

Network for Computational Nanotechnology (NCN) presents

The Long and Short of Pick-Up Stick Transistors: A Promising Technology For Micro- and Macro-electronics

Muhammad A. Alam *Professor* Network for Computational Nanotechnology School of Electrical and Computer Engineering

April 10, 2006

MIT, Univ. of Florida, Univ.of Illinois, Morgan State, Northwestern, Purdue, Stanford, UTEP

Theory:

- Prof. J. Murthy (ME),
- N. Pimparkar (EE) & S. Kumar (ME)

Experiments

- J. Rogers (UIUC),
- E. Snow (NRL), G. Blanchet (Dupont),
 - P. Leon (Nanosys)

Support

- NCN, Agilent Technologies, Nanosys Inc.
- R. Ruess (DAPRA)

Background/Motivation

- •Theory of Stick-Composites
- •Applications:
 - Microelectronics
 - Macroelectronics,
 - Organics ...
- Conclusions

The "Other" Transistor

Displays

Microprocessors

Macroelectronics

Transparent

.... & Flexible

Plastic Logic's e-paper

Seiko wristwatch

Philips Readius Reader

Smart Surfaces

Local Sensing & Real-time corrective action

Sensing & Information distribution and global reaction

Bob Reuss, DARPA

A New TFT Technology

... Other Applications

Conformal Solar Cells

Flexible Electronics

Memory

Drug Discovery Substrates

ificial Skip

Nanosys Univ. of Tokyo

Steel

Artificial Skin

Many exciting experimental reports over past several years

Capability of theory/simulation is essentially nonexistent

Composites of Si-NW & CNT

Grow on high temp. substrate

Disperse in solvent Spread on soft substrate

CNT

Nanosys Inc. Igal Schatz, Polymer Physics Review, 2005

Si-NW & CNT Thin Film Transistor

Individual Sticks

Transport in Random Media Effective Media Approach

Well developed theory of transport in crystals

Therefore, people often

- Locally homogenize the random media to make it look like periodic solid, and
- use the theory of crystals for approximate properties of random media

Effective Media Approach

Reasonable for amorphous media, but not really good for nanocomposites ...

Stochastic Geometry of Random Sticks

Poisson Line Process

Fibrous Aerosol Filter

(Fuchs, Faraday Div. of Chem. Soc. Proc. 7, 1973.)

(B. Key, Random Walk in Fractal Dimension)

Telecom grid in Paris

Percolation in Random Media

NCN

Soft Threshold for Finite Size Percolation

Percolation Threshold for Stick Transistors

Disk percolation

Stick percolation

Exact Result

Electrical Percolation

3 mm holes in Conducting Paper

Dubson, PRL, 27, 1719, 1971.

60-nm bismuth clusters

Schmelzer, PRL, 88 (22), 226802, 2002

 Geometry of random sticks well understood.

 Understanding of electrical conduction work in random stick network has been restricted to

Infinite systems Linear response Homogenous sticks

 Classical literature has few comparison with experiment

Four Phases of Stick Percolation

No threshold for percolation ...

Calculating Current

Low drive current, Site-specific Placement

Seidel et al., Nano Letters, 831, 2004

Generalized Buffon Needle Problem!

 $N_{S} = \sum_{x} \frac{\theta_{m}(x)}{\pi/2}$ $R_S = L_S / L_C$

 $=\frac{\pi D_{x}L_{S}}{2}\left\{\sqrt{1-R_{S}^{2}}-R_{S}\cos^{-1}R_{S}\right\}$

Analysis by Fan Diagram!

Analytical Model

Ballistic Limit

$$\frac{I_B}{f_1(V_D, V_G)} = \sum_{1}^{N} 1 = \int_{0}^{\theta_{\text{max}}} 2D_C / \pi (L_S \cos \theta - L_C) d\theta$$

Diffusive Limit

$$\frac{I_D}{f\left(V_D, V_G\right)} = \sum_{1}^{N} \frac{1}{L^{(i)}}$$

Velocity Saturation

$$\frac{I_{sat}}{f\left(V_D, V_G\right)} = \sum_{1}^{N} 1$$

□ Intermediate L_c

$$\frac{I_T}{f(V_D, V_G)} = \sum_{1}^{N} \frac{\lambda}{\lambda + L^{(i)}} = \int_{0}^{\theta_{\max}} \frac{2D_C}{\pi} \frac{\lambda}{\lambda + L_C / \cos\theta} (L_S \cos\theta - L_C) d\theta$$

I-V Characteristics for LS > LC

$$I_{D} = I_{D}(V_{G}, V_{D}, L_{C}, T_{ox}, N_{S}, L_{S}, D_{x})$$

= $g(D_{x}, N_{S}, L_{S}, L_{C}) \times \zeta(V_{G}, V_{D}, L_{C}, T_{ox})$
Geometry × electrical

Short channel limit with ballistic Transport

$$\boldsymbol{g} = (2/\pi) D_x L_s \left(\sqrt{1 - R_S^2} - R_S \cos^{-1} R_S \right)$$
$$\boldsymbol{\zeta} = L_W C_{ox} [V_G - V_{TH}] \boldsymbol{v}_T$$

Long Channel Limit with Saturation

$$\boldsymbol{g} = \frac{2D_C}{\pi b^2} \left[bg_N(R_S) - \cos^{-1}R_S + \frac{2(bR_S + 1)}{\sqrt{b^2 - 1}} \tanh^{-1}\frac{(b - 1)\tan(\theta_S/2)}{\sqrt{b^2 - 1}} \right]$$
$$\boldsymbol{\zeta} = L_W C_{ox} \mu_0 \left[(V_G - V_{TH}) V_D - V_D^2/2 \right]$$

Scattering Limited Transport

Although the I-V looks classical, it is not just a sum of individual I-V s!

On and Off Current Scaling

online simulations and more

nanoHUB.org

Nano Lett. 2004 p.831 Pimparkar, *IEDM* 2005

M. A. Alam

Network for Computational Nanotechnolo

Verification: Filtering Metallic Tubes

Experiment Matches Simulation !

Four Phases of Stick Percolation

Microelectronics
Analytical Models
N. Pimparkar

Long Channel Stick Transistors

Conformal Solar Cells

Flexible Electronics

Memory

Drug Discovery Substrates

Nanosys Inc

Theory of Long Channel Transistors

$$J_{i} = qn_{i}\mu \frac{d\phi_{i}}{ds} + qD\frac{dn_{i}}{ds}$$
$$\frac{dJ_{i}}{ds} = a_{ij}(\phi_{i} - \phi_{j}) @ \text{ intersection}$$
$$qn_{i}\mu \frac{d^{2}\phi_{i}}{ds^{2}} - a_{ij}(\phi_{i} - \phi_{j}) = 0$$
$$\frac{d^{2}\phi_{i}}{ds^{2}} - c_{ij}(\phi_{i} - \phi_{j}) = 0$$

 $C_{ij} = G_{mutual} / G_{self}$

Self and Mutual Conductance

Li et al. Nanolett, 2004.

Algorithm

1.5

2

X/L

2.5

For each bias

For each sample

- O Generate sticks at random location Stick density equals measured density
- O Construct data structure for all the intersection points and segment lengths
- O Solve the electrical equations on this network with appropriate boundary condition
- Compute the current flow out of the Contact

Repeat for 200 samples

Repeat for all bias points

nanoHUB.org

online simulations and more

Length Scaling

Hines, Maryland

First known experimental verification of stick percolation

Experiment E. S. Snow *et al.*, APL **82**(13), 2145 (2003). Simulation: S. Kumar *et al.*, PRL, **95**(6), 66802, (2005).

Current Scaling Near Threshold

On-Off Ratio in Linear Regime

 \bigcirc ON/OFF ratio > 10⁴ at low density

• Ratio changes dramatically at certain density

O Both ION and IOFF increases with stick density

Simulation & Measurement

Excellent agreement between theory and measurement ...

nanoHUB.org

online simulations and more

Modeling On-Off Ratio

Sub-threshold Slopes and Process Improvement

$$S = 2.3 \frac{k_B T}{q} \left(1 + \frac{C_Q + C_D + C_S + C_{IT}}{C_{OX}} \right)$$
$$\approx 2.3 \frac{k_B T}{q} \left(1 + \frac{C_{IT}}{C_{OX}} \right)$$

1/100 atoms is NIT (80-100 mV/dec vs. 800-1200 mV/dec
 Electrolyte gating helps, so does reduced Tox
 Very different from *S* of short channel devices
 Should focus on process improvement

Organics and Saturation in Part II

Microelectronics
Analytical Models
N. Pimparkar

... and what if the tube are not randomly oriented

The simple framework of heterogeneous percolating network is sufficient to interpret wide range of NN-TFT physics

For microscopic Applications:

- Fan diagram allows intuitive analysis of many device characteristics
- Electrical filtering of metallic tubes dictates minimum Lc.
- Promising approach for high-current applications.

For macroscopic Applications:

- Stick percolation interprets channel length dependence
- Electrical filtering is unnecessary for a optimal density.
- Interface traps is a serious concern for the technology.

Questions and Answers

Modeling On-Off Ratio

Calculating Current

Low drive current, Site-specific Placement

Seidel et al., Nano Letters, 831, 2004

Generalized Buffon Needle Problem!

 $N_{S} = \sum_{x} \frac{\theta_{m}(x)}{\pi/2}$ $R_S = L_S / L_C$

 $=\frac{\pi D_{x}L_{S}}{2}\left\{\sqrt{1-R_{S}^{2}}-R_{S}\cos^{-1}R_{S}\right\}$

Analysis by Fan Diagram!

Analytical Model

Ballistic Limit

$$\frac{I_B}{f_1(V_D, V_G)} = \sum_{1}^{N} 1 = \int_{0}^{\theta_{\text{max}}} 2D_C / \pi (L_S \cos \theta - L_C) d\theta$$

Diffusive Limit

$$\frac{I_D}{f\left(V_D, V_G\right)} = \sum_{1}^{N} \frac{1}{L^{(i)}}$$

Velocity Saturation

$$\frac{I_{sat}}{f\left(V_D, V_G\right)} = \sum_{1}^{N} 1$$

□ Intermediate L_c

$$\frac{I_T}{f(V_D, V_G)} = \sum_{1}^{N} \frac{\lambda}{\lambda + L^{(i)}} = \int_{0}^{\theta_{\max}} \frac{2D_C}{\pi} \frac{\lambda}{\lambda + L_C / \cos\theta} (L_S \cos\theta - L_C) d\theta$$

Theory:

- Prof. J. Murthy (ME),
- N. Pimparkar (EE) & S. Kumar (ME)

Experiments

- J. Rogers (UIUC),
- E. Snow (NRL), G. Blanchet (Dupont),
 - P. Leon (Nanosys)

Support

- NCN, Agilent Technologies, Nanosys Inc.
- R. Ruess (DAPRA)

