coupled current equations

\[J_x = \sigma \mathcal{E}_x - \sigma S \frac{dT_L}{dx} \]
\[J^q_x = T_L \sigma S \mathcal{E}_x - \kappa_0 \frac{dT_L}{dx} \]
\[\mathcal{E}_x = \rho J_x + S \frac{dT_L}{dx} \]
\[J^q_x = \pi J_x - \kappa_e \frac{dT}{dx} \]

(diffusive transport)

\[\sigma = \int \sigma'(E) dE \]
\[\sigma'(E) = \frac{2q^2}{\hbar} \lambda(E) \frac{M(E)}{A} \left(-\frac{\partial f_0}{\partial E} \right) \]
\[S = -\frac{k_B}{q} \int \left(\frac{E - E_F}{k_B T_L} \right) \sigma'(E) dE / \int \sigma'(E) dE \]
\[\pi = T_L S \]
\[\kappa_0 = T_L \left(\frac{k_B}{q} \right)^2 \int \left(\frac{E - E_F}{k_B T_L} \right)^2 \sigma'(E) dE \]
\[\kappa_e = \kappa_0 - \pi S \sigma \]
\[f(r, k, t) \]

\[\tilde{J}_n (\vec{r}) = \frac{1}{A} \sum_k (-q) \vec{q}(\vec{k}) f(\vec{r}, \vec{k}) \]

\[f_0(x, k_x) = \frac{1}{1 + e^{(E - E_F)/k_B T_L}} \]
goals

1) Find an equation for $f(r, p, t)$ out of equilibrium
2) Learn how to solve it near equilibrium
3) Relate the results to our Landauer approach results – *in the diffusive limit*
4) Add a B-field and show how transport changes
1) Introduction
2) Equation of motion
3) The BTE
4) Solving the s.s. BTE
5) Discussion
6) Summary

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License.
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
quantum vs. semi-classical transport

particle or wave?

\[p = \hbar k = \hbar \frac{2\pi}{\lambda_B} \]

\[E = \frac{p^2}{2m^*} \approx \frac{3}{2} k_B T \]

\[\lambda_B = \sqrt{\frac{4\pi^2 \hbar^2}{3m^* k_B T}} \approx 10\text{nm} \text{ (electrons in Si at 300K)} \]
semi-classical transport

\[E(x,k) = E_C(x) + E(k) \]
semi-classical transport

\[E_{TOT} = E_C(x) + E(k) = \text{constant} \]
semi-classical transport

\[E_{TOT} = E_C(x) + E(k) \]

\[\frac{dE_{TOT}(x,k)}{dt} = 0 = \frac{dE_C(x)}{dx} \frac{dx}{dt} + \frac{dE(k)}{dk_x} \frac{dk_x}{dt} \]

\[0 = \frac{dE_C(x)}{dx} v_x + \frac{1}{\hbar} \frac{dE}{dk_x} \frac{d(\hbar k_x)}{dt} \]

\[0 = \frac{dE_C(x)}{dx} v_x + v_x \frac{d(\hbar k_x)}{dt} \]

\[\frac{d(\hbar k_x)}{dt} = F_e = - \frac{dE_C(x)}{dx} \]
semi-classical transport

\[\frac{d(\hbar \vec{k})}{dt} = -\nabla_r E_C(\vec{r}) = -q\vec{E}(\vec{r}) \]

\[\left\{ \begin{aligned} \frac{d\vec{p}}{dt} &= \vec{F}_e \\ \end{aligned} \right. \]

\[\hbar \vec{k}(t) = \hbar \vec{k}(0) + \int_0^t -q\vec{E}(t')dt' \]

\[\vec{v}_g(t) = \frac{1}{\hbar} \nabla_k E[\vec{k}(t)] \]

\[\vec{r}(t) = \vec{r}(0) + \int_0^t \vec{v}_g(t')dt' \]

equations of motion for “semi-classical transport”

\[E_C \] varies slowly on the scale of the electron’s wavelength.

\[\text{no effective mass!} \]
exercise: equations of motion for \(m^*(x) \)

i) assume:

\[
E(k, \vec{r}) \approx \frac{\hbar^2 k^2}{2m^*(\vec{r})}
\]

ii) assume that \(m^* \) varies slowly with position

iii) derive the equation of motion in \(k \)-space
outline

1) Introduction
2) Equation of motion
3) The BTE
4) Solving the s.s. BTE
5) Discussion
6) Summary

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/
trajectories in phase space

\[p_x = \hbar k_x \]

\[\hbar k_x (t) = \hbar k_x (0) + \int_{0}^{t} -qE_x (t') dt' \]

\[x(t) = x(0) + \int_{0}^{t} \nu_x (t') dt' \]

\[\nu_x (t) = \frac{dE}{d(\hbar k_x)} \]

\[T(t) = [x(t), p_x (t)] \]
Boltzmann Transport Equation (BTE)

\[p_x = \hbar k_x \]

\[T(t) = [x(t), p_x(t)] \]

\[f(x, p_x, t) = f(x - \nu_x dt, p_x - F_e dt, t - dt) \]

\[\frac{df}{dt} = 0 \]

Lundstrom ECE-656 F11
Boltzmann Transport Equation (BTE)

\[f(x, p_x, t) \quad \frac{df}{dt} = 0 \]

\[\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial p_x} \frac{dp_x}{dt} = 0 \]

\[\frac{df}{dt} = \frac{\partial f}{\partial t} + \nu_x \frac{\partial f}{\partial x} + \frac{\partial f}{\partial p_x} F_x = 0 \]

\[\frac{\partial f}{\partial t} + \vec{\nu} \cdot \nabla_r f + \vec{F}_e \cdot \nabla_p f = 0 \]

\[\vec{F}_e = -q\vec{E} - q\vec{\nu} \times \vec{B} \]

\[\nabla_r f = \frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{y} + \frac{\partial f}{\partial z} \hat{z} \]

\[\nabla_p f = \frac{\partial f}{\partial p_x} \hat{p}_x + \frac{\partial f}{\partial p_y} \hat{p}_y + \frac{\partial f}{\partial p_z} \hat{p}_z \]

\[\vec{p} = \hbar \vec{k} \]
result

\[f(\vec{r}, \vec{p}, t) \]

\[
\frac{\partial f(\vec{r}, \vec{p}, t)}{\partial t} + \{ \vec{v} \cdot \nabla_r f + \vec{F}_e \cdot \nabla_p f \} = G(\vec{r}, \vec{p}, t) - R(\vec{r}, \vec{p}, t)
\]

optical absorption, impact ionization, etc.
and carrier scattering
Boltzmann Transport Equation (BTE)

\[f(\vec{r}, \vec{p}, t): \quad \frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f + \vec{F}_e \cdot \nabla_p f = 0 \]

assumptions:

1) semi-classical treatment of electrons in a crystal with \(E(k) \)

\[
\frac{d(\hbar \vec{k})}{dt} = -\nabla E_C(\vec{r}) = -q \vec{E}(\vec{r}) \quad E = E_C(\vec{r}) + E(\vec{\bar{k}}) \\
\nu_g(t) = \frac{1}{\hbar} \nabla_k E[k(t)] \quad \Delta p_x \Delta x \geq \hbar
\]

2) neglected generation-recombination

3) neglected e-e correlations (mean-field-approximation)
in and out-scattering

\[p_x = \hbar k_x \]

\[f(x, p_x, t) \]

\[T(t) = [x(t), p_x(t)] \]

\[\frac{df}{dt}_{\text{coll}} = \hat{C}f = \text{in-scattering - out-scattering} \]

Position, \(x \), does not change.
scattering operator

\[
\left. \frac{df}{dt} \right|_{\text{coll}} = \hat{C}f(\vec{r}, \vec{p}, t) = \text{in-scattering rate} - \text{out-scattering rate}
\]

in-scattering rate \(= \sum_{\vec{p}'} S(\vec{p}' \rightarrow \vec{p}) f(\vec{p}') \left[1 - f(\vec{p})\right]\)

out-scattering rate \(= \sum_{\vec{p}'} S(\vec{p} \rightarrow \vec{p}') f(\vec{p}) \left[1 - f(\vec{p}')\right]\)

\[
\hat{C}f(\vec{r}, \vec{p}, t) = \sum_{\vec{p}'} S(\vec{p}' \rightarrow \vec{p}) f(\vec{p}') \left[1 - f(\vec{p})\right] - \sum_{\vec{p}'} S(\vec{p} \rightarrow \vec{p}') f(\vec{p}) \left[1 - f(\vec{p}')\right]
\]
nondegenerate scattering operator

\[\hat{C}f(\bar{r}, \bar{p}, t) = \sum_{p'} S(\bar{p}' \rightarrow \bar{p}) f(\bar{p}') [1 - f(\bar{p})] - \sum_{p'} S(\bar{p} \rightarrow \bar{p}') f(\bar{p}) [1 - f(\bar{p}')] \]

- probability that the state at \(p' \) is occupied
- probability that the state at \(p \) is empty

\[\hat{C}f(\bar{r}, \bar{p}, t) = \sum_{p'} S(\bar{p}' \rightarrow \bar{p}) f(\bar{p}') - \sum_{p'} S(\bar{p} \rightarrow \bar{p}') f(\bar{p}) \]

non-degenerate scattering operator
(assumes final state empty)
We are discussing scattering mechanisms that move carriers around in k-space. They do not create or destroy carriers.

\[\sum_p \hat{C}f(\vec{r}, \vec{p}, t) = 0 \]

\[\sum_p \left\{ \sum_{p'} S(\vec{p}', \vec{p}) f(\vec{p}') - \sum_{p'} S(\vec{p}, \vec{p}') f(\vec{p}) \right\} = \sum_{p, p'} S(\vec{p}', \vec{p}) f(\vec{p}') - \sum_{p, p'} S(\vec{p}, \vec{p}') f(\vec{p}) \]

\[\sum_{p, p'} S(\vec{p}', \vec{p}) f(\vec{p}') = \sum_{p', p} S(\vec{p}', \vec{p}) f(\vec{p}') \quad \text{(interchange order of summation)} \]

\[\sum_{p, p'} S(\vec{p}', \vec{p}) f(\vec{p}') = \sum_{p, p'} S(\vec{p}, \vec{p}') f(\vec{p}) \quad \text{(interchange labels of dummy indices)} \]
Relaxation Time Approximation (RTA)

\[
\hat{C}f = -\left(\frac{f(\vec{p}) - f_0(\vec{p})}{\tau_m} \right)
\]

\[
\delta f = f(\vec{p}) - f_0(\vec{p})
\]

\[
\hat{C}f = -\frac{\delta f(\vec{p})}{\tau_m}
\]

\[
\hat{C}f = \frac{f_0(\vec{p})}{\tau_m} - \frac{f(\vec{p})}{\tau_m}
\]

in-scattering – out-scattering

See Lundstrom: pp. 139-141. The RTA can be justified when the scattering is **isotropic and/or elastic** in which case the proper time to use is the “momentum relaxation time.”
meaning of the RTA

\[
\frac{\partial f}{\partial t} + \vec{v} \bullet \nabla_r f + \vec{F}_e \bullet \nabla_p f = -\frac{\delta f}{\tau_m}
\]

Assume spatial uniformity, no \(E\)-field.

\[
\frac{\partial f}{\partial t} = -\frac{\delta f}{\tau_m}
\]

\[
\delta f = f - f_0
\]

\[
\frac{\partial (\delta f)}{\partial t} = -\frac{\delta f}{\tau_m}
\]

\[
\delta f(t) = \delta f(0) e^{-t/\tau_m}
\]

Perturbations decay away exponentially with a characteristic time, \(\tau_m\)
steady-state BTE in 1D

\[\nu_x \frac{\partial f}{\partial x} + F_x \frac{\partial f}{\partial p_x} = -\frac{\delta f}{\tau_m} \]

RTA

no B-fields for now

\[F_x = -qE_x \]

near-equilibrium

\[f(\bar{p}) = f_0(\bar{p}) + \delta f(\bar{p}) \]

\[|f_0(\bar{p})| >> |\delta f(\bar{p})| \]

\[\delta f(\bar{p}) = f(\bar{p}) - f_0(\bar{p}) \]
1) Introduction
2) Equation of motion
3) The BTE
4) **Solving the s.s. BTE**
5) Discussion
6) Summary
near eq., s.s BTE

\[\vec{v} \cdot \nabla_r f - q\vec{E} \cdot \nabla_p f = -\frac{\delta f (\vec{p})}{\tau_m} \]

\[\nabla_r f \approx \nabla_r f_0 \quad \nabla_p f \approx \nabla_p f_0 \]

\[\vec{v} \cdot \nabla_r f_0 - q\vec{E} \cdot \nabla_p f_0 = -\frac{\delta f (\vec{p})}{\tau_m} \]

\[\delta f (\vec{p}) = -\tau_m \vec{v} \cdot \nabla_r f_0 + q\tau_m \vec{E} \cdot \nabla_p f_0 \]
BTE solution

\[
\delta f = -\tau_m \vec{v} \cdot \nabla_r f_0 + q\tau_m \vec{E} \cdot \nabla_p f_0
\]

\[
f_0(\vec{p}) = \frac{1}{1 + e^{\Theta}} \quad \Theta(\vec{r}, \vec{p}) = \left[E(\vec{r}, \vec{p}) - F_n(\vec{r}) \right] / k_B T_L
\]

\[= \left[E_C(\vec{r}) + E(\vec{p}) - F_n(\vec{r}) \right] / k_B T_L\]

\[
\nabla_r f_0 = \frac{\partial f_0}{\partial \Theta} \nabla_r \Theta
\]

\[
\nabla_p f_0 = \frac{\partial f_0}{\partial \Theta} \nabla_p \Theta
\]

\[
\frac{\partial f_0}{\partial \Theta} = k_B T_L \frac{\partial f_0}{\partial E}
\]

\[
\delta f = \tau_m k_B T_L \left(-\frac{\partial f_0}{\partial E} \right) \left[\vec{v} \cdot \nabla_r \Theta - q\vec{E} \cdot \nabla_p \Theta \right]
\]

Lundstrom ECE-656 F11
BTE solution

\[\delta f = \tau_m k_B T_L \left(-\frac{\partial f_0}{\partial E} \right) \left[\vec{v} \cdot \nabla_r \Theta - q \vec{E} \cdot \nabla_p \Theta \right] \]

\[\Theta(\vec{r}, \tilde{p}) = \frac{[E_C(\vec{r}) + E(\tilde{p}) - F_n(\vec{r})]}{k_B T_L} \]

\[\nabla_r \Theta = \frac{1}{k_B T_L} \left[\nabla_r E_C - \nabla_r F_n \right] + \left[E_C + E(\tilde{p}) - F_n \right] \nabla_r \left(\frac{1}{k_B T_L} \right) \]

\[\nabla_p \Theta = \frac{\vec{v}(\tilde{p})}{k_B T_L} \]

\[\delta f = \tau_m \left(-\frac{\partial f_0}{\partial E} \right) \vec{v} \cdot \left\{ -\nabla_r F_n + T_L \left[E_C + E(\tilde{p}) - F_n \right] \nabla_r \left(\frac{1}{T_L} \right) \right\} \]
The two forces driving current flow are gradients in QFL and gradients in (inverse) temperature. In Lecture 4, we saw that \((f_1 - f_2)\) produces current flow and that differences in Fermi level and temperature cause differences in \(f\).
outline

1) Introduction
2) Equation of motion
3) The BTE
4) Solving the s.s. BTE
5) Discussion
6) Summary

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/
another look at the solution...

$$
\delta f = \tau_m \left(-\frac{\partial f_0}{\partial E} \right) \vec{v} \cdot \vec{F} \rightarrow \tau_m \left(-\frac{\partial f_0}{\partial E} \right) v_x F_x
$$

$$
\vec{F} = -\nabla_r F_n + T_L \left[E_C + E (k) - F_n \right] \nabla_r \left(\frac{1}{T_L} \right) \rightarrow -\frac{dF_n}{dx} = -q E_x
$$

$$
\delta f = q \tau_m E_x \left(\frac{\partial f_0}{\partial E} \right) v_x
$$

$$
\delta f = q \tau_m E_x \left(\frac{\partial f_0}{\partial p_x} \right) \left(\frac{\partial p_x}{\partial E} \right) v_x = q \tau_m E_x \left(\frac{\partial f_0}{\partial p_x} \right)
$$
another look at the solution…

\[\delta f = \left(\frac{\partial f_0}{\partial p_x} \right) q \tau_m E_x \]

\[f = f_0 + \delta f = f_0 + \left(\frac{\partial f_0}{\partial p_x} \right) q \tau_m E_x \]

Recall:

\[g(x + dx) \approx g(x) + \frac{\partial g}{\partial x} dx + \ldots \]

\[f(\bar{p}) = f_0(\bar{p} + dp_x \hat{x}) \]

\[dp_x = q \tau_m E_x \]

So the distribution has been displaced by \(p_d \) is a direction **opposite** to the electric field
now what?

\[\delta f = \tau_m \left(- \frac{\partial f_0}{\partial E} \right) \vec{v} \cdot \vec{F} \]

We have solved the BTE, now what do we do with the solution?
moments

\[n(\vec{r}) = \frac{1}{\Omega} \sum_k f_0(\vec{r}, \vec{k}) + \delta f(\vec{r}, \vec{k}) \approx \frac{1}{\Omega} \sum_k f_0(\vec{r}, \vec{k}) \]

\[\vec{J}_n(\vec{r}) = \frac{1}{A} \sum_k (-q) \vec{v}(\vec{k}) \delta f(\vec{r}, \vec{k}) \]

\[\vec{J}_w(\vec{r}) = \frac{1}{A} \sum_k E(\vec{k}) \vec{v}(\vec{k}) \delta f(\vec{r}, \vec{k}) \]

\[\vec{J}_Q(\vec{r}) = \frac{1}{A} \sum_k (E(k) - F_n) \vec{v}(\vec{k}) \delta f(\vec{r}, \vec{k}) \]

To evaluate these quantities, we need to work out sums in \(k \)-space.
moments

\[n(\vec{r}) = \frac{1}{\Omega} \sum_k f_0(\vec{r}, \vec{k}) + \delta f(\vec{r}, \vec{k}) \approx \frac{1}{\Omega} \sum_k f_0(\vec{r}, \vec{k}) \]

\[\vec{J}_n(\vec{r}) = \frac{1}{A} \sum_k (-q) \vec{\nu}(\vec{k}) \delta f(\vec{r}, \vec{k}) \]

\[\vec{J}_W(\vec{r}) = \frac{1}{A} \sum_k E(\vec{k}) \vec{\nu}(\vec{k}) \delta f(\vec{r}, \vec{k}) \]

\[\vec{J}_Q(\vec{r}) = \frac{1}{A} \sum_k (E(\vec{k}) - F_n) \vec{\nu}(\vec{k}) \delta f(\vec{r}, \vec{k}) \]

To evaluate these quantities, we need to work out sums in \(k \)-space.

recall lecture 4
1) Introduction
2) Equation of motion
3) The BTE
4) Solving the s.s. BTE
5) Discussion
6) Summary
summary

1) Semi-classical transport assumes a bulk bandstructure with a slowly varying applied potential.

2) Semiclassical transport ignores quantum reflections and assumes that position and momentum can both be precisely specified.

3) The Boltzmann Transport Equation can be solved to find the probability that states in the device are occupied.

4) In equilibrium, the solution to the BTE is the Fermi function.
summary

BTE:

\[\frac{\partial f}{\partial t} + \ddot{v} \cdot \nabla_r f + \mathbf{F}_e \cdot \nabla_p f = \hat{C} f \]

\[\hat{C} f (\bar{r}, \bar{p}, t) = \sum_{p'} S(\bar{p}', \bar{p}) f (\bar{p}') \left[1 - f (\bar{p}) \right] - \sum_{p'} S(\bar{p}, \bar{p}') f (\bar{p}) \left[1 - f (\bar{p}') \right] \]

RTA:

\[\hat{C} f = -\left(f (\bar{p}) - f_0 (\bar{p}) \right) / \tau_m \]

Solution:

\[\delta f = \tau_m \left(-\frac{\partial f_0}{\partial E} \right) \ddot{v} \cdot \mathbf{F} \quad \mathbf{F} = -\nabla_r F_n + T_L \left[E_C + E(k) - F_n \right] \nabla_r \left(\frac{1}{T_L} \right) \]
questions

1) Introduction
2) Equation of motion
3) The BTE
4) Solving the s.s. BTE
5) Discussion
6) Summary