Mechanical Properties of Surfactant Aggregates at Water-Solid Interfaces Using Micelle-MD

Kunal Shah, Patrick Chiu, and Susan B. Sinnott
Department of Materials Science and Engineering
University of Florida
Surfactant Details

- Surface active agent has amphipathic structure
- In aqueous media, surfactants may aggregate into micelles
- At water-solid interfaces, micelles adsorption may occur

- Hydrophilic cationic head group
 - Trimethyl ammonium ($N^+(CH_3)_3$)
- Anionic counter ion
 - Bromide ion (Br^-)
- Hydrophobic tail
 - 12 hydrocarbon unit (CH_3CH_2)

Molecular Dynamics Procedure in Micelle-MD

- Initialize conditions such as coordinates of all atoms in the system, temperature, time step value, number of time steps, and periodic conditions.

- Intermolecular potential energy:
 \[
 \Delta \varepsilon_{ab} = \sum_i \sum_j \left(\frac{1}{4\pi \varepsilon_0} q_i q_j e^2 / r_{ij} + A_{ij} / r_{ij}^{12} - C_{ij} / r_{ij}^6 \right)
 \]
 Ionic Potential Lennard-Jones

- Force calculations:
 \[F = ma \text{ where } F = -\frac{\delta (PE)}{\delta r} \text{ and } a = \frac{\delta^2 r}{\delta t^2} \]

- New position of atom after \(\delta t \):
 \[r(t + \delta t) = r(t) + \delta t \, v(t) + 1/2 \, \delta t^2 \, a(t) \]

- Velocity of atom after \(\delta t \):
 \[v(t + \delta t) = v(t) + 1/2 \, \delta t \, [a(t) + a(t + \delta t)] \]

Vertical Silica Indentation

- Experimental hypotheses:
 - no breakage: micelle structure slips out of area between tip and surface
 - breakage: micelle structure fails under applied load
- Computational results agree with breakage
 - Surfactants stay adsorbed on surface and stay close to each other

Comparison of Computational & Experimental Results

Simulations at different indentor velocities

Silica Indentation at an Angle

- Indentor tip approaches at 45° angle
- Breakage of micelle occurs
- Surfactants stay adsorbed on surface and stay close to each other

Graphite Indentation

• In graph, large peak is resistance from monolayer due to very strong hydrophobic interactions between the surfactant tails and surface
Conclusions

• Indentation results on silica:
 – The micelle breaks down during the indentation process
 – Force required to break the micelle agrees well with measured atomic force microscopy (AFM) force curves obtained during indentation of micelles on silica
 – Location of breakage (force and amount of indentation) agrees with AFM data
 – After the micelle breaks apart, the adsorbed surfactants provide resistance to the indenter

• Indentation results on graphite:
 – Structure breaks down during the indentation process
 – After the micelle breaks apart, the adsorbed surfactants provide more resistance to the indenter than was the case on silica
Acknowledgements

• Micelle-MD code developed by Dr. Kunal Shah and Dr. Susan Sinnott and optimized in collaboration with Mr. Patrick Chiu, Mr. Mayank Jain and Dr. José Fortes

• Supported by National Science Foundation funded Particle Engineering Research Center at the University of Florida (grant number EEC-9402989)