
INTRODUCTION TO QUANTUM 

COMPUTATION



What is quantum computation?

� New model of computing based on quantum 
mechanics.

� More powerful than conventional models.

� Yield new ideas for future computing devices 
and cryptography



In the beginning…

� Paul Benioff (1980):

Emulates a TM by quantum 
devices (sketchy & cryptic)

� Richard Feynmann (1981): 
Can a computer simulate 
physics? (No)

� Richard Feynmann (1983)  
Quantum mechanical 
computer



Bibliography

� Nielsen and Chuang: Quantum Computation 

and Quantum Information. Cambridge Univ. 
Press, 2002.

� C. Williams and S. Clearwater: Ultimate Zero 

and One. Computing at the Quantum Frontier. 
Copernicus, 2000.



Quantum bit

Consider the 2 dimensional vector space on the 
complex C2, with orthonormal basis  |0>=(1,0)T

and |1>=(0,1)T.

For any v=(a,b),  w=(c,d), define the inner product  
<w|v>=w*.vT=a*c+b*d , where a* and b* denote 
the complex conjugate of a and b



Quantum bit

If for any v in the vector space  C2, we define a 
norm ||v||, as the square root of <v|v>, we have a 
Hilbert space, let denote it H2. 

Any vector | ψ > in H2 is the state of a quantum bit
or qubit



Quantum bit

� 2-dimensional vector 
of length 1.

� Basis states |0>, |1>.

� Arbitrary state: 
α|0>+β|1>,          

· α, β complex 
|α|2+ |β|2=1.

|1>

|0>



Physical quantum bits

� Nuclear spin = orientation of atom’s 
nucleus in magnetic field.                                           
↑ = |0>, ↓ = |1>.

� Photons in a cavity.

� No photon = |0>, one photon = |1>



Physical quantum bits 

� Energy states of an atom

� Polarization of photon  

|0> |1>

ground state excited state



4-dimensional  quantum 

states
� H4 the 4-dimensional quantum system can be 

constructed as the tensor product of H2 x H2

� Basis |00>, |01>, |10>, |11>, where  |00>=|0>x|0>; 
|01>=|0>|1>; |10>=|1>|0>; |11>=|1>|1>.

� The basis can also be  represented by:                               
|0>, |1>, |2>, |3>

� General state 

α0|0>+α1|1>+α2|2>+α3|3>,

with |α0|^2+…+ |α3|^2=1



General quantum states

� k-dimensional quantum system (as product of two  k/2 
dimensional quantum systems)

� Basis |0>, |1>, …, |k-1>

� General state 

α0|0>+α1|1>+…+αk-1|k-1>,

|α0|^2+…+ |αk-1|^2=1

� 2k dimensional system can be constructed as a tensor 
product of k quantum bits.



Unitary transformations

� Linear transformations that preserve vector 
norm.

� In 2 dimensions, linear transformations that 
preserve unit circle (rotations and reflections).



Examples

� Bit flip X:  |0>        |1>

|1> |0>

� Shift Z:   |0>        |0>

|1>         -|1>
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Examples 

� Hamamard-Walsh transform W:



Examples

� Not-controlled  C10:
C10|ab>=|b a+b> if b=0,
C10|ab>=|ab> if b=1
i.e.  C10|00>=|00> C10|01>=|01>

C10|10>=|11> C10|11>=|10>



Linearity

� Bit flip

X|0>→|1>

X|1>→|0>

�By linearity,

α|0>+β|1>→ α|1>+β|0>
�Sufficient to specify X|0>, X|1>.



Examples
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Interference: Constructive-
Destructive

Example: W(W|0>)= |0>



Interference: Constructive-
Destructive

Example: W(W|0>)= |0>

|0>



Interference: Constructive-
Destructive

Example: W(W|0>)= |0>

|0>

1/√2 1/√2

|0> |1>



Interference: Constructive-
Destructive

Example: W(W|0>)= |0>

|0>

1/√2 1/√2

|0> |1>

1/√2 1/√2 1/√2 -1/√2

|0> |1> |0> |1>



Measurements

� Measuring α|0>+β|1> in basis |0>, |1> gives:
0 with probability |α|2, 
1 with probability |β|2. 

� Measurement changes the state: it becomes 
|0> or |1>.

� Repeating measurement gives the same 
outcome.



Measurements
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General measurements

� Let |ψ0>, | ψ1> be two orthogonal one-qubit 
states.

� Then, 
|ψ> = α0|ψ0> + α1|ψ1>. 

� Measuring | ψ> gives | ψi> with probability 
|αi|

2.
� This is equivalent to mapping |ψ0>, | ψ1> to 

|0>, |1> and then measuring.



Measurements
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Measurements
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Measurements

� Measuring 

α1|1>+α2|2>+…+αk|k> 

in the basis |1>, |2>, …, |k> gives |i> with 
probability |αi|

2.

� Any orthogonal basis can be used.



Partial measurements 

If in H4, we have a system in state

|ψ>=α00|00>+α01|01>+ α10|10>+α11|11>,

if we measure the first qubit

� it will yield |0> with probability |α00|2+|α01|2

� and it will yield |1> with probability 
|α10|2+|α11|2.



Partial measurements: 

example
Measure the first bit:
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EPR (or Bell) state

� Important state in quantum computing
|φ+>=1/√2(|00>+|11>)

Important property: if we measure a system 
in state |φ+> then with probability 1/2 will be 
in state |00> and with probability 1/2 will be in 
state |11>



Quantum gates: C10

a

b

Quantum gates are always reversible

a

a+b



Quantum circuits

Wa

b

Input: |ab> 

Output: 1/√2(|0b>+(-1)b|1¬b>)



EPR-States

The previous circuit gives all EPR-
states:

� On |00> gives |φ+>=1/√2(|00>+|11>)
� On |10> gives |φ−>=1/√2(|00>- |11>)
� On |01> gives |ϕ+>=1/√2(|01>+|10>)
� On |11> gives |ϕ−>=1/√2(|01>-|10>)



Classical vs. Quantum

Classical bits:

� can be measured 
completely,

� are not changed by 
measurement,

� can be copied,

� can be erased.

Quantum bits:

� can be measured 
partially,

� are changed by 
measurement,

� cannot be copied,

� cannot be erased.



No-cloning theorem

� It does not exist any quantum gate U:H2xH2

such that for any state general state |ψ> and 
any chosen |s>: U( |ψs>)=| ψ ψ >.

� (Proof) If so, ∃U s.t. U(|ψs>)=|ψψ>. 

Choose a |ψ’> :

U(|ψ> x |s>)=|ψ> x |ψ>

U(|ψ’> x |s>)=|ψ’> x |ψ’>



Taking  the dot product of previous system 

<ψ|ψ’> = (<ψ|ψ’>)2 .

Which only has solution if |ψ> = |ψ’> 
or |ψ> and |ψ> are orthogonal.     



Teleportation

� A and B generate one pair EPR   
|φ+>=1/√2(|00>+|11>), A keeps the first 
qubit 

� conventional means to transmit information 
to B.



Teleportation

� A and B generate one pair EPR   
|φ+>=1/√2(|00>+|11>), A keeps the first 
qubit and B keeps the second one

� conventional means to transmit information 
to B.



Teleportation

� A and B generate one pair EPR   
|φ+>=1/√2(|00>+|11>), A keeps the first 
qubit and B keeps the second one

� Later A wishes to send B the state           |ψ> = 
α0|ψ0> + α1|ψ1>. Where A and B can be far 
away. A uses conventional means to transmit 
information to B.



Teleportation circuit-1

W

ZM1XM2

|φ+>

|ψ>

|ψ0>= |ψφ+> =1/√2(α|0>(|00>+|11>)+ β|1>(|00>+|11>))

A

B



Teleportation circuit-2

W

ZM1XM2

|φ+>

|ψ>

|ψ1>=1/√2(α|0>(|0>+|1>)+ β|1>(|0>+|1>))

A

B



Teleportation circuit-3

W

ZM1XM2

|φ+>

|ψ>

|ψ2>=1/2[α(|0>+|1>) (|00>+|11>)+ β (|0>−|1>) (|10>+|01>)]

A

B



|ψ2>  =1/2[(|00>(α|0>+ β |1>)]
γ2

+1/2[(|01>(α|1>+ β |0>)]
γ3

+1/2[(|10>(α|0>− β |1>)]

+1/2[(|11>(α|1>− β |0>)]

Re-arranging:
γ1

γ4



Teleportation circuit-4

W

ZM1XM2

|φ+>

|ψ>

A mades measuraments on its two bits



If the measurament gives:

1.- |00> then B has qubit α|0>+ β |1>= |ψ>

2.- |01> then B has qubit α|1>+ β |0>

3.- |10> then B has qubit α|0>− β |1>

4.- |11> then B has qubit α|1>− β |0>



When B receives the measurament 

from A:

1.- if |00> then B has |ψ>

2.- if |01> then B does X(α|1>+β |0>)= |ψ>

3.- if |10> then B does Z(α|0>− β |1>)= |ψ>

4.- if |11> then B does Z[X(α|1>−β|0>)]= |ψ>



Remarks

� A and B teleport a quantum state (no the 
qubit)

� Teleportation is not a clonation

� During the teleportation the original state is 
destroyed

� To implement teleportation of a state is a 
routine experiment in a Lab.



Quantum Cryptography



Cryptography

Setting: A (Alice) and B (Bob) want to 

interchange messages, and they send them 

encrypted with a key.

The message is first converted into a sequence 
of integers M=m1,…mN. 



One time pad

� Before exchanging messages, A and B meet 
and create a pad which every page has 100 
random integer between 0 and a–1, where a 
is the size of the alphabet.

� Each one of them, has a copy of the pad.
� The security of the scheme relies in the fact 

that nobody else should have access to the 
pad



For A to send M to B:

� A chooses a page p. Chooses the first N 
integers k1….kN in p.

� A creates an encrypted text E ={e1…eN} 
where ei = (mi + ki) mod a

� A sends to B (E,p)



For B to recover M :

� B looks p. Finds the first N integers k1….kN in 
p.

� For each ei in E, to recover M,                 

mi = (ei − ki) mod a



Public key cryptography

A creates a public key PA and a secret key SA, s.t. 
for any message M :

PA(SA(M)) = SA(PA(M))
B also creates PB and SB

For A to send M to B : sends PB(M).

When B receives PB(M), does SB(PB(M)) = M. 



Public key

A B

PA PB PC…

PB(M)

SB



Rivest Shamir Adlerman



RSA

� Choose large p and q. Compute N = pq

� Find d which is co–prime with (p–1)(q–1)

� Compute e s.t.  ed =1 (mod (p–1)(q–1))

P = (e,N)

S = (d,N)



RSA

� To encrypt M=m1,…mN. use P = (e,N)

ei = mi
e mod N

� To decrypt E ={e1…eN} use S = (d,N)

mi = mi
d mod N

The security of RSA is not being able to factorize N



Quantum Crypto : Bennet, 

Brassard (1984) BB84

Quantum key distribution

Instead of using Q.M. for information storage, 
apply for information transmission



Key distribution

� Alice and Bob want to create a shared secret 
key by communicating over an insecure 
channel. 

� Needed for symmetric encryption (one-time 
pad, DES etc.).



Heisenberg Uncertainty 

Principle
� For certain pairs of observables (for ex. 

Position/momentum) knowing the value of one 

observable, makes the value of another 

observable more uncertain.

� Therefore, any measurement of the output 
state that yields information in a classical way, 
produces a destruction of the remaining 
information.



The Qubit as polarization of 

photon
� Photon: orthogonal electromagnetic fields.

� Polarized photon: electric field oscillates in 
desired plane (0, 45, 90, 135)

� Rectilinear polarization: electric field 
oscillates 0/90

� Diagonal polarization: electric field oscillates 
45/135



0 and 1 as polarized photons

WLOG assume:

� Polarized photon at 0 and 45 represent 0

� Polarized photon at 34 and 135 represent 1

� To encode a {0,1}, place a photon in a 
particular polarization state. Using a Pockel 
cell (a polarization dependent switch)



Pockel switch

000010000001011



Pockel switch

Diagonal

00001000000101

´

´



Pockel switch

0000100000010

´



Pockel switch

Rectilinear

000010000001

+

+



Pockel switch

00001000000

´



Pockel switch

0000100000

´



Pockel switch

000010000

+



Pockel switch



To measure polarization

Given an stream of photons, to measure the 
polarization use a Calcite (calcium carbonate) 
which has the property of being birefringent

We can set the calcite polarization axis:

� Rectilinear (+) 0/90

� Diagonal (/) 45/135



Calcite

+ (90)



Calcite

+ (90)



Calcite

+ (90)



Calcite

+ (90)



Calcite

+ (90)



Calcite

+ (90)



Calcite

+ (90)



Calcite

+ (90)

With probability 1/2:



Calcite

+ (90)

With probability 1/2:



Calcite

+ (90)

With probability 1/2:



Calcite

+ (90)

With probability 1/2:



Calcite

+ (90)

With probability 1/2:



Calcite

+ (90)

With probability 1/2:



Calcite

+ (90)

With probability 1/2:



Quantum key 

distribution(QKD)
Central idea: use non-orthogonal quantum states 

to encode information.

Given a single photon in one state 

Heisenberg principle forbid from simultaneously

measuring accurately the polarization of

and



QKD (BB84)

� A creates a random string of {0,1}.

� For each bit A encodes using / or + (each time 

selecting / or + randomly)

� A sends to B the created photons (by open 
channel)



QKD (BB84)

� When B receives the string of polaritzed 
photons, for each one chooses an orientation 
for his calcite, and measures the polarization 
of each photon

� Notice, he must guess the correct / or + for 
the calcite



BB84

� Over an insecure channel, A tells B the 
polarizer orientation of a subset S of bits

� B tells A the calcite orientations he used for 
bits in S.

� For the bits in S they agree in the orientation, 
A tells B what bit should he have obtain



BB84

� If they disagree in one bit (which both set to 
the same polarization, this means E has read 
the polarization sent by A (with the wrong 
orientation of the calcit) , which will happen 
with probability 1/4. 

� Therefore if they agree in 100%, the 
probability of eavesdropping is 1-(3/4)S, which 
for large S is small



BB84

� Once the channel is secure, A tells B what 
orientations used for each bit

� B compares his orientations with A, in the 
ones they agree the bit B has must coincide 
with A. 

� Those bits form the key



Example QKD A:

1  1  0   0  1  0   0  1  0   0   0  1  0   0   0  1  0  1



Example QKD A:

1  1  0   0  1  0   0  1  0   0   0  1  0   0   0  1  0  1

Generates random orientations (Pockell)



Example QKD A:

POLARIZED OUTPUT

1  1  0   0  1  0   0  1  0   0   0  1  0   0   0  1  0  1



Example QKD B:

B gets a stream:



Example QKD B:

Chooses randomly orientations to calcite



Example QKD B:

1  1  1 1 1   0   1 0 0  0 0  1  1 0  1 1   0 1



Example QKD:

A selects S:

1       0               1            0  1            0  



Example QKD:

B proves which orientations coincide for S:

1       0               1            0  1            0  



Example QKD:

B proves which orientations coincide for S:

1       0               1            0  1            0  



Example QKD:

To test for eavesdroppers:

1 0               1            0 1 0  

0 1 1



Example QKD A:

A reveals her orientations:



Example QKD A:

B checks his orientations:



Example QKD A:

B checks his orientations:



Example QKD A:

B looks at his bits:

1 0 1   0 0 0        1



The key (for one time pad)

1 0 1   0 0 0        1



MIT implementation of BB84



QKD summary

� Key distribution requires hardness 
assumptions classically.

� QKD based on quantum mechanics.

� Higher degree of security.



QKD implementations

� MIT (BB84), 1992.

� Many others

� Currently: 67km, 1000 bits/second.

� Commercially available: Id Quantique, since 
2002.



Id Quantique: QKD



Quantum Computation



Deutsch Problem and Deutsch 

Jozsa solution



Quantum parallelism: Deutch 

Problem
� Let f:{0,1}    {0,1}, which takes 24h. to 

compute with a classical computer. We wish 
to decide if f(0)=f(1) or they are different.



Gate Uf:

Uf

x

y

x

y f(x)

Input: |xy> 

Output:|xy   f(x)> 



Power of Quantum Paralleism

Input: |x> x (|0> -|1>)/√2

Output: |Ψ> =|x> x (|0 +f(x)>-|1 + f(x)>)/√2

As f(x)={0,1}

If f(x)=0 the second qubit is (|0>-|1>) /√2

If f(x)=1 the second qubit is (|1>-|0>) /√2



|Ψ>= |x> x (-1)f(x) (|0> -|1>)/√2

Therefore, we could decide the output of Uf with 

only one computation of f(x)



Uf

W

W

W|0>

|1>

|Ψ0>=|01>



Uf

W

W

W|0>

|1>

|Ψ1>=(|0>+|1>)/√2 x (|0>+|1>)/√2



Uf

W

W

W|0>

|1>

|Ψ4>

Problem: find the expresion for |Ψ4>



Further Lines of 

study/research
� Shor algorithm for factorization

� Grover‘s algorithm for search

� Quantum walks

Andris Ambainis: Quantum walks and their 

algorithm applications


