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measurement of conductivity / resistivity

Lundstrom 2011

1) Commonly-used to characterize electronic materials.

2) Results can be clouded by several effects – e.g. 
contacts, thermoelectric effects, etc.

3) Measurements in the absence of a magnetic field are 
often combined with those in the presence of a B-field.

This  lecture is a brief introduction to the measurement and 
characterization of near-equilibrium transport. 
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outline

8.1 Introduction
8.2 Resistivity / conductivity measurements
8.3 Hall effect measurements
8.4 The van der Pauw method
8.5 Temperature-dependent measurements
8.6 Discussion
8.7 Summary
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resistivity / conductivity measurements

( )n
nx n

d F q
J

dx
σ=

We generally measure resisitivity (or conductivity) because for diffusive 
samples, these parameters depend on material properties and not on the 
length of the resistor or its width or cross-sectional area.

For uniform carrier concentrations:

nx n xJ σ= E x n nxJρ=E

Lundstrom 2011

diffusive transport 
assumed
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Landauer conductance and conductivity

n-type semiconductor

L

cross-sectional 
area, A

“ideal” contacts

n
AG
L

σ=

( ) ( )
2

0
3

2
D

fG q M E E dE
A L h E

σ λ ∂ = = − ∂ ∫
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( ) ( )
2

02 fqG M E T E dE
h E

∂ = − ∂ ∫ ( ) ( )E
T E

L
λ

=

( ) ( )
3D

M E
M E

A
=

For ballistic or quasi-ballistic 
transport, replace the mfp with 
the “apparent” mfp:

( ) ( )1 1 1app E E Lλ λ= +

(diffusive)
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conductivity and mobility

n-type semiconductor

L
cross-sectional 

area, A

“ideal” contacts

n nnqσ µ=
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( ) ( )
2

0
3

2
D

fG q M E E dE
A L h E

σ λ ∂ = = − ∂ ∫

1) Conductivity depends on EF.

2)  EF depends on carrier density.

3)  So it is common to characterize 
the conductivity at a given 
carrier density.

4) Mobility is often the quantity that 
is quoted.

So we need techniques to measure two 
quantities:

1)  conductivity    2) carrier density
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n
AG
L

σ=

2D electrons
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2D:  conductivity and sheet conductance

n-type semiconductor
L

t

A Wt=

W

n n
Wt WG ntq
L L

σ µ   = =   
   

S
WG
L

σ  =  
 

( )1S S nn qσ µ= Ω

“sheet conductance”

LW

Top view 
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2D electrons vs. 3D electrons

n-type semiconductor
L

t

A Wt=

W LW

Top view 

( ) ( )
2

0
3

2
S D

fA Wt G qG tM E E dE
L L W L h E

σ σ σ λ ∂ = = → = = − ∂ ∫

3D electrons:

( ) ( )
2

0
2

2
S S D

fW G qG M E E dE
L W L h E

σ σ λ ∂ = → = = − ∂ ∫

2D electrons:
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mobility

( ) ( )
2

0
2

2
S D S n

fq M E E n q
h E

σ λ µ∂ = − ≡ ∂ ∫
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1) Measure the conductivity: Sσ

2) Measure the sheet carrier density: 

3) Deduce the mobility from: 

Sn

S S nn qσ µ≡

4) Relate the mobility to material parameters: 
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recap

Lundstrom 2011

There are three near-equilibrium transport coefficients:
conductivity, Seebeck (and Peltier) coefficient, and the electronic 
thermal conductivity.  We can measure all three, but in this brief lecture, 
we will just discuss the conductivity.

Conductivity depends on the location of the Fermi level, which can be 
set by controlling the carrier density.

So we need to discuss how to measure the conductivity (or resistivity) 
and the carrier density.  Let’s discuss the resistivity first.
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outline

8.1 Introduction
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2-probe measurements

I →

( )21 2 C CHV I R R= +

x̂

ŷ

LW

Top view 

21

21V

CH S
LR

W
ρ=

21
CH

VR
I

≠

Lundstrom 2011

Sρ
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transmission line measurements

x̂

ŷ

SW

Top view 

21 3 4 5

 S

R

X
X

X
X

H.H. Berger, “Models for Contacts to Planar Devices,” Solid-State Electron., 15, 
145-158, 1972. Lundstrom 2011

( )2ji C S ijV I R S Wρ= +

2 TL

2 CR
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transmission line measurements (TLM)

x̂

1,2S

Side view 

21

Lundstrom 2011

3 4 5

ji ,i jS

II
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contact resistance (vertical flow)

Lundstrom 2011

metal contact

Area = AC

n-Si

I

Top view Side view

tcmiρ Ω−

interfacial 
layer
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contact resistance (vertical flow)
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n-Si

DI

Side view

t
cmiρ Ω−

interfacial 
layer

i C
C

C C

tR
A A
ρ ρ

= = Ω

8 6 210 10Ω-cmCρ
− −< <

“interfacial contact resistivity”

0.10 1.0CA m mµ µ= ×

7 210Ω-cmCρ
−=

100Ω- mCR µ=
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contact resistance (vertical + lateral flow)
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I

/SDρ Ω 

CL

C CA WL=

(W into page)

TL “transfer length” cmC
T

SD

L ρ
ρ

=

I

AC (eff) <WLC
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contact resistance
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I

/SDρ Ω 

CL
C CA WL=

cmT C SDL ρ ρ=

I

( )coth /C SD
C C TR L L

W
ρ ρ

=

ii) :C TL L>> C
C

T

R
L W
ρ

=

i) :C TL L<< C
C

C

R
L W
ρ

=
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transfer length measurments (TLM)

x̂

1,2S

Side view 

21 3 4 5

 S

R

X
X

X
X

2 CR
( )2ji C S jiV I R S Wρ= +

1) Slope gives sheet resistance, intercept gives contact resistance

cmT C SDL ρ ρ=( )coth /C SD
C C TR L L

W
ρ ρ

=

2) Determine specific contact resistivity and transfer length:

2 TL
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four probe measurements

Sρ Side view 

I

V− +

1 2 3 4

1) force a current through probes 1 and 4
2) with a high impedance voltmeter, measure the voltage between probes 

2 and 3

( )S
VR f
I

ρ= = (no series resistance)
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Hall bar geometry

W

Top view 

1 2

3 4

0 5

x̂
ŷ

L

Lundstrom 2011

Contacts 0 and 5:  “current probes”
Contacts 1 and 2 (3 and 4):  “voltage probes”

thin film
isolated from substrate

pattern created with 
photolithography

21V

21 S
LV I

W
ρ= ×

(high impedance voltmeter)

no contact resistance
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Hall effect

24

The Hall effect was discovered by Edwin Hall in 1879 and is widely used to 
characterize electronic materials.  It also finds use magnetic field sensors.

←

I n-type semiconductor

x̂

ŷ

ˆB Bz=


HV+ −

current in x-direction:

xI

B-field in z-direction:

ˆB Bz=


Hall voltage measured 
in the y-direction:

( )0   n-typeHV >
I



Lundstrom 2011 25

Hall effect:  physics

25

I
n-type

x̂

ŷ
HV+ −

x xI nq υ=ˆB Bz=


( )0   n-typeHV >

eF q Bυ= − ×
 

0xυ <

0eyF <

0y <E

0xυ <

- - - - - - - - - - - - -

+ + + + + + + + + +
yE
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Hall effect: analysis

26

I
n-type

x̂

ŷ
HV+ −

ˆB Bz=


0xυ <

- - - - - - - - - - - - -

+ + + + + + + + + +
yE

( )-n n n n HJ r Bσ σ µ= ×
  

E E

Top view of a 2D film

( )0y S n y n n H x zJ n q r Bµ σ µ= = −E E

H z x
y n H z x

S

r B Jr B
n q

µ= − = −E E

( )
y H

H
x z S

rR
J B q n

≡ =
−

E

RH is the “Hall coefficient”
RH < 0 for n-type
RH > 0 for p-type

( )x n x n n H y z n xJ r Bσ σ µ σ= − ≈E E E



Lundstrom 2011 27

Hall effect: analysis

27

I
n-type

x̂

ŷ
HV+ −

ˆB Bz=


0xυ <

- - - - - - - - - - - - -

+ + + + + + + + + +
yE

( )-n n n n HJ nq r E Bµ σ µ= ×
  

E

Top view of a 2D film

y H
H

x z x z

VR
J B I B

−
≡ =

E

( )
H

H
S

rR
q n

=
−

S
H

H

nn
r

≡

“Hall concentration”

2

2

m
H

m

r
τ

τ
≡

“Hall factor”
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example

W

Top view 

1 2

3 4

I←

0 5

x̂
ŷ

L

Lundstrom 2011

21V
1 AxI I µ= =

2,000 GausszB =

( )41 Tesla 10 Gauss=

21 0.4 mVV =

B = 0:

B ≠ 0:
24 13 VV µ=

100 mL µ=

50 mW µ=

What are the:
1) resistivity?
2) sheet carrier density?
3) mobility?
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example:  resistivity
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W

Top view 
1 2

3 4

I←

0 5

x̂
ŷ

L

21V

1 AxI I µ= =

2,000 GausszB =

( )41 Tesla 10 Gauss=

21 0.4 mVV =

B = 0:

B = 0.2T:
24 13V µ=

100 mL µ=

50 mW µ=

resistivity:
21 400xx

VR
I

= = Ω

200xx S S
LR

W
ρ ρ= → = Ω 
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example: sheet carrier density
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W

Top view 
1 2

3 4

I←

0 5

x̂
ŷ

L

21V

1 AxI I µ= =

2,000 GausszB =

( )41 Tesla 10 Gauss=

21 0.4 mVV =

B = 0:

B = 0.2T:
24 13 VV µ=

100 mL µ=

50 mW µ=

sheet carrier density:

12 -29.6 10 cmHn = ×
24

S x z x z
H

H H

n I B I Bn
r qV qV

≡ = =
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example: mobility
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W

Top view 
1 2

3 4

I←

0 5

x̂
ŷ

L

21V

1 AxI I µ= =

2,000 GausszB =

( )41 Tesla 10 Gauss=

21 0.4 mVV =

B = 0:

B = 0.2T:
24 13 VV µ=

100 mL µ=

50 mW µ=

mobility:

23125 cm V-sH H nrµ µ≡ =

( )1 S
S S n H n

S H

nn q q r
r

σ µ µ
ρ

 
= = =  
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re-cap

W

Top view 
1 2

3 4

I←

0 5

x̂
ŷ

L

21V

1 AxI I µ= =

( )
H H

H
x z S

V rR
I B q n
−

≡ =
−

1)  Hall coefficient:

2)  Hall factor:
2

H m mr τ τ≡

3)  Hall concentration:

H S Hn n r≡

4)  Hall mobility:

H H nrµ µ≡
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outline

8.1 Introduction
8.2 Resistivity / conductivity measurements
8.3 Hall effect measurements
8.4 The van der Pauw method
8.5 Temperature-dependent measurements
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van der Pauw sample

M

N O

P

Top view2D film
arbitrarily shaped
homogeneous, isotropic
(no holes)

Four small contacts 
along the perimeter

Sρ
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van der Pauw approach

M

N
O

P

Resistivity

Sρ

I

I

POV

1) force a current in M and out N
2) measure VPO
3) RMN, OP  = VPO / I related to ρS

B-field = 0

Hall effect

M

N O

P

Sρ

I

I

PNV

1) force a current in M and out O
2) measure VPN
3) RMO, NP  = VPN / I related to VH

B-field  

Sρ

y

x
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van der Pauw approach:  Hall effect

Hall effect

M

N O

P

Sρ

I

I

PNV

( )-n n n n HJ r E Bσ σ µ= ×
  

E

( )-x n x n n H y zJ r E Bσ σ µ= E

( )y n y n n H x zJ r E Bσ σ µ= +E

( )x nn x nn H z yJ B Jρ ρ µ= +E

( )y nn H z x nn yB J Jρ µ ρ= − +E

( )
P P

PN z x y
N N

V B dl dx dy= − • = − +∫ ∫
 

E E E

( ) ( )1
2H PN z PN zV V B V B≡ + − −  

y

x
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van der Pauw approach:  Hall effect

Hall effect

M

N O

P

Sρ

I

I

PNV

( )-n n n n HJ nq r E Bµ σ µ= ×
  

E

P P

N N

y x

H n H z x y
y x

V B J dy J dxρ µ
 

= − 
  
∫ ∫

y

x

ˆ
P

N

I J ndl= •∫


H n H zV B Iρ µ=

So we can do Hall effect 
measurements on such samples.
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van der Pauw approach:  resistivity

M

N
O

P

Resistivity

Sρ

I

I

POV
y

x

M N O P

I I
POV

a b c

semi-infinite half-plane

,
PO

MN OP
VR

I
=
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van der Pauw approach:  resistivity

semi-infinite half-plane

r

r S r
IJ
r

σ
π

= = E

S
r

I
r
ρ
π

=E

M
I

( ) ( )0
0

lnSI rV r V r
r

ρ
π

 
− = −  
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van der Pauw approach:  resistivity

M N O P

I I
POV

a b c

semi-infinite half-plane

( ) ( )0
0

lnSI rV r V r
r

ρ
π

 
− = −  

 

( )
0

lnSI a b cV P
r

ρ
π

 + +
= −  

 

( )
0

lnSI a bV O
r

ρ
π

 +
= −  

 

lnS
PO

I a b cV
a b

ρ
π

+ + = −  + 

but there is also a 
contribution from contact N

lnS
PO

I b cV
b

ρ
π

+ ′ = +  
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van der Pauw approach:  resistivity

M N O P

I I POV

a b c

semi-infinite 
half-plane

( )( )
( ), lnPO PO S

MN OP

a b b cV VR
I b a b c

ρ
π

 + +′+
= =   + + 

( )( )
, lnS

NO PM

a b b c
R

ac
ρ
π

+ + 
=  

 

it can be shown that:

, ,

1
MN OP NO PM

S S
R R

e e
π π
ρ ρ

− −

+ =

Given two measurements of resistance, this equation can be solved 
for the sheet resistance.
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van der Pauw approach:  resistivity

M N O P

I I
POV

a b c

semi-infinite 
half-plane

, ,

1
MN OP NO PM

S S
R R

e e
π π
ρ ρ

− −

+ =

The same equation applies for an arbitrarily shaped sample!

M

N
O

PSρ

I

I

POV
y

x
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van der Pauw technique:  regular sample

Top view 

x̂

ŷ

Force I through two contacts, measure V between the other two contacts. 

I ↑ OPV

Lundstrom 2011

, ,

1
MN OP NO PM

S S
R R

e e
π π
ρ ρ

− −

+ =

, ,MN OP NO PM
VR R
I

= =

ln 2S
V
I

πρ =N O

PM
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P

ON

M

van der Pauw technique:  summary
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I

I

( )PN zV B+

B-field  

P

ON

M

I

I

( )PN zV B−

B-field   X

( ) ( )1
2

H z
H PN Z PN Z z

S H

r B IV V B V B B I
qn qn

= + − − = =  
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P

ON

M

van der Pauw technique:  summary

Lundstrom 2011

I

I

0PV B = 0

P

ON

M

I I

MPV

0
,

P
MN OP

VR
I

= ,
MP

NO PM
VR

I
=

, ,

1
MN OP NO PM

S S
R R

e e
π π
ρ ρ

− −

+ =
S

S S n H n H H
H

nn q q r n q
r

σ µ µ µ= = =
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outline

8.1 Introduction
8.2 Resistivity / conductivity measurements
8.3 Hall effect measurements
8.4 The van der Pauw method
8.5 Temperature-dependent measurements
8.6 Discussion
8.7 Summary
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temperature-dependent measurements

It is common practice to measure the temperature-dependent 
conductivity.

Assuming that the carrier density is known (or can be measured), 
a mobility is then extracted from: nn qσ µ=

nµ

LT

If n was measured by 
Hall effect, then mobility 
is the Hall mobility.
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interpretation

nµ

LT

increasing mobility 
suggests the 
presence of charged 
impurity scattering

decreasing mobility 
suggests the 
presence of lattice 
(phonon) scattering.
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charged impurity scattering

( )  as  E Eτ ↑ ↑

High energy electrons don’t “see” 
these fluctuations and are not 
scattered as strongly.

E

x

( ) ( )C SE x U x=

Random charges introduce 
random fluctuations in EC, which 
act a scattering centers.

Average carrier energy ~ kBTL.

Lundstrom 2011
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lattice (phonon) scattering

Carrier scattering rate is 
proportional to the number of 
phonons.

Phonon occupation number 
given by the Bose-Einstein 
distribution.

( )
1

phn
Eτ

∝

1
1B Lph k Tn

e ω=
−

asph Ln T↑ ↑
Number of phonons increases 
as temperature increase.  
Scattering time decreases, 
and mobility decreases.

Lundstrom 2011
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mobility vs. temperature

nµ

LT

The low temperature 
mobility is a measure 
of the purity of the 
sample (no. of 
charged impurities).

decreasing charged 
impurity concentration
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outline

8.1 Introduction
8.2 Resistivity / conductivity measurements
8.3 Hall effect measurements
8.4 The van der Pauw method
8.5 Temperature-dependent measurements
8.6 Discussion

i)  errors in Hall effect measurements
ii)  low B-field criterion
iii) high B-fields

8.7 Summary
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i) Hall effect measurements (errors)

Lundstrom 2011

W

Top view 

1 2

3 4

0 5

x̂
ŷ

L

21V

xI xI

We have assumed isothermal conditions to compute the Hall voltage, 
but we expect Peltier cooling at contact 0 and Peltier heating at contact 
1.  If the sample is not isothermal, how does the Hall voltage change?
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magnetoconductivity tensor

Lundstrom 2011

nx S S H z x

ny S H z S y

J B
J B

σ σ µ
σ µ σ

=    
−    

    +    

E
E

( )ni ij z j
j

J Bσ=∑ E

( )ni ij z jJ Bσ= E (summation convention)

11 12

21 22

z S S H z

S H z S

B
B

σ σ σ σ µ
σ σ σ µ σ

=   
−   

   +   

i S i S H ijk k jJ Bσ σ µ ε= −E E

( )
( )
( )

1 , ,   cyclic

1 , ,   anti-cyclic

0 otherwise

ijk i j k

i j k

ε = +

= −

=
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from Lecture 7

Lundstrom 2011

( ) ( )i ij j ij j LB J S B Tρ= + ∂
 

E

( ) ( )Q e
i ij j ij j LJ B J B Tπ κ= − ∂

 

For parabolic energy bands

( ) 0 0 ...ij H ijk kB Bρ ρ ρ µ ε= + +


( ) 0 1 ...ij ijk kS B S S Bε= + +


( ) 0 1 ...ij ijk kB Bπ π π ε= + +


( ) 0 1 ...e e
ij ijk kB Bκ κ κ ε= + +
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Nernst effect

Assume that there is a temperature gradient in the x-
direction.  How is the electric field (Hall voltage) affected?)

( ) ( )i ij j ij j LB J S B Tρ= + ∂
 

E

0 0 0 1y y H yjz z j y L yjz z j LJ B J S T S B Tρ ρ µ ε ε= + + ∂ + ∂E

( ) 0 0 ...ij H ijk kB Bρ ρ ρ µ ε= + +


( ) 0 1 ...ij ijk kS B S S Bε= + +


0 1y H yxz z x yxz z x LB J S B Tρ µ ε ε= + + ∂E

0 1y H z x z x LB J S B Tρ µ= − − ∂E

Nernst voltage
Reverse direction of Bz and Jx
and average results to eliminate.
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other effects

Other “thermomagnetic effects” such as the 
Ettingshaussen and Righi-Leduc effects also occur and 
affect the measured Hall voltage.  See Lundstrom, 
Chapter 4, Sec. 4.6.2 for a discussion.
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ii) small B-field criterion

58

1c mω τ << 1n zBµ <<

*c
qB
m

ω =

What does this mean 
physically?

*
m

c m n
q B B
m
τω τ µ= =
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small B-field:  physical meaning

59

x

y
B-field points out (Bz)

1c m mTω τ τ<< → >>

×

“Low B-field” means that 
electrons scatter many times 
before completing an orbit.

“High B-field” means that 
electrons can complete an orbit 
without scattering.

*

2 z
c

qB
T m
πω = =

υ
 BF
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some numbers

silicon

2,000   GausszB =

0.02 1H zBµ ≈ <<

60

21000  cm V-snµ =

1Hr =

Hall effect measurements with typical 
laboratory-sized magnets are in the low 
B-field regime.  Except – for very high 
mobility sample such as modulation 
doped films.)

Birck Nanotechnology Center:  1-8 T

National High Magnetic Field Lab
(Florida State Univ.):  45 T

0.2   TeslazB =
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some numbers (III-V modulation-doped)

InAlAs/InGaAs

2,000   GausszB =

0.2 1H zBµ ≈ <<

61

210,000  cm V-snµ ≈

1Hr =

0.2   TeslazB =

TL = 300K
InAlAs/InGaAs

2,000   GausszB =

2 1H zBµ ≈ >

2100,000  cm V-snµ ≈

1Hr =

0.2   TeslazB =

TL = 77K
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iii) high B-fields

62

x

y

υ


ˆzB B z=


θ

( ) ( )cos cos 0 ci tt e ωθ θ=

Quantum mechanically:

1
2n cE n ω = + 

 
 “Landau levels”

harmonic oscillator:
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effect on DOS

63

E

( )2DD E

*

2v
mg
π 

1ε

1
2n cE n ω = + 

 


*
z

c
q B
m

ω =

0E 1E 2E

( )2 0 1
0

1,
2D z c

n
D E B D E nδ ε ω

∞

=

  = − − +    
∑ 
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degeneracy of Landau levels

64

1
2n cE n ω = + 

 


*
z

c
q B
m

ω =

E

( )2DD E

*

2
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broadening of Landau levels
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If B = 1T, how many states are there in each LL?

10 -2
0

2 4.8 10 cmzqBD
h

= = ×

If nS = 5 x 1011 cm-2, then 10.4 LL’s are occupied.

How high would the mobility need to be to observe these LL’s?

( )21 10,000 cm /V-s    1TB Bµ µ> → > =

“modulation-doped semiconductors”
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M.E. Cage, R.F. Dziuba, and B.F. Field, “A Test of the Quantum Hall Effect as a 
Resistance Standard,” IEEE Trans. Instrumentation and Measurement,” Vol. IM-34, pp. 
301-303, 1985

 VH

 Vx

“Shubnikov-deHaas
(SdH) oscillations”

Longitudinal 
magneto-
resistance

quantized Hall voltage
zero longitudinal resistance, Rxx
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outline
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8.3 Hall effect measurements
8.4 The van der Pauw method
8.5 Temperature-dependent measurements
8.6 Discussion
8.7 Summary



summary
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1)  Hall bar or van der Pauw geometries allow measurement of 
both resistivity and Hall effect from which the Hall 
concentration and Hall mobility can be deduced.

2) Temperature-dependent measurements provide information 
about the dominant scattering mechanisms.

3) Care must be taken to exclude thermoelectric effects.

4) High B-field measurements provide additional information, but 
also require high B-fields or high mobilities.

5) Measurements of the Seebeck coefficient and electronic heat 
conductivity require special considerations.
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questions
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