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Phonon Heat Conduction
• Phonons are quantized 

lattice vibrations
• Govern thermal properties 

in electrical insulators and 
semiconductors

• Can be modeled to first 
order with spring-mass 
dynamics

• Wave solutions
♦ wave vector K=2π/λ
♦ phonon energy=ħω
♦ dispersion relations gives 

ω = fn(K)
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Heat Conduction Through Thin Films
• Experimental results 

for 3-micron silicon 
films

• Non-equilibrium 
scattering models 
work fairly well

• Crystalline structure 
has generally larger 
impact than film 
thickness

3 micron

Asheghi et al., 1999
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Heat Conduction Through Multiple Thin Films
• Fine-pitch 5 nm 

superlattices

• Cross-thickness 
conductivity measurement

• Measured values are 
remarkably close to bulk 
alloy values (nearly within 
measurement error)

• Expected large reduction 
in conductivity not 
observed

5nm

Cahill et al., 2003
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Lattice Vibrations

• Consider two neighboring atoms that share a 
chemical bond

• The bond is not rigid, but rather like a spring with 
an energy relationship such as…

r0

u

r

r0



nanoHUB.org online simulations and more

Lattice Vibrations, cont’d

• Near the minimum, the energy is well 
approximated by a parabola

♦ x = r – r0 and   g = spring constant
• Now consider a one-dimensional chain of 

molecules
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Lattice Energy and Motion

• Harmonic potential energy is the sum of potential 
energies over the lattice

• Equation of motion of atom at location x(na)

• Simplified notation
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Lattice Motion, cont’d

• Seek solutions of the form

• Boundary conditions
♦ Born-von Karman: assume that the ends of the chain are 

connected
• xN+1 = x1

• x0 = xN

( ){ }( ) ~ expnx t i Kna t−ω
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Lattice Motion, cont’d

• Then the boundary conditions become

• Let λ be the vibration wavelength, λ = aN/n

• Minimum wavelength, λmin = 2a = 2(lattice spacing)
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Solution to the Equations of Motion

• Substitute exponential solution into equation of 
motion

• Solve for ω

• This is the dispersion relation for acoustic phonons
♦ relates phonon frequency (energy) to wave vector 

(wavelength)
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Dispersion Curve
• Changing K by 2π/a leaves x unaffected

♦ Only N values of K are unique
♦ We take them to lie in -π/a < K < π/a

ω(K)

K

π/a- π/a 

2(g/m)1/2
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Wave Velocities

• Phase velocity: c = ω/K
• Group velocity: vg = ∂ω/∂K = a(g/m)1/2cos(Ka/2)
• For small K:

• Thus, for small K (large λ), group velocity equals 
phase velocity (and speed of sound)

• We call these acoustic vibration modes
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Notes on Lattice Vibrations

• For K = ±π/a, the group velocity is zero
♦ why?

♦ neighbors are 180 deg out of phase

• The region -π/a < K < π/a is the first Brillouin zone 
of the 1D lattice

• We must extrapolate these results to three 
dimensions for bulk crystals

{ } { }1 exp exp cos sin 1n

n

x iKa i i
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Density of Phonon States (Kittel, Ch5)
• Consider a 1D chain of total length L carrying M+1 particles 

(atoms) at a separation a
♦ Fix the position of atoms 0 and M
♦ Each normal vibrational mode of polarization p takes the form of a 

standing wave

♦ Only certain wavelengths (wavevectors) are allowed
λmax=2L (Kmin=π/L), λmin=2a (Kmax=π/a=Mπ/L)

♦ In general, the allowed values of K are

0 1 MM-1

L

a

~ sin( )exp( )n Kpx nKa i t− ω

2 3 ( 1), , ,..., MK
L L L L
π π π − π

=

Note: K=Mπ/L is not included 
because it implies no atomic 
motion, i.e., 
sin(nMπa/L)=sin(nπ)=0.
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Density of States, cont’d

• Thus, we have M-1 allowed, independent values of K
♦ This is the same number of particles allowed to move
♦ In K-space, we thus have M-1 allowable wavevectors
♦ Each wavevector describes a single mode, and one mode exists in 

each distance π/L of K-space
♦ Thus, dK/dN = π/L, where N is the number of modes

π/(M-1)a π/aπ/L

π/a
Discrete K-space representation
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Density of States, cont’d

• The phonon density of states gives the number of 
modes per unit frequency per unit volume of real 
space

♦ The last denominator is simply the group velocity, 
derived from the dispersion relation

1
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Periodic Boundary Conditions

• For more generality, apply periodic boundary 
conditions to the chain and find

♦ Still gives same number of modes (one per particle that 
is allowed to move) as previous case, but now the 
allowed wavevectors are separated by ΔK = 2π/L

♦ Useful in the study of higher-dimension systems (2D and 
3D)
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L L L
π π π
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2D Density of States
• Each allowable wavevector

(mode) occupies a region of 
area (2π/L)2

• Thus, within the circle of 
radius K, approximately 
N=πK2/ (2π/L)2 allowed 
wavevectors exist

• Density of states

K-space
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3D Density of States
• Using periodic boundary conditions in 3D, there is 

one allowed value of K per (2π/L)3 volume of K-
space

• The total number of modes with wavevectors of 
magnitude less than a given K is thus

• The 3D density of states becomes
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Overview of Phonon Simulation Tools

• Boltzmann Transport Equation (BTE)
♦ Requires boundary scattering models
♦ Requires detailed understanding of phonon scattering and 

dispersion for rigorous inclusion of phonon physics
• Molecular Dynamics (MD)

♦ Computationally expensive
♦ Not strictly applicable at low temperatures
♦ Handling of boundaries requires great care for links to larger 

scales and simulation of functional transport processes
• Atomistic Green’s Function (AGF)

♦ Efficient handling of boundary and interface scattering
♦ Straightforward links to larger scales
♦ Inclusion of anharmonic effects is difficult
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Atomistic Green’s Function 
(AGF) Modeling of Phonon 

Transport

Based on Zhang et al. “The Atomistic Green’s Function Method: An 
Efficient Simulation Approach for Nanoscale Phonon Transport,”
Num Heat Trans-B, in review.
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Some Background

• Non-equilibrium Green’s function method initially 
developed to simulate electron ballistic transport 
(see Datta, 1995)

• Very efficient in the ballistic regime but requires 
significant effort to implement scattering 

• Recently applied to phonon transport (see Mingo, 
2003; Zhang et al., in press) 
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• Includes effects of bulk contacts 
through self-energy matrices

• Suitable for ballistic transport
♦ Nanoscale devices at room 

temperature, or
♦ Low-temperature conditions, or
♦ Scattering dominated by boundaries 

and interfaces

• Required inputs
♦ Equilibrium atomic positions 
♦ Inter-atomic potentials
♦ Contact temperatures

Atomistic Green’s Function
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Recall Lattice Dynamics
• Equation of motion for a 1D atomic chain

• Plane wave assumption

• Combine

• Re-arrange and write in matrix form
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Harmonic Matrix

• Define the k matrix as

• Then, define the harmonic matrix H as 
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Harmonic Matrix

f is spring constant divided by atomic mass

1. H is not the same dynamical matrix used to determine 
dispersion curve (that matrix is the Fourier transform of H).

2. H is symmetric.
3. Sum of all elements in any row or sum of all elements in any 

column is zero, except in the first and last row/column.

2
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Green’s Functions

• In general, systems of equations can be written in 
operator form

• Green’s functions are often used in such situations 
to determine general solutions of (usually) linear 
operators

2[ ] 0⎡ ⎤= ω − =⎣ ⎦L x I H x
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Green’s Functions, cont’d
• The Green’s function g is the solution that 

results from the addition of a perturbation to the 
problem

• In the present (matrix) problem, the unperturbed 
Green’s function becomes

♦ Where δ is called the broadening constant, and i is 
the unitary imaginary number

= δL[g]

( ) 12 i
−

⎡ ⎤= ω + δ −⎣ ⎦g I H
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Toward Realistic Problems

• So far, we have not made much progress in solving real 
problems 

• To solve most practical problems, we need to incorporate 
different materials and interfaces

T1 T2
Thermal 
Reservoir 1

Device

Thermal 
Reservoir 2
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Why Green’s Functions?
• We can model connections among different materials 

through the use of a different Green’s function G

♦ This matrix function includes self-energy matrices (Σ1, Σ2) that
involve unperturbed Green’s functions (g’s) associated with 
contacts (i.e., boundaries) in a transport problem

♦ τ matrices handle connections between different system elements 
(materials, interfaces) 

♦ The full derivation is beyond the scope of this presentation, so we 
will simply use the results for computational purposes

• Very efficient in the ballistic regime but requires significant 
effort to implement scattering

{
2
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2
1 1 2 2 2

T T

−
⎡ ⎤
⎢ ⎥= ω − − τ τ − τ τ
⎢ ⎥
⎣ ⎦1

d 1
Σ Σ

G I H g g
123 superscript “T” = conjugate

transpose
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Phonon Transport through a “Device”
between Two Contacts

Hot T1
Cold T2

Transmission function, Ξ

Reservior 1 Reservoir 2

“Device”
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1D Atomic Chain
• Can be visualized as an atomic chain between 

two isothermal contacts (Note: contacts are still 
atomic chains in this example)
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Transmission and Heat Flux
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Transmission and Green’s Functions

• Some definitions of convenience

• The transmission function

T
j j j

T
j j j j

i ⎡ ⎤= −⎣ ⎦
= τ τ

A g g

Γ A

1 2 2 1( ) T TTrace Trace⎡ ⎤ ⎡ ⎤Ξ ω = =⎣ ⎦ ⎣ ⎦Γ GΓ G Γ GΓ G
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The AGF Algorithm

Assemble harmonic 
matrices (H)

Calculate the Green’s function (g) 
of uncoupled contacts

Calculate device G and phonon 
transmission (Ξ)

Integrate (Ξ) over phonon frequencies 
and k|| to obtain  the thermal conductance

Uses decimation algorithm

U and xi
Establish atomic positions and 

potential parameters
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Results for Simple Atomic Chains

Homogeneous chain density of states Homogeneous vs heterogeneous

“heavy”
device

“light”
device
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Strained Silicon

http://www.research.ibm.com/resources/press/strainedsilicon/

T. Ghani, et al. at IEDM 2003

25 % drive current increase in PMOS; 
10 % drive current increase in NMOS

NMOSPMOS
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Thin Films

Transport along the (100) direction 
(i.e., the z direction)
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Model/Code Validation

Ge Si Ge

to create a single interface.

AMM is known to work well at low 
temperatures

Convert Ge/Si/Ge

to Ge/Si/Si

Ge Si Si

1976

Zhang et al., J. Heat Trans. in review
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Thermal Conductance

Reduction of 
conductance

Convergence of 
conductance

Conductance reduced 
by 30 to 50% at room 
temperatures due to 
heterogeneous 
interfaces

At low temperatures, 
conductance 
converges to that of 
the bulk contacts
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Multilayer Effects

Asymptotic behavior 
is similar to that of
radiation shields

Replace the Si device with 
a multi-layer structure

Ge Si Ge

Ge Ge
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Conclusions

• The AGF method is an effective tool in simulating ballistic 
phonon transport through relevant interfaces involving bulk 
and nanoscale materials

• Strain effects are small compared to heterogeneous-
material effects

• A heterogeneous device layer reduces thermal 
conductance significantly at room temperature

• Increasing film thickness decreases thermal conductance
• The first few heterogeneous interfaces are most 

responsible for decreasing thermal conductance
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Ongoing Work

• Numerical construction of harmonic 
matrices (H)
♦ Enables the use of more complicated atomic 

configurations as well as advanced inter-
atomic potentials

♦ Implemented with EDIP potentials and 
benchmarked against bulk silicon dispersion 
curves

• Phonon transport through a nanowire and 
bulk contacts
♦ The size mismatch between a nanowire and its 

bulk contact limits heat flow 
♦ (100) nanowire is being benchmarked
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