INTRODUCTION TO QUANTUM COMPUTATION

What is quantum computation?

- New model of computing based on quantum mechanics.
- More powerful than conventional models.
- Yield new ideas for future computing devices and cryptography

In the beginning...

- Paul Benioff (1980):
 Emulates a TM by quantum devices (sketchy & cryptic)
- Richard Feynmann (1981): Can a computer simulate physics? (No)
- Richard Feynmann (1983)
 Quantum mechanical computer

Bibliography

- Nielsen and Chuang: Quantum Computation and Quantum Information. Cambridge Univ. Press, 2002.
- C. Williams and S. Clearwater: Ultimate Zero and One. Computing at the Quantum Frontier.
 Copernicus, 2000.

Quantum bit

Consider the 2 dimensional vector space on the complex C^2 , with orthonormal basis $|o>=(1,o)^T$ and $|1>=(0,1)^T$.

For any v=(a,b), w=(c,d), define the inner product $< w|v>=w^*.v^T=a^*c+b^*d$, where a^* and b^* denote the complex conjugate of a and b

Quantum bit

If for any v in the vector space C^2 , we define a norm ||v||, as the square root of $\langle v|v\rangle$, we have a Hilbert space, let denote it H^2 .

Any vector $| \psi \rangle$ in H^2 is the state of a quantum bit or qubit

Quantum bit

- 2-dimensional vector of length 1.
- Basis states | 0>, | 1>.
- Arbitrary state: $\alpha | o > + \beta | 1 >$,
- · α , β complex $|\alpha|^2 + |\beta|^2 = 1$.

Physical quantum bits

 Nuclear spin = orientation of atom's nucleus in magnetic field.

$$\uparrow = |0\rangle, \downarrow = |1\rangle.$$

- Photons in a cavity.
- No photon = $|0\rangle$, one photon = $|1\rangle$

Physical quantum bits

Energy states of an atom

Polarization of photon

4-dimensional quantum states

- H⁴ the 4-dimensional quantum system can be constructed as the tensor product of H² x H²
- Basis |00>, |01>, |10>, |11>, where |00>=|0>x|0>; |01>=|0>|1>; |10>=|1>|0>; |11>=|1>|1>.
- The basis can also be represented by:|0>, |1>, |2>, |3>
- General state

$$\alpha_0 | o > + \alpha_1 | 1 > + \alpha_2 | 2 > + \alpha_3 | 3 >$$
, with $|\alpha_0|^2 + ... + |\alpha_3|^2 = 1$

General quantum states

- k-dimensional quantum system (as product of two k/2 dimensional quantum systems)
- Basis |0>, |1>, ..., |k-1>
- General state

$$\alpha_{0}|_{0} > +\alpha_{1}|_{1} > + ... + \alpha_{k-1}|_{k-1} > ,$$

$$|\alpha_{0}|_{2} + ... + |\alpha_{k-1}|_{2} = 1$$

 2^k dimensional system can be constructed as a tensor product of k quantum bits.

Unitary transformations

- Linear transformations that preserve vector norm.
- In 2 dimensions, linear transformations that preserve unit circle (rotations and reflections).

Hamamard-Walsh transform W:

$$\begin{cases} \sqrt{2} & \sqrt{2} \\ |1\rangle \rightarrow \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \end{cases}$$

Not-controlled C_{10} : $C_{10}|ab>=|b|a+b> \text{ if } b=0,$ $C_{10}|ab>=|ab> \text{ if } b=1$ i.e. $C_{10}|00>=|00>C_{10}|01>=|01>$ $C_{10}|10>=|11>C_{10}|11>=|10>$

Linearity

Bit flip

$$X|0>\rightarrow |1>$$

$$X|1>\rightarrow |0>$$

\$\mathref{\mathref{H}}\$ By linearity, $\alpha|0>+\beta|1>\to \alpha|1>+\beta|0>$ **\$\mathref{\mathref{H}}\$** Sufficient to specify X|0>, X|1>.

Interference: Constructive-

Destructive

Example: W(W|o>)=|o>

Interference: Constructive-

Destructive

```
Example: W(W|o>)= |o>
```

Interference: ConstructiveDestructive

Example: W(W|o>)=|o>1/√2 1/1/2

Interference: ConstructiveDestructive

Example: W(W|o>)= |o>

|o>

$$1/\sqrt{2}$$
 $|o>$
 $|1>$
 $2/\sqrt{2}$
 $|o>$
 $|1>$
 $|o>$
 $|1>$

- Measuring $\alpha|o>+\beta|1>$ in basis |o>, |1> gives: o with probability $|\alpha|^2$, 1 with probability $|\beta|^2$.
- Measurement changes the state: it becomes |o> or |1>.
- Repeating measurement gives the same outcome.

General measurements

- Let $|\psi_0\rangle$, $|\psi_1\rangle$ be two orthogonal one-qubit states.
- Then,

$$|\psi\rangle = \alpha_0 |\psi_0\rangle + \alpha_1 |\psi_1\rangle$$
.

- Measuring $|\psi\rangle$ gives $|\psi_i\rangle$ with probability $|\alpha_i|^2$.
- This is equivalent to mapping $|\psi_0\rangle$, $|\psi_1\rangle$ to $|0\rangle$, $|1\rangle$ and then measuring.

Measuring

$$\alpha_{_1}|_{1>+}\alpha_{_2}|_{2>+...+}\alpha_{_k}|_{k>}$$
 in the basis $|_{1>,}|_{2>,}...,|_{k>}$ gives $|_{i>}$ with probability $|_{\alpha_i}|_{^2}$.

Any orthogonal basis can be used.

Partial measurements

If in H⁴, we have a system in state $|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$, if we measure the first qubit

- it will yield o> with probability $|\alpha_{00}|^2 + |\alpha_{01}|^2$
- and it will yield $|1\rangle$ with probability $|\alpha_{10}|^2 + |\alpha_{11}|^2$.

Partial measurements: example

Measure the first bit:

$$1/4+1/4=1/2$$

$$\frac{1}{\sqrt{2}}|00>+\frac{1}{\sqrt{2}}|01>$$

$$1/2$$

EPR (or Bell) state

■ Important state in quantum computing $|\phi^+\rangle=1/\sqrt{2(|00\rangle+|11\rangle)}$

Important property: if we measure a system in state $|\phi^+\rangle$ then with probability 1/2 will be in state $|oo\rangle$ and with probability 1/2 will be in state $|11\rangle$

Quantum gates: C₁₀

Quantum gates are always reversible

Quantum circuits

Input: lab>
Output: $1/\sqrt{2(10b)+(-1)^b|1-b>}$

EPR-States

The previous circuit gives all EPRstates:

- On $| oo > gives | \phi^+ > = 1/\sqrt{2(| oo > + | 11 >)}$
- On $|10\rangle$ gives $|0\rangle = 1/\sqrt{2(|00\rangle |11\rangle)}$
- On $|o1\rangle$ gives $|\phi^+\rangle=1/\sqrt{2(|o1\rangle+|10\rangle)}$
- On $|11\rangle$ gives $|\phi^-\rangle = 1/\sqrt{2(|01\rangle |10\rangle)}$

Classical vs. Quantum

Classical bits:

- can be measured completely,
- are not changed by measurement,
- can be copied,
- can be erased.

Quantum bits:

- can be measured partially,
 - are changed by measurement,
 - cannot be copied,
 - cannot be erased.

No-cloning theorem

- It does not exist any quantum gate $U:H^2XH^2$ such that for any state general state $|\psi\rangle$ and any chosen $|s\rangle$: $U(|\psi s\rangle) = |\psi\psi\rangle$.
- (Proof) If so, $\exists U \text{ s.t. } U(|\psi s>)=|\psi \psi>.$ Choose a $|\psi'>:$

$$U(|\psi\rangle \times |s\rangle) = |\psi\rangle \times |\psi\rangle$$

 $U(|\psi'\rangle \times |s\rangle) = |\psi'\rangle \times |\psi'\rangle$

Taking the dot product of previous system $\langle \psi | \psi' \rangle = (\langle \psi | \psi' \rangle)^2$.

Which only has solution if $|\psi\rangle = |\psi'\rangle$ or $|\psi\rangle$ and $|\psi\rangle$ are orthogonal.

Teleportation

• A and B generate one pair EPR $|\phi^{+}\rangle=1/\sqrt{2(|00\rangle+|11\rangle)}$, A keeps the first qubit

Teleportation

• A and B generate one pair EPR $|\phi^{+}\rangle=1/\sqrt{2(|\phi\phi\rangle+|11\rangle)}$, A keeps the first qubit and B keeps the second one

Teleportation

- A and B generate one pair EPR $|\phi^{+}\rangle=1/\sqrt{2(|00\rangle+|11\rangle)}$, A keeps the first qubit and B keeps the second one
- Later A wishes to send B the state $|\psi\rangle = \alpha_0 |\psi_0\rangle + \alpha_1 |\psi_1\rangle$.

information to B.

 $|\psi_2>=1/2[\alpha(|0>+|1>)(|00>+|11>)+\beta(|0>-|1>)(|10>+|01>)]$

Re-arranging:

$$|\psi_{2}\rangle = 1/2[(|00\rangle(\alpha|0\rangle + \beta|1\rangle)]$$

$$+1/2[(|01\rangle(\alpha|1\rangle + \beta|0\rangle)]$$

$$+1/2[(|10\rangle(\alpha|0\rangle - \beta|1\rangle)]$$

$$+1/2[(|11\rangle(\alpha|1\rangle - \beta|0\rangle)]$$

$$\gamma_{4}$$

A mades measuraments on its two bits

If the measurament gives:

- 1.- oo> then B has qubit α | 0>+ β | 1>= $|\psi$ >
- 2.- o1> then B has qubit α | 1>+ β | 0>
- 3.- $|10\rangle$ then B has qubit $\alpha|0\rangle$ β $|1\rangle$
- 4.- 11> then B has qubit α 1>- β 0>

When B receives the measurament from A:

- 1.- if | oo > then B has $| \psi >$
- 2.- if |01> then B does $X(\alpha | 1>+\beta | 0>)= | \psi >$
- 3.- if $|10\rangle$ then B does $Z(\alpha|0\rangle \beta |1\rangle) = |\psi\rangle$
- 4.- if |11> then B does $Z[X(\alpha|1>-\beta|0>)]=|\psi>$

Remarks

- A and B teleport a quantum state (no the qubit)
- Teleportation is not a clonation
- During the teleportation the original state is destroyed
- To implement teleportation of a state is a routine experiment in a Lab.

Quantum Cryptography

Cryptography

Setting: A (Alice) and B (Bob) want to interchange messages, and they send them encrypted with a key.

The message is first converted into a sequence of integers $M=m_1,...m_N$.

One time pad

- Before exchanging messages, A and B meet and create a pad which every page has 100 random integer between 0 and a-1, where a is the size of the alphabet.
- Each one of them, has a copy of the pad.
- The security of the scheme relies in the fact that nobody else should have access to the pad

For A to send M to B:

- A chooses a page p. Chooses the first N integers k₁....k_N in p.
- A creates an encrypted text $E = \{e_1...e_N\}$ where $e_i = (m_i + k_i) \mod a$
- A sends to B (E,p)

For B to recover M:

- B looks p. Finds the first N integers k₁....k_N in p.
- For each e_i in E, to recover M,

$$m_i = (e_i - k_i) \mod a$$

Public key cryptography

A creates a public key P_A and a secret key S_A, s.t. for any message M :

$$P_A(S_A(M)) = S_A(P_A(M))$$

B also creates P_B and S_B

For A to send M to B : sends $P_B(M)$.

When B receives $P_B(M)$, does $S_B(P_B(M)) = M$.

Public key

Rivest Shamir Adlerman

RSA

- Choose large p and q. Compute N = pq
- Find d which is co–prime with (p–1)(q–1)
- Compute e s.t. ed $=1 \pmod{(p-1)(q-1)}$

$$P = (e, N)$$

$$S = (d, N)$$

RSA

- To encrypt $M=m_1,...m_N$. use P = (e,N) $e_i = m_i^e \mod N$
- To decrypt $E = \{e_1...e_N\}$ use S = (d,N) $m_i = m_i^d \mod N$

The security of RSA is not being able to factorize N

Quantum Crypto: Bennet, Brassard (1984) BB84

Quantum key distribution

Instead of using Q.M. for information storage, apply for information transmission

Key distribution

- Alice and Bob want to create a shared secret key by communicating over an insecure channel.
- Needed for symmetric encryption (one-time pad, DES etc.).

Heisenberg Uncertainty Principle

- For certain pairs of observables (for ex. Position/momentum) knowing the value of one observable, makes the value of another observable more uncertain.
- Therefore, any measurement of the output state that yields information in a classical way, produces a destruction of the remaining information.

The Qubit as polarization of photon

- Photon: orthogonal electromagnetic fields.
- Polarized photon: electric field oscillates in desired plane (o, 45, 90, 135)
- Rectilinear polarization: electric field oscillates o/90
- Diagonal polarization: electric field oscillates
 45/135

0 and 1 as polarized photons

WLOG assume:

- Polarized photon at o and 45 represent o
- Polarized photon at 34 and 135 represent 1
- To encode a {0,1}, place a photon in a particular polarization state. Using a Pockel cell (a polarization dependent switch)

000010000001011

Diagonal -

00001000000101

0000100000010

Rectilinear

To measure polarization

Given an stream of photons, to measure the polarization use a Calcite (calcium carbonate) which has the property of being birefringent

We can set the calcite polarization axis:

- Rectilinear (+) o/90
- Diagonal (/) 45/135

Calcite

+(90)

+(90)

$$+(90)$$

$$+(90)$$

Quantum key distribution(QKD)

Central idea: use non-orthogonal quantum states to encode information.

Given a single photon in one state

Heisenberg principle forbid from simultaneously measuring accurately the polarization of and +

QKD (BB84)

- A creates a random string of {0,1}.
- For each bit A encodes using / or + (each time selecting / or + randomly)
- A sends to B the created photons (by open channel)

QKD (BB84)

- When B receives the string of polaritzed photons, for each one chooses an orientation for his calcite, and measures the polarization of each photon
- Notice, he must guess the correct / or + for the calcite

BB84

- Over an insecure channel, A tells B the polarizer orientation of a subset S of bits
- B tells A the calcite orientations he used for bits in S.
- For the bits in S they agree in the orientation,
 A tells B what bit should he have obtain

BB84

- If they disagree in one bit (which both set to the same polarization, this means E has read the polarization sent by A (with the wrong orientation of the calcit), which will happen with probability 1/4.
- Therefore if they agree in 100%, the probability of eavesdropping is 1-(3/4)^S, which for large S is small

BB84

- Once the channel is secure, A tells B what orientations used for each bit
- B compares his orientations with A, in the ones they agree the bit B has must coincide with A.
- Those bits form the key

110010010001000101

Generates random orientations (Pockell)

110010010001000101 +XX XX++XX+X+X+X+X

B gets a stream:

Chooses randomly orientations to calcite

A selects S:

1 0 1 01 0

× × × × × ×

B proves which orientations coincide for S:

B proves which orientations coincide for S:

To test for eavesdroppers:

A reveals her orientations:

B checks his orientations:

B checks his orientations:

B looks at his bits:

The key (for one time pad)

MIT implementation of BB84

QKD summary

- Key distribution requires hardness assumptions classically.
- QKD based on quantum mechanics.
- Higher degree of security.

QKD implementations

- MIT (BB84), 1992.
- Many others
- Currently: 67km, 1000 bits/second.
- Commercially available: Id Quantique, since 2002.

Id Quantique: QKD

Quantum Computation

Deutsch Problem and Deutsch Jozsa solution

Quantum parallelism: Deutch Problem

Let f:{0,1}__{{0,1}}, which takes 24h. to compute with a classical computer. We wish to decide if f(0)=f(1) or they are different.

Gate U_f:

Input: |xy>

Output: $|xy \oplus f(x)\rangle$

Power of Quantum Paralleism

Input: $|x> \otimes (|0> -|1>)/\sqrt{2}$

Output: $|\Psi\rangle = |x\rangle \propto (|0\rangle + f(x)\rangle - |1\rangle + f(x)\rangle / \sqrt{2}$

As $f(x) = \{0,1\}$

If f(x)=0 the second qubit is $(10>-11>)/\sqrt{2}$

If f(x)=1 the second qubit is (11>-10>) $1/\sqrt{2}$

 $|\Psi\rangle = |x\rangle \otimes (-1)^{f(x)} (|0\rangle - |1\rangle)/\sqrt{2}$

Therefore, we could decide the output of U_f with only one computation of f(x)

$$|\Psi_1\rangle = (|0\rangle + |1\rangle)/\sqrt{2} \ \hat{\mathbb{X}} \ (|0\rangle + |1\rangle)/\sqrt{2}$$

Problem: find the expression for $|\Psi_4\rangle$

Further Lines of study/research

- Shor algorithm for factorization
- Grover 's algorithm for search
- Quantum walks

Andris Ambainis: Quantum walks and their algorithm applications