Homework 6

Due in class on Tuesday Oct 27, 2011

1. Problem 11.1-4
2. Problem 11.1-8
3. Problem 11.2-1
4. An extended source of area $1 \mathrm{~cm}^{2}$ emits light with mean frequency $\mathrm{w}=10^{5} \mathrm{rad} / \mathrm{s}$. Design an optical setup that will filter the field and generate a coherence area of 1 mm at a certain plane.
5. Fields from two sources of Gaussian spectra, $S_{1}(\omega)=e^{-\frac{\left(\omega-\omega_{1}\right)^{2}}{2 \Delta \omega_{1}^{2}}}$ and $S_{2}(\omega)=e^{-\frac{\left(\omega-\omega_{2}\right)^{2}}{2 \Delta \omega_{2}^{2}}}$, are overlapped and used in LCI/OCT experiments ($\omega_{1,2}$ are the respective mean frequencies and $\Delta \omega_{1,2}$ the bandwidths). Calculate the autocorrelation function of this composite field. Comment on the depth resolution in OCT provided by tis composite field vs. that of the individual sources.
