mathrm{S}=(\mathrm{d}, \mathrm{N})$

$$
m_{i}=m_{i}^{d} \bmod N
$$

The security of RSA is not being able to factorize N

Quantum Crypto : Bennet, Brassard (1984) BB84

Quantum key distribution
Instead of using Q.M. for information storage, apply for information transmission

Key distribution

- Alice and Bob want to create a shared secret key by communicating over an insecure channel.
- Needed for symmetric encryption (one-time pad, DES etc.).

Heisenberg Uncertainty Principle

- For certain pairs of observables (for ex. Position/momentum) knowing the value of one observable, makes the value of another observable more uncertain.
- Therefore, any measurement of the output state that yields information in a classical way, produces a destruction of the remaining information.

The Qubit as polarization of photon

- Photon: orthogonal electromagnetic fields.
- Polarized photon: electric field oscillates in desired plane (0, 45, 90, 135)
- Rectilinear polarization: electric field oscillates o/90
- Diagonal polarization: electric field oscillates 45/135

0 and 1 as polarized photons

WLOG assume:

- Polarized photon at o and 45 represent o
- Polarized photon at 34 and 135 represent 1
- To encode a \{0,1\}, place a photon in a particular polarization state. Using a Pockel cell (a polarization dependent switch)

Pockel switch

000010000001011

Pockel switch

Diagonal

00001000000101

Pockel switch

0000100000010
11

Pockel switch

Rectilinear

Pockel switch

Pockel switch

Pockel switch

||| Pockel switch

To measure polarization

Given an stream of photons, to measure the polarization use a Calcite (calcium carbonate) which has the property of being birefringent
We can set the calcite polarization axis:

- Rectilinear (+) o/90
- Diagonal (/) 45/135
|| Calcite

Calcite

Calcite

Calcite

|| Calcite

|| Calcite

|| Calcite

Calcite

With probability $1 / 2$:

Calcite

With probability $1 / 2$:

$$
\begin{gathered}
\curvearrowright 1 \downarrow \downarrow \\
+(90)
\end{gathered}
$$

Calcite

With probability $1 / 2$:

Quantum key

 distribution(QKD)Central idea: use non-orthogonal quantum states to encode information.

Given a single photon in one state

Heisenberg principle forbid from simultaneously measuring accurately the polarization of and 十

QKD (BB84)

- A creates a random string of $\{0,1\}$.
- For each bit A encodes using / or + (each time selecting / or + randomly)
- A sends to B the created photons (by open channel)

QKD (BB84)

- When B receives the string of polaritzed photons, for each one chooses an orientation for his calcite, and measures the polarization of each photon
- Notice, he must guess the correct / or + for the calcite

BB84

- Over an insecure channel, A tells B the polarizer orientation of a subset S of bits
- B tells A the calcite orientations he used for bits in S .
- For the bits in S they agree in the orientation, A tells B what bit should he have obtain

BB84

- If they disagree in one bit (which both set to the same polarization, this means E has read the polarization sent by A (with the wrong orientation of the calcit), which will happen with probability $1 / 4$.
- Therefore if they agree in 100\%, the probability of eavesdropping is 1-(3/4) ${ }^{\text {s }}$, which for large S is small

BB84

- Once the channel is secure, A tells B what orientations used for each bit
- B compares his orientations with A , in the ones they agree the bit B has must coincide with A.
- Those bits form the key

Example QKD A:

1100100100001000101

Example QKD A:

Generates random orientations (Pockell)

$$
\begin{aligned}
& 110010010001000101 \\
& +\times \times \times \times+\times \times+\times+x+x \times+x
\end{aligned}
$$

Example QKD A:

POLARIZED OUTPUT

110010010001000101 $+x \times \times \times++x \times+x+x+x \times+x$

Example QKD B:

B gets a stream:
$\rightarrow \searrow \downarrow \downarrow \downarrow \uparrow \uparrow \downarrow \downarrow \uparrow \downarrow \leftrightarrow \downarrow \mid \downarrow \downarrow \downarrow \downarrow$

Example QKD B:

Chooses randomly orientations to calcite

$$
\begin{aligned}
& +x++x+x+x \times x++++x \times+
\end{aligned}
$$

Example QKD B:

$$
+x++x+x+\times \times \times++++\times x+
$$

111110100001101101

Example QKD:

A selects S:

1
\times

X
X+
X

Example QKD:

B proves which orientations coincide for S :
1
0
1
01
0
X

\times
x+
X
$\times+$
$+$
X+
+

Example QKD:

B proves which orientations coincide for S :

| 1 | 0 | 1 | 01 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \times | \times | | \times | $\times+$ | \times |
| \times | + | | + | $\times+$ | + |

Example QKD:

To test for eavesdroppers:
1
0
1
01
0
\times
\times
\times
$x+$
\times
$\times+$
$+$
$\times+$
$+$
1
01

Example QKD A:

A reveals her orientations:

$$
+x \times x+\times \quad x+\quad x+x \times+x
$$

Example QKD A:

B checks his orientations:

$$
\begin{array}{llll}
+ & x & x++ & x+ \\
+x & x+x & x \times & +++x \times+x
\end{array}
$$

Example QKD A:

B checks his orientations:

$$
\begin{array}{llll}
+ & x & x++ & x+ \\
+x & x+x & x \times & +++x \times+x \\
+
\end{array}
$$

Example QKD A:

B looks at his bits:

$$
\begin{array}{lllll}
+ & x & x++ & x+ & x+x \times+x \\
+ & x & x+x & x \times & +++x \times+ \\
1 & 0 & 1 & 0 & 0
\end{array}
$$

III The key (for one time pad)

$$
\begin{array}{llllc}
+ & x & x++ & x+ & x+x \times+x \\
+ & x & x+x & x \times & +++x \times+ \\
1 & 0 & 1 & 0 & 0
\end{array}
$$

MIT implementation of BB84

QKD summary

- Key distribution requires hardness assumptions classically.
- QKD based on quantum mechanics.
- Higher degree of security.

QKD implementations

- MIT (BB84), 1992.
- Many others
- Currently: $67 \mathrm{~km}, 1000$ bits/second.
- Commercially available: Id Quantique, since 2002.

Id Quantique: QKD

Quantum Computation

Deutsch Problem and Deutsch Jozsa solution

Quantum parallelism: Deutch Problem

- Let f:\{0,1\}_\{0,1\}, which takes 24h. to compute with a classical computer. We wish to decide if $f(0)=f(1)$ or they are different.

Gate U_{f} :

Input: |xy>
Output:|xy $\oplus f(x)>$

Power of Quantum Paralleism

Input: $\mid x>\otimes(|0>-| 1>) / \sqrt{2}$
Output: $|\Psi>=| \mathrm{x}>\mathbb{\otimes}(10+\mathrm{f}(\mathrm{x})>-1 \mathrm{I} \uparrow \mathrm{f}(\mathrm{x})>) / \sqrt{2}$
As $f(x)=\{0,1\}$
If $f(x)=0$ the second qubit is $(|0>-| 1>) / \sqrt{2}$
If $f(x)=1$ the second qubit is $(|1>-| 0>) / \sqrt{2}$

$$
|\Psi>=| x>\otimes(-1)^{f(x)}(|0>-| 1>) / \sqrt{ } 2
$$

Therefore, we could decide the output of U_{f} with only one computation of $f(x)$

$\left|\Psi_{0}>=\right| 01>$

$$
\mid \Psi_{1}>=(|0>+| 1>) / \sqrt{2} \mathbb{Q}(|0>+| 1>) / \sqrt{ } 2
$$

Problem: find the expresion for $\left|\Psi_{4}\right\rangle$

Further Lines of

 study/research- Shor algorithm for factorization
- Grover 's algorithm for search
- Quantum walks

Andris Ambainis: Quantum walks and their algorithm applications

