Lecture 10:
Thermoelectric Effects:
(electronic) heat flow

Professor Mark Lundstrom
Electrical and Computer Engineering
Purdue University, West Lafayette, IN USA
Current flow in the presence of QFL and temperature gradients:

\[J_{nx} = \sigma_n \frac{d(F_n/q)}{dx} - S_n \sigma_n \frac{dT_L}{dx} \]

\(S_n \) is the Seebeck coefficient in V/K.

Alternatively, we can write this equation as:

\[\frac{d(F_n/q)}{dx} = \rho_n J_{nx} + S_n \frac{dT_L}{dx} \]

(inverted form of the equations)
transport coefficients

\[\sigma_n = \int \sigma'_n(E) \, dE \]

\[\sigma'_n(E) = \frac{2q^2}{h} \frac{M(E)}{A} \lambda(E) \left(- \frac{\partial f_0}{\partial E} \right) \]

\[S_n = \left(- \frac{1}{qT_L} \right) \left(E_J - E_F \right) \]

\[S_n = \left(- \frac{1}{qT_L} \right) \frac{\int (E - E_F) \sigma'_n(E) \, dE}{\int \sigma'_n(E) \, dE} \]

\[S_n \left(T_L \right) = \left(\frac{k_B}{-q} \right) \left\{ \frac{E_C - E_F}{k_B T_L} + \delta_n \right\} \]

\[\int \frac{E - E_C}{k_B T_L} \sigma'_n(E) \, dE \]

\[\delta_n = \frac{k_B T_L}{\int \sigma'_n(E) \, dE} \]
heat transport

Thermoelectricity involves the flow of charge and heat, so in addition to the equation for the charge current, we need an equation for the heat current:

\[J_{Qx} = -\kappa_0 \frac{dT}{dx} \quad W/m^2 \]

1) How is \(\kappa_0 \) related to the properties of the material?

2) How does this equation change when there is a current flow?
mathematical description

The answer is:

$$J_{Qx} = \left(S_n \sigma_n T_L \right) \frac{d(F_n/q)}{dx} - \kappa_0 \frac{dT_L}{dx} \quad \text{W/m}^2$$

Alternatively, we can write this equation as:

$$J_{Qx} = \pi_n J_{nx} - \kappa_n \frac{dT_L}{dx}$$

$$\pi_n = S_n T_L$$

$$\kappa_n = \kappa_0 - S_n^2 \sigma_n T_L$$

\(\pi\) is the Peltier coefficient in W/A

Important point: Both electrons and the lattice (phonons) carry heat. These equations refer only to the portion of the heat carried by the electrons.
in this lecture…

Our goal is to understand the physical origin of the Peltier effect and how it is related to the properties of the semiconductor.
1) Introduction
2) Heat transport by current flow
3) Mathematical formulation
4) Discussion
5) Summary
the Peltier effect

\[J_n < 0 \quad J_n / (-q) > 0 \quad J_Q = \pi_n J_n > 0 \]

[Diagram showing heat flux and electron flux in an n-type semiconductor with contacts maintained at the same temperature]
understanding the Peltier effect

Questions:

Why does $J_Q = \pi_n J_n$?
(when the two contacts are at the same temperature)

What determines the Peltier coefficient, π_n ?

Answer: We should draw an energy band diagram.
N-type semiconductor: equilibrium, $V = 0$

\[n(x) = N_C e^{(E_F - E_C)/k_B T} \approx N_D^+ \]

ideal contacts (no band bending)
N-type semiconductor: isothermal, $V > 0$

Electrons flow at an energy a little above the bottom of the conduction band.

$E_{F2} = E_{F1} - qV$

$T_2 = T_1$

(elastic scattering only)
N-type semiconductor: isothermal, $V > 0$

$$Q = E_C(0) + \Delta_n - E_{F1}$$

Energy absorbed per electron

$$Q = E_C(L) + \Delta_n(L) - E_{F2}$$

Energy dissipated

Heat is absorbed (emitted) when the average energy at which the heat current flows increases (decreases)
Peltier coefficient

1) Electrons flow from left to right when \(V_2 > V_1 \).

2) The flux of electrons from left to right is \(J_{nx}/(-q) \)

3) Each electron absorbs and then carries an amount of heat: \(Q = E_C(0) + \Delta_n - E_{F1} \)

4) So the heat flux from left to right is:

\[
J_{Q1} = \left[E_C(0) + \Delta_n - E_{F1} \right] \times J_{nx}/(-q) = \pi_n J_{nx}
\]

\[
\pi_n = -\frac{E_C(0) + \Delta_n - E_{F1}}{q} \quad \text{(less than zero for an n-type semiconductor)}
\]
The Peltier coefficient is proportional to the difference between the energy at which current flows and the Fermi energy – just as the Seebeck coefficient was.
physics of Peltier cooling

- Electrons absorb thermal energy, $E - E_{F1}$
- Electrons dissipate energy, $E - E_{F2}$

Net power dissipated: $P_D = IV$

$E_{F2} = E_{F1} - qV$

Electrons enter contact 1 at the Fermi energy, E_{F1}

Electrons leave contact 2 at the Fermi energy, E_{F2}
1) Introduction
2) Heat transport by current flow
3) Mathematical formulation
4) Discussion
5) Summary
Current is positive when it flows into contact 2 (i.e. positive current flows in the -x direction).

\[I = \frac{2q}{h} \int T(E) M(E) (f_1 - f_2) \, dE \quad I_q(E) \propto (f_1 - f_2) \]
finally: differences in both E_F and T

\[
(f_1 - f_2) \approx \left(-\frac{\partial f_0}{\partial E} \right) q\Delta V - \left(-\frac{\partial f_0}{\partial E} \right) \frac{E - E_F}{T_L} \Delta T_L
\]
Electrons carry **charge**, so there is an electrical current.

\[
I'(E) = \frac{2q}{\hbar} T(E) M(E) (f_1 - f_2)
\]

But electrons also carry **heat** (thermal energy), so there is a heat current too.

\[
q \to (E - E_F)
\]

Note: if \(E_C > E_{F1} \), then electrons in the contact must absorb energy to flow in one of the energy channels in the device.
heat current

\[I_{Q_1}'(E) = \frac{2(E - E_{F_1})}{h} T(E) M(E) (f_1 - f_2) \]

\[I_{Q_2}'(E) = \frac{2(E - E_{F_2})}{h} T(E) M(E) (f_1 - f_2) \]
the math

\[
I'_Q(E) = \frac{2(E - E_{F_1})}{h} T(E) M(E) (f_1 - f_2)
\]

\[
(f_1 - f_2) \approx \left(-\frac{\partial f_0}{\partial E}\right) q \Delta V - \left(-\frac{\partial f_0}{\partial E}\right) \frac{(E - E_F)}{T_L} \Delta T
\]

\[
I'_Q(E) = -T_L S_T(E) \Delta V - K_0(E) \Delta T
\]

\[
K'_0(E) = \frac{2 \left(E - E_F\right)^2}{h} \frac{1}{T_L} T(E) M(E) \left(-\frac{\partial f_0}{\partial E}\right)
\]
\[I_Q'(E) = -T_L S_T(E) \Delta V - K_0(E) \Delta T \]

\[K_0'(E) = \frac{(E - E_F)^2}{q^2 T_L} G'(E) \]

(First minus sign because positive electric current is in the negative x-direction but positive heat current is in the positive x-direction.)

\[I_Q = \int I_Q'(E) dE = -T_L S_T \Delta V - K_0 \Delta T \]

\[K_0 = \int \frac{(E - E_F)^2}{q^2 T_L} G'(E) dE \]

\(K_0 \) is the short circuit thermal conductance.
outline

1) Introduction
2) Heat transport by current flow
3) Mathematical formulation
4) Discussion
5) Summary
re-cap

Coupled current equations:

Temperature differences cause electric current to flow and voltage differences cause heat current to flow.

\[I = G \Delta V + S \Delta T \]

\[I_Q = -T_L S \Delta V - K_0 \Delta T \]

\[G = \frac{2q^2}{h} \int T(E) M(E) \left(-\frac{\partial f_0}{\partial E} \right) dE \]

\[S \Delta T = -\int \frac{(E - E_F)}{qT_L} G'(E) dE \]

\[K_0 = \int \frac{(E - E_F)^2}{q^2 T_L} G'(E) dE \]

(Thermal conductivity only refer to electrons - not lattice.)
exercise

Derive the corresponding **coupled current** equations for 3D, diffusive transport.

\[I = G \Delta V + S_T \Delta T \]
\[I_Q = -T_L S_T \Delta V - K_0 \Delta T \]

\[J_{nx} = \sigma \frac{d(F_n/q)}{dx} - s_T \frac{dT_L}{dx} \]
\[J_{Qx} = T_L s_T \frac{d(F_n/q)}{dx} - \kappa_0 \frac{dT_L}{dx} \]
inverting the equations

\[I = G \Delta V + S_T \Delta T \]
\[I_Q = -T_L S_T \Delta V - K_0 \Delta T \]

\[\Delta V = \frac{1}{G} I - \frac{S_T}{G} \Delta T \]

\[\Delta V = RI - S \Delta T \]

\[S = \frac{S_T}{G} \quad \text{(Seebeck coefficient)} \]
inverting the equations (ii)

\[
\begin{align*}
I &= G\Delta V + S_T\Delta T \\
I_Q &= -T_L S_T \Delta V - K_0 \Delta T
\end{align*}
\]

\[
\begin{align*}
\Delta V &= RI - S\Delta T \\
I_Q &= -\pi I - K_e \Delta T
\end{align*}
\]

\[
\begin{align*}
\pi &= T_L S \quad \text{(Peltier coefficient)} \\
K_e &= K_0 - \pi SG \quad \text{(open-circuit thermal conductance)}
\end{align*}
\]

\[
S = \frac{S_T}{G}
\]
Peltier coefficient

\[I_Q = -\pi I - K_e \Delta T \]

\[\pi = T_L S \]

\(\pi < 0 \) for \(n \)-type

\(\pi > 0 \) for \(p \)-type

n-type semiconductor
\[I = G\Delta V + S_T\Delta T \]
\[I_Q = -T_L S_T \Delta V - K_0 \Delta T \]
\[\Delta V = RI - S\Delta T \]
\[I_Q = -\pi I - K_e \Delta T \]

\[G = \frac{2q^2}{h} \int T(E) M(E) \left(-\frac{\partial f_0}{\partial E} \right) dE \]
\[S_T = -\int \frac{(E - E_F)}{qT_L} G'(E) dE \]
\[K_0 = \int \frac{(E - E_F)^2}{q^2 T_L} G'(E) dE \]
\[S = \frac{S_T}{G} \]
\[K_e = K_0 - \pi SG \]
for bulk 3D semiconductors

\[J_x = \sigma \mathcal{E}_x - s_T \frac{dT_L}{dx} \]

\[J^q_x = T_L S_T \mathcal{E}_x - \kappa_0 \frac{dT_L}{dx} \]

\[\mathcal{E}_x = \rho J_x + S \frac{dT_L}{dx} \]

\[J^q_x = \pi J_x - \kappa_e \frac{dT}{dx} \]

(diffusive transport)

\[\sigma = \int \sigma'(E) dE \]

\[\sigma'(E) = \frac{2q^2}{h} \frac{\lambda(E) M(E)}{A} \left(- \frac{\partial f_0}{\partial E} \right) \]

\[s_T = -\int \frac{(E - E_F)}{q T_L} \sigma'(E) dE \]

\[\kappa_0 = \int \frac{(E - E_F)^2}{q^2 T_L} \sigma'(E) dE \]

\[S = S_T / \sigma \quad \pi = T_L S \]

\[\kappa_e = \kappa_0 - \pi S \sigma \]
lattice thermal conductivity

Both electrons and lattice vibrations carry heat – we have been discussing the electronic part.

In metals, heat conduction by electrons dominates: \(\kappa_e >> \kappa_L \)

In semiconductors, lattice vibrations dominate: \(\kappa_L >> \kappa_e \)
Example: TE transport parameters of n-Ge

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_n</td>
<td>$\Omega \cdot m$</td>
</tr>
<tr>
<td>S_n</td>
<td>V/K</td>
</tr>
<tr>
<td>π_n</td>
<td>$W/A = V$</td>
</tr>
<tr>
<td>κ_n</td>
<td>$W/m \cdot K$</td>
</tr>
</tbody>
</table>

\[E_x = \rho_n J_{nx} + S_n \frac{dT_L}{dx} \left(\frac{V}{m} \right) \]

\[J_{Qx} = \pi_n J_{nx} - \kappa \frac{dT_L}{dx} \left(W \right) \]

\[N_D = 10^{15} \text{ cm}^{-3} \]

\[T_L = 300 \text{ K} \]

\[\mu_n = 3200 \text{ cm}^2/\text{V} \cdot \text{s} \]

\[n_0 = N_C e^{(E_F - E_c)/k_B T_L} \approx N_D \]

\[N_C = 1.04 \times 10^{19} \text{ cm}^{-3} \]
TE transport parameters of n-Ge: resistivity

| \(\rho_n \) | \(\Omega \text{-m} \)
| \(S_n \) | \(\text{V/K} \)
| \(\pi_n \) | \(\text{W/A} = \text{V} \)
| \(\kappa_n \) | \(\text{W/m-K} \)

\[
\mathcal{E}_x = \rho_n J_{nx} + S_n \frac{dT_L}{dx} \left(\frac{\text{V}}{\text{m}} \right)
\]

\[
J_{Qx} = \pi_n J_{nx} - \kappa \frac{dT_L}{dx} \left(\text{W} \right)
\]

\[
N_D = 10^{15} \text{ cm}^{-3} \approx n_0
\]

\[
\mu_n = 3200 \text{ cm}^2/\text{V-s}
\]

\[
\sigma_n = n_0 q \mu_n \quad \text{S/cm}
\]

\[
\rho_n = \frac{1}{n_0 q \mu_n} \approx 2 \Omega-\text{cm}
\]
TE transport parameters of n-Ge: Seebeck coeff.

\[\rho_n = 2 \Omega \cdot \text{m} \]

\[S_n \quad \text{V/K} \]

\[\pi_n \quad \text{W/A} = \text{V} \]

\[\kappa_n \quad \text{W/m-K} \]

\[N_D = 10^{15} \text{ cm}^{-3} \approx n_0 \]

\[n_0 = N_C e^{(E_F - E_c)/k_B T_L} \]

\[N_C = 1.04 \times 10^{19} \text{ cm}^{-3} \]

\[T_L = 300 \text{ K} \]

\[(E_c - E_F)/k_B T_L \approx \ln \left(N_C / n_0 \right) \approx 9.3 \]

\[\delta_n \approx 2 \quad \text{(non-degenerate, 3D)} \]

\[S_n = \left(\frac{k_B}{-q} \right) \left\{ \frac{(E_c - E_F)}{k_B T_L} + \delta_n \right\} \approx -970 \text{ \mu V/K} \]
TE transport parameters of n-Ge: Peltier coeff.

\[\rho_n = 2 \Omega \text{-m} \]

\[S_n = -970 \text{ V/K} \]

\[\pi_n = \frac{\text{W}}{\text{A}} = \text{V} \]

\[\kappa_n = \frac{\text{W}}{\text{m-K}} \]

\[\mathcal{E}_x = \rho_n J_{nx} + S_n \frac{dT_L}{dx} \left(\frac{\text{V}}{\text{m}} \right) \]

\[J_{Qx} = \pi_n J_{nx} - \kappa \frac{dT_L}{dx} \left(\text{W} \right) \]

\[\pi_n = T_L S_n \approx -0.3 \text{ V} \]
TE transport parameters of n-Ge: Peltier coeff.

\[\rho_n = 2 \Omega \cdot m \]
\[S_n = -970 \text{ V/K} \]
\[\pi_n = -0.3 \text{ W/A = V} \]
\[\kappa_n \text{ W/m-K} \]

\[\mathcal{E}_x = \rho_n J_{nx} + S_n \frac{dT_L}{dx} \left(\frac{\text{V}}{\text{m}} \right) \]

\[J_{Qx} = \pi_n J_{nx} - \kappa \frac{dT_L}{dx} \left(\text{W} \right) \]

\[\frac{\kappa_n}{T_L \sigma_n} = L \quad \text{(Lorenz number)} \]

\[L \approx 2 \left(k_B / q \right)^2 \quad \text{(non-degenerate, 3D)} \]

\[\sigma_n = 1 / \rho_n \]

\[\kappa_n = 2.2 \times 10^{-4} \text{ W/m-K} \]
TE transport parameters of n-Ge:

\[
\rho_n = 2 \Omega \cdot \text{m}
\]
\[
S_n = -970 \quad \text{V/K}
\]
\[
\pi_n = -0.3 \quad \text{W/A} = \text{V}
\]
\[
\kappa_n = 2.2 \times 10^{-4} \quad \text{W/m-K}
\]

\[
E_x = \rho_n J_{nx} + S_n \frac{dT_L}{dx} \left(\frac{\text{V}}{\text{m}} \right)
\]
\[
J_{Qx} = \pi_n J_{nx} - \kappa \frac{dT_L}{dx} \quad (\text{W})
\]

All of these parameters depend on the temperature and carrier concentration (Fermi level).

Note also:

\[
\kappa_L = 58 \quad \text{W/m-K} \gg \kappa_n
\]
summary

1) Introduction
2) Heat transport by current flow
3) Mathematical formulation
4) Discussion
5) Summary
the TE equations (3D, diffusive)

\[J_x = \sigma \mathcal{E}_x - s_T \frac{dT_L}{dx} \]

\[J^q_x = T_L S_T \mathcal{E}_x - \kappa_0 \frac{dT_L}{dx} \]

\[\mathcal{E}_x = \rho J_x + S \frac{dT_L}{dx} \]

\[J^q_x = \pi J_x - \kappa_e \frac{dT}{dx} \]

(diffusive transport)

\[\sigma = \int \sigma'(E) dE \]

\[\sigma'(E) = \frac{2q^2}{h} \frac{\lambda(E) M(E)}{A} \left(-\frac{\partial f_0}{\partial E} \right) \]

\[s_T = -\int \frac{(E - E_F)}{qT_L} \sigma'(E) dE \]

\[\kappa_0 = \int \frac{(E - E_F)^2}{q^2 T_L} \sigma'(E) dE \]

\[S = S_T/\sigma \quad \pi = T_L S \]

\[\kappa_e = \kappa_0 - \pi S \sigma \]
physics of Peltier cooling

- Electrons absorb thermal energy, \(E - E_{F1} \)
- Electrons enter contact 1 at the Fermi energy, \(E_{F1} \)
- Contact 1: \(T_{L1} \)
- Net power dissipated: \(P_D = IV \)
- Electrons leave contact 2 at the Fermi energy, \(E_{F2} \)
- Contact 2: \(T_{L2} \)
- Electrons dissipate energy, \(E - E_{F2} \)

Net power dissipated:
\[P_D = IV \]

Electrons

Contact 1

Contact 2

\(V \)
questions

1) Introduction
2) Heat transport by current flow
3) Mathematical formulation
4) Discussion
5) Summary