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measurement of conductivity / resistivity

1) Commonly-used to characterize electronic materials.

2) Results can be clouded by several effects — e.qg.
contacts, thermoelectric effects, etc.

3) Measurements in the absence of a magnetic field are
often combined with those in the presence of a B-field.

This lecture Is a brief introduction to the measurement and
characterization of near-equilibrium transport.
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resistivity / conductivity measurements

J =0

nx n dx assumed

d(F,/q) E}Iiﬁ‘usive transport}

For uniform carrier concentrations:

‘Jnx:O-nf-x ZX:IOHJHX

We generally measure resisitivity (or conductivity) because for diffusive
samples, these parameters depend on material properties and not on the
length of the resistor or its width or cross-sectional area.
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Landauer conductance and conductivity

For ballistic or quasi-ballistic
transport, replace the mfp with

cross-sectional
the " mfp:
area, A \V e “apparent” mfp
: . : 1/ app 1/ A )+1/ L

\ o
n-type semiconductor = On L

“ideal” contacts

G_Zqujl\A( )T(E)(—ZiEjdE T(E):@
oo 2 ()28 - Je ()= ML)
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conductivity and mobility

“ideal” contacts

cross-sectional \v 1) Conductivity depends on E..

area, A

B 2) Ep depends on carrier density.
\) 3) So itis common to characterize
n-type semiconductor the _conductl_vlty at a given
carrier density.
2

o = G _ 2( J‘M (E)/l(E) _5_fo dE 4) Mobility is often the quantity that
A/L h °P OE is quoted.

So we need techniques to measure two

uantities:
| G, =Nq4,

1) conductivity 2) carrier density
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2D: conductivity and sheet conductance

A=Wt | =GV 2D electrons
a L A
n-type semiconductog” G=0,—
" L
Wit W
G=0,|— |=nt —
t ( 2 j Qﬂn( Lj
Top vie
p view G-o. (ﬂj
L
< | >
W o5 =Ns q 4, (1/Q)
“sheet conductance”
8 Lundstrom 2011




2D electrons vs. 3D electrons

A=Wt Top vi
: L op view
/-type semiconv J 1
W W B g
/

3D electrons:

A Wt G 2¢9° of
G:GIZG__)GS:W/L: - th3D(E)l(E)(—a—IE°)dE
2D electrons:

W G 2¢° of
G =05~ 0 = WL == I(E)(@—ondE
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10

mobility

-

1) Measure the conductivity: o

2) Measure the sheet carrier density: N
3) Deduce the mobility from: o, =n.qu,

4) Relate the mobility to material parameters:

20° of
7, =2 Mo (£)2(E) -5 | =
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recap

There are three near-equilibrium transport coefficients:

conductivity, Seebeck (and Peltier) coefficient, and the electronic
thermal conductivity. We can measure all three, but in this brief lecture,
we will just discuss the conductivity.

Conductivity depends on the location of the Fermi level, which can be
set by controlling the carrier density.

So we need to discuss how to measure the conductivity (or resistivity)
and the carrier density. Let’s discuss the resistivity first.
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2-probe measurements

i L
Top view Re,y = P -
L g 2
V,, =1 (2RC + Rep )
V21 >
() o 21
) |
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transmission line measurements

Top view
W 986 2 il
j R -
)(/
. - V. =1(2R. + p.S
R X i = ( c T Ps ij/\N)
2R, /)’(
o« S
2L —

H.H. Berger, “Models for Contacts to Planar Devices,” Solid-State Electron., 15,

1-215'158, 1972. Lundstrom 2011
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transmission line measurements (TLM)

12‘9

—

B

s X Side view

I, ]

<€
<€
<€
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contact resistance (vertical flow)

o, Q—Ccm

metal contact /
Area = Ac interfacial

layer

n-Si

Top view Side view
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contact resistance (vertical flow)

RC:IOit:IOCQ ID
A A

10° @< 10°° ’

“Interfacial contact resistivity” Jo) O—-cm \

) interfacial
A. =0.10umx1.0um layer

o =100-cm ° n-S

R. =100Q- /m Side view

17
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contact resistance (vertical + lateral flow)

<«

L. “transfer length” L, = e em
Psp

/
N

AN Psp €211
AN

AN

L \
A =WL

(W into page) A (eff) < UL,
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contact resistance

_NFPcP
IOC/IOSD \(/:V = COth(LC/L )

I‘_ ) L. <<L.: R.= LCW

<

/
Psp QL
«—L —

C
Ao =Wl

i) Le>>L R, = Lp\c/:V
]
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transfer length measurments (TLM)

129

BB
S v / Side view
R )(///X'
- V. =1(2R. + p.S.
/X Ji ( C IOS jI/W)
2RC/./X
2LT// s

1) Slope gives sheet resistance, intercept gives contact resistance

2) Determine specific contact resistivity and transfer length:

R, = Vp\;vaD coth(L. /L) L =+/pc/psp cM
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four probe measurements

o

| Y |

Ps Side view

<€

1) force a current through probes 1 and 4
2) with a high impedance voltmeter, measure the voltage between probes

2 and 3

V

R= T = f (,05 ) (no series resistance)
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Hall bar geometry

thin film

pattern created with Top view .
Isolated from substrate

photolithography

L
Q H V21=|><pSW

(high impedance voltmeter)

no contact resistance
Contacts 0 and 5: “current probes”

Contacts 1 and 2 (3 and 4): “voltage probes”

22
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Hall effect

+V, -
G / current in x-direction:
IX

n-type semiconductor B-field in z-direction:

<>

—

B=BzZ

B = B?
w Hall voltage measured

In the y-direction:

m V, >0 (n-type)
AN
The Hall effect was discovered by Edwin Hall in 1879 and is widely used to
characterize electronic materials. It also finds use magnetic field sensors.




Hall effect. physics

25

Ix — nq<UX>
<Ux><0
+ + + + + + + +
n-type ‘*
U <F ><O
Ey<0

Lundstrom 2011
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<>

Hall effect:

Top view of a 2D film

B=BZ

+V, -

X

+++++++++

26

analysis

Jx = O-nZ-x _(O-n/unrH )fvsz ~ O-nzix

‘]y =0= nSq/unfg/ _(Gn/unrH )E(Bz

£, =~ BF, =~
Nsq
E;’ =R = rH
= Ny
J B (—q)nS

R, is the “Hall coefficient”
R, < O for n-type
R, > O for p-type
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Hall effect: analysis

Top view of a 2D film

+V, -

27

3, =0qu,E (o ) Ex B

Lundstrom 2011

I? — Z? — VH
" JB, IB,
2
Ry = L Iy = <<Tm>>2
(_q)ns <<Tm>>
“Hall factor’
nS
n, Er—
H

“Hall concentration”
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Top view

example

What are the:
1) resistivity?

2) sheet carrier density?

3) mobility?

Lundstrom 2011

=1 =1uA
B, = 2,000 Gauss
(1 Tesla =10 Gauss)
L =100 um
W =50 um

B=0:
V, =0.4mV

B #0:
V,, =13 uV



example: resistivity

Top view
vV, B, =2,000 Gauss

(1 Tesla =10° Gauss)

L =100 um
W =50 um
B =0:
resistivity: V,, =0.4 mV
RXX=%=4OOQ B =0.2T:
L V,, =13 u

Rxx:psw_)ps :ZOOQ/D
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example: sheet carrier density

Top view
—V, —> B, = 2,000 Gauss
L—> (l Tesla =10° Gauss)
L =100 um
@ W =50 um
| =1 =1uA
B =0:
sheet carrier density: V,, =0.4mV
n, =0 - LB 1.5, B =0.2T:
o AV OV V,, =13 uV

n, =9.6x10% cm?
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example

Top view

A—V.—B

mobllity:

_1_ _| N
Gs_ps_nsq,un Erqu(rH:un)

f, =r, . =3125cm?/V-s

. mobillity

31 Lundstrom 2011

B, = 2,000 Gauss

(1 Tesla =10° Gauss)

L =100 um
W =50 um
B =0:
V,, =0.4mV
B=0.2T:
V,, =13 uV



re-cap

Top view 1) Hall coefficient:

1 R -V, r,
A R N :(— )n
V/\I\/ B L S Xz q S
A\

2) Hall factor:

) = (e ) /()
| =1 =1uA
3) Hall concentration:
Ny = nS/rH
4) Hall mobility:

Hy =Ty K,
32
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van der Pauw sample

2D film Top view
arbitrarily shaped

homogeneous, isotropic

(no holes)

Four small contacts
along the perimeter

Lundstrom 2011
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van der Pauw approach

Resistivity Hall effect

é/

1) force a current in M and out N 1) force a current in M and out O
2) measure Vpq 2) measure Vg,

3) Run, op = Vpo! | related to pg 3) Ryo, np = Vpy/ | related to V,
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van der Pauw approach: Hall effect

Hall effect Jo =0, - (o1 ) E,B,

J, =0.&,+(o,u,1, )E/B,

£-x :/Onn ‘]x +(10nn:uH Bz)‘]y

f;/ = _(pnn:uH Bz)‘]x = O ‘]y

P P
Ven (B,)=—[ £ odl =—[ Z,dx+Z dy
N N

<
T
If

%[VPN (+B,)—=Vey (-B,) |
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van der Pauw approach: Hall effect

Hall effect

VH — pn:uH le

So we can do Hall effect
J = nQﬂni—E'(UnﬂnrH JExB measurements on such samples.

Lundstrom 2011 37



van der Pauw approach: resistivity

Resistivity

semi-infinite half-plane

a b—><«—¢ —

=

M N Ce@ P @

5 ,///Jl’ ‘.‘ —Vo—
//

_ _PO
RMN,OP_ I

<

38
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van der Pauw approach: resistivity

semi-infinite half-plane

J, =—=0.Z,
Tr

| o5
Tl

— — =

am T~ &
/ r \

/ \
[ \
M
I
|

Lundstrom 2011
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van der Pauw approach: resistivity

semi-infinite half-plane

Lundstrom 2011

V(P)=-— Igs In a+:J+Cj
0
V(0)=--Leir a:bj
0

Vo = — | oo In(a+b+cj
T a+b

but there is also a
contribution from contact N

VF:O =+ I,OS In(%j 40
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van der Pauw approach: resistivity

. Voo +Vao 0 n (a+b)(b+c)
S e VoF | o b(a+b+c)
semi-infinite
half-plane - py (a+b)(b+c)
<— g—>< b ><— ¢ —> NO,PM — ac
JB&. P441 Oe Pe
Ve
{ /' it can be shown that:
-Z Run op _LRNO,PM
e s 1o P —1

Given two measurements of resistance, this equation can be solved

for the sheet resistance.

41
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van der Pauw approach: resistivity

semi-infinite
half-plane

<—a

b > <

}/',o

N/\O
_—

4

cC—

Pe

PO

The same equation applies for an arbitrarily shaped sample!

42
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van der Pauw technigue: regular sample

Top view

_l RMN ,OP _l RNO,PM
N e Ps _|_e Ps :1
V 3 VvV
OoP RMN,OP — RNO,PM -,
T V
Ps =T~
> In2 |

y

x>

Force | through two contacts, measure V between the other two contacts.
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van der Pauw technigue: summary

44 Lundstrom 2011



van der Pauw technigue: summary

"R _ "R ns
o s MN,OP+e e NO,PM _1 O :nsq:un :r—q rHlun :nH q/uH
H
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temperature-dependent measurements

It is common practice to measure the temperature-dependent
conductivity.

Assuming that the carrier density is known (or can be measured),
a mobility is then extracted from: o =nq g,

If n was measured by
Hn Hall effect, then mobility
IS the Hall mobility.
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Interpretation

/ decreasing mobility
suggests the
presence of lattice
(phonon) scattering.

A,

Increasing mobility
suggests the

presence of charged | ™~
Impurity scattering

Lundstrom 2011 48



charged impurity scattering

7(E)T as ET
Random charges introduce
random fluctuations in E., which

®- s act a scattering centers.
@ — — —

High energy electrons don’t “see”
these fluctuations and are not

Ec (x)=Us () scattered as strongly.

\ ™ r~

\—\/\/\/ \/\/\f/ Average carrier energy ~ kgT, .

Lundstrom 2011
49



lattice (phonon) scattering

n, T a T, T

Carrier scattering rate is
proportional to the number of
phonons.

Phonon occupation number
given by the Bose-Einstein
distribution.

Number of phonons increases
as temperature increase.
Scattering time decreases,
and mobility decreases.

Lundstrom 2011
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Hy

mobility vs. temperature

The low temperature
mobility is a measure
of the purity of the
sample (no. of
charged impurities).

decreasing cﬁarged
Impurity concentration

TL
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1) Hall effect measurements (errors)

Top view
H Vy 7ﬁ/
AL | | ﬁﬂ
W< L .

We have assumed isothermal conditions to compute the Hall voltage,
but we expect Peltier cooling at contact O and Peltier heating at contact
1. If the sample is not isothermal, how does the Hall voltage change?

Lundstrom 2011 53



magnetoconductivity tensor

{‘JnxJ( Oy —Os Hy Bz}[ﬁj
Joy +os 1y B, Os Z?y

Os —Os Hy Bz
+0o5 14y B, Os

Ji=0;(B,)& (summation convention)

o
I
Q
—_
R
~—
N
7~ N\
Q
Q
NG
Il

& =+1(i, J,k cyclic)
J, =0 & —os &3 BE, =-1(i, j,k anti-cyclic)
= 0(otherwise)
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from Lecture 7

For parabolic energy bands
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Nernst effect

Assume that there is a temperature gradient in the x-
direction. How is the electric field (Hall voltage) affected?)

~ _ pij(é):po_l_pO/“ngijkBk_'_'"
£ =p.(B)J.+S.(B)o.T
| ,0,,( ) - ”( ) JL Sij(§)=So+SlgijkBk+...

E, = pyd, + pottn€,,B,9, +5,0,T +56,,8,0,T,

yiz =z ] YJZZJ

Nernst voltage
fy PoHn &y 518 Eyxe Ol Reverse direction of B, and J,

and average results to eliminate.
Zdy = —Poly Bz‘Jx 56



other effects

Other “thermomagnetic effects” such as the
Ettingshaussen and Righi-Leduc effects also occur and
affect the measured Hall voltage. See Lundstrom,
Chapter 4, Sec. 4.6.2 for a discussion.
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) small B-field criterion

o7, <<1 1B, <<1
B B
W, = . * .T, = qu* = lLlnB
m m

What does this mean
physically?

Lundstrom 2011
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small B-field: physical meaning

“Low B-field” means that

. /
electrons scatter many times y

before completing an orbit.

-

B-field points out (B,)

0,7, <<1->T>>7

\

—

7
f

“High B-field” means that
electrons can complete an orbit
without scattering.

Lundstrom 2011
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some numbers

silicon

Hall effect measurements with typical
laboratory-sized magnets are in the low
B-field regime. Except — for very high
mobility sample such as modulation

u. =1000 cm?/V-s

r, =1 _
doped films.)
By = AN (e Birck Nanotechnology Center: 1-8T
B, =0.2 Tesla | | o
National High Magnetic Field Lab
u. B ~0.02<<1 (Florida State Univ.): A5 T
H ™z '
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some numbers (ll1-V modulation-doped)

INAIAS/INGaAs
T, = 300K
u ~10,000 cm?/V-s
r, =1
B, =2,000 Gauss

B,=0.2 Tesla

u, B, ~0.2<<1

INAIAS/INGaAs
T, =77K

u ~100,000 cm?/V-s
r, =1

B, =2,000 Gauss
B,=0.2 Tesla

U, B, =2>1
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iii) high B-fields

cosd(t)=cosd(0)e"*
harmonic oscillator:

Quantum mechanically:

E, = (n +- %) hao, “Landau levels”

n

Lundstrom 2011 62



effect on DOS

0,0 (E) L
L
m
g m
" T h? |
|
|
= > E
g Ey E, E,
D,;

o)-0.5 o] eon(n-LJpa.

Lundstrom 2011
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degeneracy of Landau levels

1
g E =|n+—- |l
DO n ( 2) c
0.0 (E) o
@ :qBZ
c m*
m*
e — + ——hjo,>——+—-

> E
g Ey E, E,
D, = fieo, x 1. = 295;
h h
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broadening of Landau levels

AE ,

ho

0

0

r —f —_——
I
I
I

\
J\

D, (E)
e
7 h*
AEAt =h
AE ="
.

|
|
|
|
l
g E E

1

to observe Landau levels:

Lundstrom 2011

1
> En :(I‘I-I‘Ejha)c
, o 9B
I m
|
l
L D, = 298,
h

ho, >>AE - o, >>1
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example

If B = 1T, how many states are there in each LL?

~ 20B,

D, = 4.8x10% cm?

If ng =5 x 101 cm, then 10.4 LL's are occupied.
How high would the mobility need to be to observe these LL's?
p#B>1— 1>10,000 cm*/V-s (B=1T)

“modulation-doped semiconductors”

Lundstrom 2011 66



SdH oscillations

guantized Hall voltage

Longitudinal 250 ———— zero longitudinal resistance, R,
magneto- - 7

resistance 200/ Tj% {e
A | S ]

%ﬁVx e

“Shubnikov-deHaas s | LV‘“H 1 -
(SdH) oscillations” °°'\ s 1*
| ) _
</m- 12
B e e e

MAGHETIC FIELD (T3

Fig. 1. Recording of Vg and F, versus magnetic field for a GaAs
device cooled to 1.2 K. The current is 25.5 uA.

M.E. Cage, R.F. Dziuba, and B.F. Field, “A Test of the Quantum Hall Effect as a
Resistance Standard,” IEEE Trans. Instrumentation and Measurement,” Vol. IM-34, pp.

301-303, 1985 Lundstrom 2011 67
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1)

2)

3)

4)

3)

summary

Hall bar or van der Pauw geometries allow measurement of
both resistivity and Hall effect from which the Hall
concentration and Hall mobility can be deduced.

Temperature-dependent measurements provide information
about the dominant scattering mechanisms.

Care must be taken to exclude thermoelectric effects.

High B-field measurements provide additional information, but
also require high B-fields or high mobilities.

Measurements of the Seebeck coefficient and electronic heat
conductivity require special considerations.
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for more about low-field measurments

D.K. Schroder, Semiconductor Material and Device
Characterization, 3" Ed., IEEE Press, Wiley Interscience, New
York, 2006.

D.C. Look, Electrical Characterization of GaAs Materials and
Devices, John Wiley and Sons, New York, 1989.

M.E. Cage, R.F. Dziuba, and B.F. Field, “A Test of the Quantum Hall
Effect as a Resistance Standard,” IEEE Trans. Instrumentation and
Measurement,” Vol. IM-34, pp. 301-303, 1985

L.J. van der Pauw, “A method of measuring specific resistivity and
Hall effect of discs of arbitrary shape,” Phillips Research Reports,
vol. 13, pp. 1-9, 1958.

Lundstrom, Fundamentals of Carrier Transport, Cambridge Univ.
Press, 2000. Chapter 4, Sec. 7
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