ECE-656: Fall 2011

Lecture 19:

Scattering I: Collision Integral

Mark Lundstrom
Purdue University
West Lafayette, IN USA

10/12/11
characteristic times

1) single particle lifetime, τ:

$$\tau(\vec{p})$$

2) momentum relaxation time, τ_m:

$$\tau_m(\vec{p})$$

3) energy relaxation time, τ_E:

$$\tau_E(\vec{p})$$

$$\vec{p}(t = 0)$$

$t = 0$ \quad $t \approx \tau$

$t \approx \tau_m \geq \tau$ \quad $t \approx \tau_E > \tau_m \geq \tau$
transition rate

Transition rate from p to p' (probability per second)

$$S(\vec{p} \rightarrow \vec{p}')$$

scattering potential
characteristic times

\[
\frac{1}{\tau(\vec{p})} = \sum_{\vec{p}',\uparrow} S(\vec{p} \rightarrow \vec{p}')
\]

\[
\frac{1}{\tau_m(\vec{p})} = \sum_{\vec{p}',\uparrow} S(\vec{p} \rightarrow \vec{p}') \frac{\Delta p_z}{p_z}
\]

\[
\frac{1}{\tau_E(\vec{p})} = \sum_{\vec{p}',\uparrow} S(\vec{p} \rightarrow \vec{p}') \frac{\Delta E}{E_0}
\]

\[\vec{p}(t = 0)\]

\[t = 0\]

\[t \approx \tau\]

\[t \approx \tau_m \geq \tau\]

\[t \approx \tau_E > \tau_m \geq \tau\]
Fermi’s Golden Rule

\[
S(\vec{p} \rightarrow \vec{p}') = \frac{2\pi}{\hbar} |H_{p'p}|^2 \delta(E' - E - \Delta E)
\]

\[
H_{\vec{p}',\vec{p}} = \int_{-\infty}^{+\infty} \psi_f^* U_S(\vec{r}) \psi_i d\vec{r}
\]

To be discussed in Lecture 21
the Boltzmann Transport Equation

\[
\frac{\partial f}{\partial t} + \bar{v} \cdot \nabla_n f + \bar{F}_e \cdot \nabla_p f = \hat{C} f
\]

\[
\hat{C} f (\bar{r}, \bar{p}, t) = \sum_{p'} S (\bar{p}', \bar{p}) f (\bar{p}') [1 - f (\bar{p})] - \sum_{p'} S (\bar{p}, \bar{p}') f (\bar{p}) [1 - f (\bar{p}')]
\]
scattering operator

\[\frac{df}{dt}_{\text{coll}} = \hat{C}f(\vec{r}, \vec{p}, t) = \text{in-scattering rate - out-scattering rate} \]

in-scattering rate = \[\sum_{p'} S(\vec{p}' \rightarrow \vec{p}) f(\vec{p}') [1 - f(\vec{p})] \]

out-scattering rate = \[\sum_{p'} S(\vec{p} \rightarrow \vec{p}') f(\vec{p}) [1 - f(\vec{p}')] \]

\[\hat{C}f(\vec{r}, \vec{p}, t) = \sum_{p'} S(\vec{p}' \rightarrow \vec{p}) f(\vec{p}') [1 - f(\vec{p})] - \sum_{p'} S(\vec{p} \rightarrow \vec{p}') f(\vec{p}) [1 - f(\vec{p}')] \]
nondegenerate scattering operator

\[
\hat{C}f(\vec{r}, \vec{p}, t) = \sum_{\vec{p}'} S(\vec{p}' \rightarrow \vec{p}) f(\vec{p}') [1 - f(\vec{p})] - \sum_{\vec{p}'} S(\vec{p} \rightarrow \vec{p}') f(\vec{p}) [1 - f(\vec{p}')]
\]

- probability that the state at \(\vec{p}' \) is occupied
- probability that the state at \(\vec{p} \) is empty

non-degenerate scattering operator (assumes final state empty)
1. Review
2. Collision operator
3. Electron-electron scattering
4. Discussion
5. Summary
conservation of carriers

We are discussing scattering mechanisms that move carriers around in \(k \)-space. They do not create or destroy carriers.

\[
\sum_p \hat{C} f (\vec{r}, \vec{p}, t) = 0
\]

\[
\sum_p \left\{ \sum_{p'} S (\vec{p}', \vec{p}) f (\vec{p}') - \sum_{p'} S (\vec{p}, \vec{p}') f (\vec{p}) \right\} = 0
\]

\[
\sum_{p, p'} S (\vec{p}' \rightarrow \vec{p}) f (\vec{p}') = \sum_{p, p'} S (\vec{p} \rightarrow \vec{p}') f (\vec{p})
\]

Lundstrom ECE-656 F11
conservation of carriers

\[
\sum_{p,p'} S(p' \to p) f(p') = \sum_{p,p'} S(p \to p') f(p)
\]

Work on LHS:

\[
\sum_{p,p'} S(p' \to p) f(p') = \sum_{p',p} S(p' \to p) f(p') \quad \text{(interchange order of summation)}
\]

\[
\sum_{p,p'} S(p' \to p) f(p') = \sum_{p,p'} S(p \to p') f(p) \quad \text{(interchange dummy indices)}
\]

QED
We will be working out the transition rates for various types of scattering processes. What can we say in advance about the physical properties that the resulting transition rates must satisfy?

\[\hat{C}f = \sum_{p'} S(p' \rightarrow \bar{p})f(p')[1 - f(\bar{p})] - S(\bar{p} \rightarrow p')f(\bar{p})[1 - f(p')] \]

in equilibrium: \(f(\bar{p}) = f(p') = f_0(E) \)

and the principle of detailed balance holds.
detailed balance in equilibrium

\[S_0(\bar{p}' \rightarrow \bar{p}) f_0(E')[1 - f_0(E)] - S_0(\bar{p} \rightarrow \bar{p}') f_0(E)[1 - f(E')] = 0 \]

holds out of equilibrium too….

\[\frac{S(\bar{p}' \rightarrow \bar{p})}{S(\bar{p} \rightarrow \bar{p}')} = \frac{f_0(E)[1 - f_0(E')]}{f_0(E')[1 - f_0(E)]} = e^{-\Delta E/k_B T} \]

\[\Delta E = E(p) - E(p') \]
elastic vs. inelastic scattering

\[
\frac{S(\vec{p}' \rightarrow \vec{p})}{S(\vec{p} \rightarrow \vec{p}')} = e^{-\Delta E/k_B T} \quad \Delta E = E(p) - E(p')
\]

1) elastic scattering:
\[
S(\vec{p} \rightarrow \vec{p}') = S(\vec{p}' \rightarrow \vec{p})
\]

2) phonon scattering:
\[
\frac{S_{ABS}^{p\rightarrow p'}(\vec{p} \rightarrow \vec{p})}{S_{EMS}^{p\rightarrow p'}(\vec{p} \rightarrow \vec{p}')} = e^{-\hbar \omega/k_B T}
\]
constraints on phonon scattering

\[
\frac{S_{ABS}^{ABS}(\vec{p}' \to \vec{p})}{S_{EMS}^{EMS}(\vec{p} \to \vec{p}')} = e^{-\hbar \omega / k_B T}
\]

\[
S_{ABS}^{ABS} \sim n_0(\hbar \omega)
\]

\[
S_{EMS}^{EMS} \sim e^{\hbar \omega / k_B T} n_0(\hbar \omega)
\]

\[
n_0(\hbar \omega) = \frac{1}{e^{\hbar \omega / k_B T} - 1}
\]

\[
e^{\hbar \omega / k_B T} n_0(\hbar \omega) = \frac{e^{\hbar \omega / k_B T}}{e^{\hbar \omega / k_B T} - 1} = n_0(\hbar \omega) + 1
\]

}\scrollbars\n\headheight=0.5cm\headsep=0.5cm\vspace{0.5cm}
1. Review
2. Collision operator
3. Electron-electron scattering
4. Discussion
5. Summary
binary collisions

$S(\bar{p}, \bar{p}_2 \rightarrow \bar{p}', \bar{p}'_2)$

“pair transition rate”

(See Lundstrom, FCT, Sec. 2.10)
energy-momentum conservation

\[
S(\vec{p}, \vec{p}_2 \rightarrow \vec{p}', \vec{p}'_2)
\]

“pair transition rate”

momentum conservation:
\[
\vec{p} + \vec{p}_2 = \vec{p}' + \vec{p}'_2
\]

energy conservation:
\[
E + E_2 = E' + E'_2
\]

(See Lundstrom, FCT, Sec. 2.10)
scattering rate

But, we often argue that this type of scattering has little effect. Why?
collision operator for e-e scattering

\[S(\vec{p}, \vec{p}_2 \rightarrow \vec{p}', \vec{p}'_2) \]

“pair transition rate”

\[\hat{C}f(\vec{p}) = \sum_{p', p'_2} S(\vec{p}', \vec{p}'_2 \rightarrow \vec{p}, \vec{p}_2)f(\vec{p}')f(\vec{p}'_2) - \sum_{p', p_2} S(\vec{p}, \vec{p}_2 \rightarrow \vec{p}', \vec{p}'_2)f(\vec{p})f(\vec{p}_2) \]

(assumes MB statistics)

(See Lundstrom, FCT, Sec. 3.3)
collision operator for e-e scattering

\[
\hat{C}f(\vec{p}) = \sum_{\vec{p}', \vec{p}_2} S(\vec{p}', \vec{p}_2 \rightarrow \vec{p}, \vec{p}_2) f(\vec{p}') f(\vec{p}_2') - \sum_{\vec{p}', \vec{p}_2} S(\vec{p}, \vec{p}_2 \rightarrow \vec{p}', \vec{p}_2') f(\vec{p}) f(\vec{p}_2)
\]

For e-e scattering, “it can be shown”

\[
S(\vec{p}, \vec{p}_2 \rightarrow \vec{p}', \vec{p}_2') = S(\vec{p}', \vec{p}_2 \rightarrow \vec{p}, \vec{p}_2)
\]

(See Lundstrom, FCT, Sec. 3.3)
collision operator for e-e scattering

\[S(\vec{p}, \vec{p}_2 \to \vec{p}', \vec{p}'_2) \]

“pair transition rate”

\[
\hat{C}f(\vec{p}) = \sum_{\vec{p}', p'_2} S(\vec{p}', \vec{p}'_2 \to \vec{p}, \vec{p}_2)f(\vec{p}')f(\vec{p}'_2) - \sum_{\vec{p}'_2, p_2} S(\vec{p}, \vec{p}_2 \to \vec{p}', \vec{p}'_2)f(\vec{p})f(\vec{p}_2)
\]

\[
S(\vec{p}, \vec{p}_2 \to \vec{p}', \vec{p}'_2) = S(\vec{p}', \vec{p}'_2 \to \vec{p}, \vec{p}_2)
\]

\[
\hat{C}f(\vec{p}) = \sum_{p', p_2} S(\vec{p}, \vec{p}_2 \to \vec{p}', \vec{p}'_2)[f(\vec{p})f(\vec{p}_2) - f(\vec{p}')f(\vec{p}'_2)]
\]
collision operator for e-e scattering

\[
\hat{C} f (\vec{p}) = \sum_{p', p_2} S(\vec{p}, \vec{p}_2 \rightarrow \vec{p}', \vec{p}'_2) \left[f (\vec{p}) f (\vec{p}_2) - f (\vec{p}') f (\vec{p}'_2) \right]
\]

Eventually, in-scattering and out-scattering balance and steady-state conditions with no change in \(f \) occur.

\[
\hat{C} f (\vec{p}) = 0 \quad f (\vec{p}) f (\vec{p}_2) = f (\vec{p}') f (\vec{p}'_2)
\]

What distribution function satisfies this equation?
collision operator for e-e scattering

Try a solution of the form:

$$f (\vec{p}) = e^{C_1 E}$$

$$e^{C_1 (E + E_2)} = e^{C_1 (E' + E_2)}$$

If we set the energy to $3/2k_B T_e$, we find:

$$f (\vec{p}) = e^{-E/k_B T_e} = e^{-p^2/2m^* k_B T_e}$$

Electron-electron scattering produces a Maxwellian distribution.
strong e-e scattering produces a Maxwellian or FD distribution.

To first order, e-e scattering has no effect, because energy and momentum are conserved.

but it can have non-negligible effects.

e-e scattering typicall dominates when $n > 10^{17} - 10^{18} \text{ cm}^{-3}$.
1. Review
2. Collision operator
3. Electron-electron scattering
4. Discussion
5. Summary
3.12. Assume that $f(p) = f_S(p)$ is a Fermi-Dirac distribution at the lattice temperature, but don’t assume that $f_0 = f_S$. Show that $df/dt|_{\text{coll}} = 0.$

\[
f_0(p) = \frac{1}{1 + e^{(E-E_F)/k_B T_L}}
f_S(p) = \frac{1}{1 + e^{(E-E_n)/k_B T_L}}
\]

\[
f(p) = f_0(p) + \delta f(p)
f_S(p) = f_S(p) + \delta f(p)
\]

\[
\hat{C}f(p) \approx -\frac{\delta f(p)}{\tau_m}
\]

\[
\hat{C}f_0(p) = 0
\]

\[
\hat{C}f_S(p) = 0
\]
\[\hat{C}_f (\vec{r}, \vec{p}, t) = \sum_{\vec{p}'} S(\vec{p}', \vec{p}) f(\vec{p}') [1 - f(\vec{p})] - \sum_{\vec{p}'} S(\vec{p}, \vec{p}') f(\vec{p}) [1 - f(\vec{p}')] \]

\[S(\vec{p}', \vec{p}) f_0(\vec{p}') [1 - f_0(\vec{p})] = S(\vec{p}, \vec{p}') f_0(\vec{p}) [1 - f_0(\vec{p}')] \]

\[S(\vec{p}', \vec{p}) f_0(\vec{p}') = S(\vec{p}, \vec{p}') f_0(\vec{p}) \quad \text{(Maxwell-Bozmann)} \]

\[S(\vec{p}', \vec{p}) f_S(\vec{p}') = S(\vec{p}', \vec{p}) e^{(F_n - E_C)/k_B T_L} \]

\[= e^{(F_n - E_F)/k_B T_L} S(\vec{p}', \vec{p}) e^{(E_F - E_C)/k_B T_L} \]

\[= e^{(F_n - E_F)/k_B T_L} S(\vec{p}', \vec{p}) f_0(\vec{p}) \]
HW prob. 3.12 (FCT)

\[S(\tilde{p}', \tilde{p}) f_0(\tilde{p}') = S(\tilde{p}, \tilde{p}') f_0(\tilde{p}) \quad \text{(Maxwell-Botzmann)} \]

\[S(\tilde{p}', \tilde{p}) f_s(\tilde{p}') = e^{(F_n - E_F)/k_BT_L} S(\tilde{p}', \tilde{p}) f_0(\tilde{p}) \]

\[S(\tilde{p}, \tilde{p}') f_s(\tilde{p}') = e^{(F_n - E_F)/k_BT_L} S(\tilde{p}, \tilde{p}') f_0(\tilde{p}) \]

\[S(\tilde{p}', \tilde{p}) f_s(\tilde{p}') = S(\tilde{p}, \tilde{p}') f_s(\tilde{p}) \]

So it works in this case, but, it does not work when \(T_e \neq T_L \).
outline

1. Review
2. Collision operator
3. Electron-electron scattering
4. Discussion
5. Summary
1) The transition rate, $S(p \rightarrow p')$ determines the characteristics times.

2) The collision operator conserves particles.

3) Phonon absorption is proportional to n, emission to $n+1$.

4) Electron-electron scattering leads to Maxwellian (Fermi-Dirac) distributions.
questions

1. Review
2. Collision operator
3. Electron-electron scattering
4. Discussion
5. Summary