

Understanding Phonon Dynamics via 1D Atomic Chains

Timothy S. Fisher Purdue University School of Mechanical Engineering, and Birck Nanotechnology Center tsfisher@purdue.edu

Nanotechnology 501 Lecture Series

11 August 2006

Phonon Heat Conduction

- Phonons are quantized lattice vibrations
- Govern thermal properties in electrical insulators and semiconductors
- Can be modeled to first order with spring-mass dynamics

- • Wave solutions
	- ♦wave vector $K=2\pi/\lambda$
	- ♦phonon energy=ħ^ω
	- ♦ dispersion relations gives ω = fn(K)

nano**HUB**.org online simulations and more

Heat Conduction Through Thin Films

• Experimental results for 3-micron silicon films

3 micron

- • Non-equilibrium scattering models work fairly well
- • Crystalline structure has generally larger impact than film thickness

Asheghi et al., 1999

nano**HUB**.org online simulations and more

Heat Conduction Through Multiple Thin Films

• Fine-pitch 5 nm superlattices

- • Cross-thickness conductivity measurement
- • Measured values are remarkably close to bulk alloy values (nearly within measurement error)
- • Expected large reduction in conductivity not observed

Cahill et al., 2003

Lattice Vibrations

 \bullet Consider two neighboring atoms that share a chemical bond

• The bond is not rigid, but rather like a spring with an energy relationship such as…

Lattice Vibrations, cont'd

• Near the minimum, the energy is well approximated by a parabola

$$
u=\frac{1}{2}\,gx^2
$$

 $\,\textcolor{black}{\bullet}\,$ $\,\textcolor{black}{\mathsf{x} = \mathsf{r} - \mathsf{r}_0}\,$ and $\,\,\textcolor{black}{\mathsf{g} = \mathsf{spring}}$ constant

• Now consider a one-dimensional chain of molecules

Lattice Energy and Motion

• Harmonic potential energy is the sum of potential energies over the lattice

$$
U^{harm} = \frac{1}{2} g \sum_{n} \{x[na] - x[(n+1)a]\}^2
$$

•Equation of motion of atom at location *x*(*na*)

$$
F = m \frac{d^2 x(na)}{dt^2} = -\frac{\partial U^{harm}}{\partial x(na)} = -g \left\{ 2x(na) - x\left[(n-1)a \right] - x\left[(n+1)a \right] \right\}
$$

• Simplified notation

$$
m\frac{d^2x_n}{dt^2} = -g\left\{2x_n - x_{n-1} - x_{n+1}\right\}
$$

Lattice Motion, cont'd

• Seek solutions of the form

$$
x_n(t) \sim \exp\{i(Kna - \omega t)\}
$$

- • Boundary conditions
	- \bullet Born-von Karman: assume that the ends of the chain are connected

1

 ${\bf N}$

 $^{\prime}$ 2

$$
\bullet \quad \mathsf{x}_{N+1} = \mathsf{x}_1
$$

$$
\bullet \ \mathbf{x}_0 = \mathbf{x}_N
$$

Lattice Motion, cont'd

 \bullet Then the boundary conditions become

$$
x_{N+1} \sim \exp\{i[K(N+1)a - \omega t]\}
$$

\n
$$
x_1 \sim \exp\{i[Ka - \omega t]\}
$$

\n
$$
\rightarrow 1 = \exp[iKNa] \rightarrow KNa = 2\pi n,
$$

\nwhere *n* is an integer

• Let λ be the vibration wavelength, λ ⁼*aN*/*ⁿ*

$$
K = \frac{2\pi n}{aN} = \frac{2\pi}{\lambda}
$$

 \bullet Minimum wavelength, λ_{min} = 2a = 2(lattice spacing) nano**HUB**.org online simulations and more

Solution to the Equations of Motion

• Substitute exponential solution into equation of motion $\left[e^{i(Kna-\omega t)}=-g\right\lceil 2-e^{-iKa}-e^{iKa}\right\rceil e^{i(Kna-\omega t)}$ $i(Kna-\omega t)$ \rightarrow $i(Ka \mid i(Kna-\omega t))$ *m*^{o} *e* e e f $= -g$ $2 - e$ $-e$ e e $-\mu_0\Omega^2 e^{i(Kna-\omega t)} = -\sigma \Omega^2 - e^{-iKa} - e^{iKa} \Omega^1 e^{i(Kna-\omega t)}$ $\omega^2 e^{i(Kna-\omega t)} =-g\left[\left. 2-e^{-iKa}-e^{iKa}\right.\right]$

$$
=-2g(1-\cos Ka)e^{i(Kna-\omega t)}
$$

•Solve for ω

$$
\omega(K) = \sqrt{\frac{2g(1-\cos Ka)}{m}} = 2\sqrt{\frac{g}{m}}\left|\sin(\frac{1}{2}Ka)\right|
$$

- This is the dispersion relation for acoustic phonons
	- relates phonon frequency (energy) to wave vector (wavelength)

Dispersion Curve

- • Changing *K* by 2π/*^a* leaves *^x* unaffected
	- ♦ Only *N* values of *K* are unique
	- ♦ We take them to lie in -π/a < *K* < π/a

Wave Velocities

- Phase velocity: *^c* ⁼ω/*K*
- •Group velocity: $v_{\alpha} = \partial \omega / \partial K = a(q/m)^{1/2} \cos(Ka/2)$
- For small *K*:

$$
\lim_{K \to 0} \omega = a \sqrt{\frac{g}{m}} |K|
$$

$$
\rightarrow \lim_{K \to 0} v_g = a \sqrt{\frac{g}{m}} = \left| \frac{\omega}{K} \right| = c
$$

- Thus, for small K (large λ), group velocity equals phase velocity (and speed of sound)
- We call these acoustic vibration modes

Notes on Lattice Vibrations

- For K = $\pm \pi/\mathsf{a},$ the group velocity is zero
	- why? $x_{n+1} = \exp{ika} = \exp{i\pi} = \cos \pi + i \sin \pi = -1$ $\boldsymbol{\mathcal{X}_{n}}$ $\frac{\partial^2 u}{\partial t^2}$ = exp $\{iKa\}$ = exp $\{i\pi\}$ = cos $\pi + i$ $\frac{+1}{-}$ = exp $\{iKa\}$ = exp $\{i\pi\}$ = cos $\pi + i\sin \pi = -$
	- $\bullet\,$ neighbors are 180 deg out of phase
- The region - π/a < K < π/a is the first Brillouin zone of the 1D lattice
- We must extrapolate these results to three dimensions for bulk crystals

Density of Phonon States (Kittel, Ch5)

- • Consider a 1D chain of total length *L* carrying *M*+1 particles (atoms) at a separation *^a*
	- ♦ Fix the position of atoms 0 and *M*
	- $\bullet~$ Each normal vibrational mode of polarization p takes the form of a standing wave

~ $x_n \sim \sin(nKa) \exp(-i\omega_{Kp}t)$

- $\bullet~$ Only certain wavelengths (wavevectors) are allowed λ_{max} =2*L* (K_{min} =π/*L*), λ_{min} =2*a* (K_{max} =π/*a*=*M*π/*L*)
- $\bullet~$ In general, the allowed values of K are Note: *K*=*M*π/*L* is not included

Density of States, cont'd

- • Thus, we have M-1 allowed, independent values of *K*
	- This is the same number of particles allowed to move
	- ♦In *K*-space, we thus have *M*-1 allowable wavevectors
	- $\bullet~$ Each wavevector describes a single mode, and one mode exists in each distance π/*L* of *K*-space
	- \bullet Thus, d \mathcal{K} d \mathcal{N} = π /*L*, where N is the number of modes

Density of States, cont'd

• The phonon density of states gives the number of modes per unit frequency per unit volume of real space

$$
D(\omega) = \frac{1}{L^{\alpha=1}} \frac{dN}{d\omega} = \frac{1}{L} \frac{dN}{dK} \frac{dK}{d\omega} = \frac{1}{\pi} \frac{1}{d\omega/dK}
$$

 \bullet The last denominator is simply the group velocity, derived from the dispersion relation

$$
D(\omega) = \frac{1}{\pi v_g(\omega)} = \left[\pi a \sqrt{\frac{g}{m}} \cos \left(\frac{1}{2} K(\omega) a \right) \right]^{-1}
$$

Note singularity for $K = \pi/a$

Periodic Boundary Conditions

• For more generality, apply periodic boundary conditions to the chain and find

$$
K=0,\pm\frac{2\pi}{L},\pm\frac{4\pi}{L},...,\frac{M\,\pi}{L}
$$

- ◆ Still gives same number of modes (one per particle that is allowed to move) as previous case, but now the allowed wavevectors are separated by $\Delta K = 2\pi/L$
- ♦ Useful in the study of higher-dimension systems (2D and 3D)

2D Density of States

- Each allowable wavevector(mode) occupies a region of area (2π/*L*)2
- Thus, within the circle of radius *K*, approximately *N*⁼π*K*2/ (2π/*L*)2 allowed wavevectors exist
- •Density of states

π/*a*K

 2π //

K-space

$$
D(\omega) = \frac{1}{L^{\alpha=2}} \frac{dN}{d\omega} = \frac{1}{V} \frac{dN}{dK} \frac{dK}{d\omega} = \frac{K(\omega)}{2\pi} \frac{1}{v_g(\omega)}
$$

3D Density of States

- Using periodic boundary conditions in 3D, there is one allowed value of **K** per (2π/*L*)3 volume of *K*space
- The total number of modes with wavevectors of magnitude less than a given *K* is thus

$$
N = \left(\frac{L}{2\pi}\right)^3 \left(\frac{4}{3}\pi K^3\right) = \frac{VK^3}{6\pi^2}
$$

• The 3D density of states becomes

$$
D(\omega) = \frac{1}{L^{\alpha=3}} \frac{dN}{d\omega} = \frac{1}{V} \frac{dN}{dK} \frac{dK}{d\omega} = \frac{K(\omega)^2}{2\pi^2} \frac{1}{v_g(\omega)}
$$

Overview of Phonon Simulation Tools

- Boltzmann Transport Equation (BTE)
	- $\bullet~$ Requires boundary scattering models
	- ♦ Requires detailed understanding of phonon scattering and dispersion for rigorous inclusion of phonon physics
- Molecular Dynamics (MD)
	- \bullet Computationally expensive
	- $\bullet~$ Not strictly applicable at low temperatures
	- $\bullet~$ Handling of boundaries requires great care for links to larger scales and simulation of functional transport processes
- Atomistic Green's Function (AGF)
	- $\bullet~$ Efficient handling of boundary and interface scattering
	- $\bullet~$ Straightforward links to larger scales
	- ♦Inclusion of anharmonic effects is difficult

Atomistic Green's Function (AGF) Modeling of Phonon Transport

Based on Zhang et al. "The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport," *Num Heat Trans-B*, in review.

Some Background

- Non-equilibrium Green's function method initially developed to simulate electron ballistic transport (see Datta, 1995)
- Very efficient in the ballistic regime but requires significant effort to implement scattering
- Recently applied to phonon transport (see Mingo, 2003; Zhang et al., in press)

Atomistic Green's Function

- • Includes effects of bulk contacts through self-energy matrices
- • Suitable for ballistic transport
	- ♦ Nanoscale devices at room temperature, or
	- ♦Low-temperature conditions, or
	- ♦ Scattering dominated by boundaries and interfaces
- • Required inputs
	- \bullet Equilibrium atomic positions
	- ♦Inter-atomic potentials
	- ♦Contact temperatures

Recall Lattice Dynamics

• Equation of motion for a 1D atomic chain

$$
m\frac{d^2x_n}{dt^2} = -g\left\{2x_n - x_{n-1} - x_{n+1}\right\}
$$

- Plane wave assumption $x_n(t) \sim \exp\left\{i\left(Kna - \omega t\right)\right\}$ $-\omega$) }
- •**Combine**

$$
-\omega^2 x_n = -\frac{g}{m} \{ 2x_n - x_{n-1} - x_{n+1} \}
$$

 \bullet Re-arrange and write in matrix form

$$
\left[\,\omega^2\mathbf{I} - \mathbf{H}\,\right]\mathbf{x} = 0
$$

I is the identity matrix

Harmonic Matrix

•Define the **k** matrix as

$$
k_{ij} = -\frac{\partial^2 U^{harm}}{\partial x_i \partial x_j}
$$

$$
\rightarrow k_{nn} = -2g
$$

$$
k_{n,n+1} = k_{n,n-1} = g
$$

Here, *g* is the spring constant

•Then, define the harmonic matrix **H** as

$$
H_{ij} = \frac{1}{\sqrt{M_i M_j}} k_{ij}
$$
, no index summation

Harmonic Matrix

f is spring constant divided by atomic mass

- **1. H** is not the same dynamical matrix used to determine dispersion curve (that matrix is the Fourier transform of **H**).
- **2. H** is symmetric.
- 3. Sum of all elements in any row or sum of all elements in any column is zero, except in the first and last row/column.

Green's Functions

• In general, systems of equations can be written in operator form

$$
\mathbf{L}[\mathbf{x}] = \left[\,\omega^2 \mathbf{I} - \mathbf{H}\,\right] \mathbf{x} = 0
$$

• *Green's functions* are often used in such situations to determine general solutions of (usually) linear operators

Green's Functions, cont'd

- The Green's function **g** is the solution that results from the addition of a perturbation to the problem $L[g] = \delta$
- In the present (matrix) problem, the *unperturbed Green's function* becomes

$$
\mathbf{g} = \left[\left(\omega^2 + \delta i \right) \mathbf{I} - \mathbf{H} \right]^{-1}
$$

♦ Where δ is called the broadening constant, and *i* is the unitary imaginary number

Toward Realistic Problems

- So far, we have not made much progress in solving real problems
- To solve most practical problems, we need to incorporate different materials and interfaces

Why Green's Functions?

• We can model connections among different materials through the use of a different Green's function **G**

$$
\mathbf{G} = \left[\omega^2 \mathbf{I} - \mathbf{H}_{\mathbf{d}} - \underbrace{\tau_1 \mathbf{g}_1 \tau_1^T}_{\Sigma_1} - \underbrace{\tau_2 \mathbf{g}_2 \tau_2^T}_{\Sigma_2} \right]^{-1} \text{superscript "T" = conjugate} \text{transpose}
$$

- ♦ This matrix function includes self-energy matrices (Σ**1,** Σ**2**) that involve unperturbed Green's functions (**g**'s) associated with contacts (i.e., boundaries) in a transport problem
- \bullet τ matrices handle connections between different system elements (materials, interfaces)
- $\bullet~$ The full derivation is beyond the scope of this presentation, so we will simply use the results for computational purposes
- Very efficient in the ballistic regime but requires significant effort to implement scattering

Phonon Transport through a "Device" between Two Contacts

Hot T_1

Cold T₂

1D Atomic Chain

• Can be visualized as an atomic chain between two isothermal contacts (Note: contacts are still atomic chains in this example)

Transmission and Heat Flux

We need to evaluate transmission in order to calculate heat flux

Transmission and Green's Functions

 \bullet Some definitions of convenience

$$
\mathbf{A}_{j} = i \Big[\mathbf{g}_{j} - \mathbf{g}_{j}^{T} \Big]
$$

$$
\boldsymbol{\Gamma}_{j} = \boldsymbol{\tau}_{j} \mathbf{A}_{j} \boldsymbol{\tau}_{j}^{T}
$$

•The transmission function

$$
\Xi(\omega) = Trace\Big[\Gamma_1 \mathbf{G} \Gamma_2 \mathbf{G}^T\Big] = Trace\Big[\Gamma_2 \mathbf{G} \Gamma_1 \mathbf{G}^T\Big]
$$

The AGF Algorithm

Homogeneous chain density of states Homogeneous vs heterogeneous

Silicor

Silicon germanium "Strained" silicon

> Silicon qermanium

Strained Silicon

PMOS

T. Ghani, et al. at IEDM 2003

NMOS

Faster

Electron

Flow

http://www.research.ibm.com/resources/press/strainedsilicon/

Thin Films $T1$ Ge 7 $S₁$ X Z Ge T₂ layer 10 9 8 6 5 4 RD RC **RCB** LCB LC LD ÷ D Transport along the (100) direction Į. Į. (i.e., the *^z* direction)Contact1 **Thin film** Contact₂

Model/Code Validation

Thermal Conductance

Multilayer Effects

Conclusions

- The AGF method is an effective tool in simulating ballistic phonon transport through relevant interfaces involving bulk and nanoscale materials
- Strain effects are small compared to heterogeneousmaterial effects
- A heterogeneous device layer reduces thermal conductance significantly at room temperature
- •Increasing film thickness decreases thermal conductance
- \bullet The first few heterogeneous interfaces are most responsible for decreasing thermal conductance

Ongoing Work

- • Numerical construction of harmonic matrices (*H*)
	- \bullet Enables the use of more complicated atomic configurations as well as advanced interatomic potentials
	- ♦ Implemented with EDIP potentials and benchmarked against bulk silicon dispersion curves
- • Phonon transport through a nanowire and bulk contacts
	- \bullet The size mismatch between a nanowire and its bulk contact limits heat flow
	- \bullet (100) nanowire is being benchmarked

Acknowledgements

- •Wei Zhang, PhD (August 2006)
- •Dr. Natalio Mingo, NASA AMES
- \bullet Funding from the Purdue NASA Institute of Nanoelectronics and Computing

References

- •Cahill et al., Journal of Applied Physics **93**, 793 (2003)
- •Mingo, Physical Review B **68**, 245406 (2003)
- •Cheeke, Canadian Journal of Physics **54**, 1749 (1976)
- •C. Kittel, Introduction to Solid State Physics, Wiley, 1996.
- Zhang et al. "The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport," Num Heat Trans-B, in review.
- S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge University Press, 1st ed., 1995.
- Zhang et al., "Simulation of Phonon Interfacial Transport in Strained Si-Ge Heterostructures," J Heat Transfer, in press.

Classes

- ME 597F: Micro and Nanoscale Energy Transfer Processes
- ME 595M: Computational Nanoscale Heat Transfer (with J. Murthy)