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heat flux and thermal conductivity

1) Electrons can carry heat, and we have seen how to 
evaluate the electronic thermal conductivity.

2) In metals, electrons carry most of the heat.

3) But in semiconductors and insulators, most of the heat 
is carried by lattice vibrations (phonons).
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lecture 9

This  lecture is a brief introduction to phonon transport.  We 
also discuss the differences between electron and phonon 
transport (i.e. why does the electrical conductivity vary over 
>20 orders of magnitude while the thermal conductivity only 
varies only over ~3 orders of magnitude?) 
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electron dispersion

Electrons in a solid behave as both 
particles (quasi-particles) and as waves.

Electron waves are described by a 
“dispersion:”

Because the crystal is periodic, the 
dispersion is periodic in k (Brillouin 
zone).

Particles described by a “wavepacket.”

The “group velocity” of a wavepacket is 
determined by the dispersion:
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phonon dispersion

Lattice vibrations behave both as  
particles (quasi-particles) and as waves.

Lattice vibrations are described by a 
“dispersion:”

Because the crystal is periodic, the 
dispersion is periodic in k (Brillouin zone).

Particles described by a “wavepacket.”

The “group velocity” of a wavepacket is 
determined by the dispersion:

( ) ( )q E qω =
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mass and spring
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general features of phonon dispersion
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LO and LA 
degenerate at zone 
boundary for non 
polar semiconductors

LO and TO 
degenerate at q = 0 
for non polar 
semiconductors
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real dispersion
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electrons in Si (along [100]) phonons in Si (along [100])
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wavelengths:  electrons vs. phonons
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general model for electronic conduction
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for phonon conduction
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1LT 2LTchannel

x

Thermal reservoir
in equilibrium at 
temperature, TL1.
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Thermal reservoir
in equilibrium at 
temperature, TL2.
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heat flux
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x

Assume ideal 
contacts, so that the 
transmission 
describes the 
transmission of the 
channel.
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near-equilibrium heat flux

Lundstrom and Jeong 2011

( ) ( ) ( )( ) ( )1 2
1

ph phQ T M n n d
h

ω ω ω ω= −∫    

( ) 01
1 2 L L

L L

nnn n T T
T T

∂∂
− ≈ − ∆ ≈ − ∆

∂ ∂
1

2 1 L
L

nn n T
T
∂

≈ + ∆
∂

( )
0

22

1
1 1

B L

B L B L

k T

k T k T
L L B L

n e
T T e k T e

ω

ω ω

ω ∂ ∂  = =   ∂ ∂ −    −



 



( ) ( ) ( )
0

2
1 1

1 1

B L

B L B L

k T

k T k T
B L

n e
e k T e

ω

ω ωω ω
 ∂ ∂  = = −   ∂ ∂ −    −



  

( )
0 0

L L

n n
T T

ω
ω

 ∂ ∂
= −  ∂ ∂ 




( ) ( )

0
1 2 L

L

nn n T
T
ω

ω
 ∂

− ≈ − − ∆  ∂ 




L LQ K T= − ∆



Recall the electrical conductance:
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lattice thermal conductance
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lattice window function

L LQ K T= − ∆ ( ) ( ) ( ) ( )
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heat conduction
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L LQ K T= − ∆1) Fourier’s Law of heat conduction:

2 2

3
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h

π3) Quantum of heat conduction:
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4) Window function for phonons:
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electrical conduction
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I = G∆V1) Electrical current:

2q2

h
3) Quantum of electrical  conduction:

4) Window function for electrons:

2) Electrical conductance: G =
2q2

h
Tel E( )Mel E( )Wel dE∫

Wel E( )= −∂f0 ∂E( )
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window functions:  electrons vs. phonons
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Wel E( )= −∂f0 ∂E( )
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diffusive heat transport (3D)
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Q = −KL∆TL
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diffusive heat transport (3D)
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thermal conductivity again
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diffusive heat transport (3D)
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diffusive heat transport (3D)
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To evaluate the lattice thermal conductivity, we must specify:
1)  the mean-free-path for phonon scattering
2)  the number of channels per unit area for phonon conduction. 

Before we do that……the lattice thermal conductivity is often related to 
the lattice specific heat.  Let’s see how that works.
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specific heat
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( ) ( ) ( ) ( )0
0

L phE D n dω ω ω ω
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The total energy (per unit volume) of the lattice vibrations is:

where Dph is the phonon density of states per unit volume.

The specific heat is the change in energy per degree change in TL:
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specific heat (ii)
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specific heat and thermal conductivity
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one can show….(see appendix)
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specific heat and thermal conductivity
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why?
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phB L

L ph ph

Mk T W d
h A
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κ Ll =

1
3

Λ ph υ ph CV

Why did we do this?

Because this expression can be simply derived from kinetic theory and is 
widely-used.

But, we now have a precise definition of the mfp and average phonon 
velocity.
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1
3L ph ph VCκ υ= Λ
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effective mass model for electrons

BW

E

k

aπ− aπ

2 2 *2E k m= 
As long as the BW >> kBTL, the 
effective mass model generally 
works ok.

This is the typical case for 
electronic dispersions.  Only 
states near the bottom of the 
conduction band or top of the 
valence band matter, and these 
regions can be described by an eff 
mass model.
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Debye model for acoustic phonons
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If acoustic phonons near q =0 
mostly contribute to heat transport, 
Debye model works work well.
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Linear dispersion model
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caution

( ) ( )
( )

( )
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32
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Most textbooks derive the phonon DOS in frequency 
space, not energy space as we have.
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Debye model:  cutoff frequency / wavevector

For phonons, BW ~ kBTL (recall slide 10)

No. of states in a band = N.
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Debye model:  cutoff frequency / wavevector

ω

q
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BW

Dqω υ=
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B D Dk T ω≡ 

Debye model valid when TL << TD
(generally means TL << 300K)

Dω
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Debye model:  thermal conductivity
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See:
J. Callaway, “Model for lattice thermal conductivity at low 
temperatures,” Phys. Rev., 113, 1046-1051, 1959.

M.G. Holland, “Analysis of lattice thermal conductivity,” Phys. Rev., 
132, 2461-2471, 1963.
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limitation of Debye model

( )
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3
phB L

L ph ph

Mk T W d
h A

πκ λ ω= ∫ 

Debye (Si)
full band (Si)

Window function spans the entire 
BZ at room temp. 

Debye model works well at very 
temperatures below 50 K.
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effective mass model for electrons
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Parabolic dispersion assumption for electrons works well at room 
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0C FE E= =

( )eVE



43

outline

Lundstrom and Jeong 2011

9.1 Introduction
9.2 Electrons and Phonons
9.3 General model for heat conduction
9.4 Thermal conductivity
9.5 Debye model
9.6 Scattering
9.7 Discussion
9.8 Summary



44

scattering

Electrons scatter from:

1) defects
-e.g. charged impurities, neutral
impurities, dislocations, etc.

2) phonons

3) surfaces and boundaries

4) other electrons

Scattering rates are computed 
from Fermi’s Golden Rule. 
(Lecture 6)

Phonons scatter from:

1) defects
-e.g. impurities, dislocations,
isotopes, etc.

2) other phonons

3) surfaces and boundaries

4) electrons (“phonon drag”)

Scattering rates are computed 
from Fermi’s Golden Rule.



45

phonon-phonon scattering

To compute the phonon dispersion, we expand the bonding energy in a 
Taylor series expansion.  To first order, the potential energy is harmonic:

( )2
0

1
2

U k x x= −

To this order, the normal modes are independent, there is no scattering.  
Higher order terms, give an anharmonic potential and scattering 
electrons from one mode to another. 

1 1,q ω

2 2,q ω
3 3,q ω

3 1 2q q q= +
  

  

3 1 2ω ω ω= +  

i) momentum conservation:

ii) energy conservation:

little effect on thermal conductivity!



yq

xq

1q

2q

3q

Umklapp  (U) process 
(momentum not conserved)
Lowers κL.
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N and U processes

yq

xq

1q

2q

3q

Normal  (N) process 
(momentum conserved)
Little effect on κL.

G


High q implies 
short wavelength.  
Unphysical 
because 
wavelength would 
be less than lattice 
spacing.
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U processes

yq

xq

1q

2q

3q
G


Need population of large q states for 
U-scattering.  Need high TL so that 
window function is broad and large q
states are populated.

0
1

1B Lk Tn
e ω=

−

1B Lk T
B Le k Tω ω≈ − 

0
B Lk Tn
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0
1

L
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n T
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∝ ∝
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scattering summary

( ) ( ) ( ) ( )
1 1 1 1

ph D B Uτ ω τ ω τ ω τ ω
= + +

   

( ) ( ) ( ) ( )
1 1 1 1

ph D B Uλ ω λ ω λ ω λ ω
= + +

   
( ) ( ) ( )ph ph phλ ω υ ω τ ω∝  

1) point defects and impurities: ( ) 41 Dτ ω ω∝ “Raleigh scattering”

2) boundaries and surfaces: ( ) ( )1 B ph tτ ω υ ω∝ 

3) Umklapp scattering: ( )1 U LTτ ω ∝ ( ) 3 21 D LT bT
U Le Tτ ω ω−∝
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i) measured vs. calculated κL(TL) for silicon

2 2
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πκ λ= ×
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cal.
expt.Si

C. Jeong, S. Datta, M. Lundstrom, “Full Dispersion 
vs. Debye Model Evaluation of Lattice Thermal 
Conductivity with a Landauer approach,” J. Appl. 
Phys. 109, 073718-8, 2011. 

1
3L V ph phCκ υ= Λ
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population of modes vs. TL
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mean-free-path vs. TL
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temperature-dependent thermal conductivity
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ii) electron vs. phonon conductivities

The expressions look similar:

22
el el

q M A
h

σ λ=
2 2

3
B L

L ph ph
k T M A
h

πκ λ=

In practice, the mfps often have similar values.  The difference is in <M>.

For electrons, the location EF can vary <M> over many orders of 
magnitude.

But even when EF = EC, <M> is much smaller for electrons than for 
phonons because for electrons, the BW >> kBTL which for phonons, BW ~ 
kBTL.  Most of the modes are occupied for phonons but only a few for 
electrons.
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quantized heat flow
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at low temp

Both the charge and heat currents are quantized.

Nanostructure at low temperatures can have nearly ballistic phonon 
transport with a small number of modes occupied. See the paper by 
Schwab, et al. for experimental confirmation of quantized heat flow. 

K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, 
“Measurement of the quantum of thermal conductance,” Nature, 404, 
974-977, 2000.



56

outline

Lundstrom and Jeong 2011

9.1 Introduction
9.2 Electrons and Phonons
9.3 General model for heat conduction
9.4 Thermal conductivity
9.5 Debye model
9.6 Scattering
9.7 Discussion
9.8 Summary



summary

57Lundstrom and Jeong 2011

1)   Our model for electrical conduction can readily be extended to 
describe phonon transport.  The mathematical formulations are very 
similar.

2) Just as for electrons, phonon transport is quantized.

3)  The difference BW’s of the electron and phonon dispersions has 
important consequences.  For electrons, a simple dispersion 
(effective mass) often gives good results, but for phonons, the 
simple dispersion (Debye model) is not very good.

4)   There is no Fermi level for phonons, so the lattice thermal 
conductivity cannot be varied across many orders of magnitude like 
the electrical conductivity.
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C. Kittel, Introduction to Solid State Physics, 4th Ed., eqn. 58 on p. 
225, John Wiley and Sons, New York, 1971.

Gang Chen, Nanoscale Energy Transport and Conversion, Oxford 
Univ. Press, New York, 2005.

M.G. Holland, “Analysis of lattice thermal conductivity,” Phys. Rev., 
132, 2461-2471, 1963.

J. Callaway, “Model for lattice thermal conductivity at low 
temperatures,” Phys. Rev., 113, 1046-1051, 1959.



quantized thermal transport

K. Schwab, E.A. Henriksen, J.M. Worlock, and M.L. Roukes, 
“Measurement of the quantum of thermal resistance,” Nature, 
404, 974-977, 2000.
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C. Jeong, S. Datta, M. Lundstrom, “Full Dispersion vs. Debye 
Model Evaluation of Lattice Thermal Conductivity with a Landauer 
approach,” J. Appl. Phys. 109, 073718-8, 2011. 
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