
NEMO 3-D USER GUIDE FOR QUANTUM DOT SIMULATIONS

Authors: Muhammad Usman (usman@alumni.purdue.edu)
 Gerhard Klimeck (gekco@purdue.edu)
 Purdue University, West Lafayette, Indiana, USA

INTRODUCTION:

Nanoelectronics is a fascinating area of research that has significant impact on our
lives helping in all sort of problems related to medicine, communications, defense, etc.
Due to confinement of carriers in three dimensions, quantum dots (QDs) are ideal
candidates for the design of nanoscale optoelectronic devices and quantum information
processing. However efficient design of QD based devices is still a huge challenge
despite significant advancements in their growth and characterization techniques. This is
mainly because QD morphology such as their chemical composition, size, shape etc.
significantly changes during the growth of capping layer and the post-growth annealing
process. Thus modeling and simulations of QDs with realistic dimensions, atomistic
resolution, and essential physical effects such as strain, piezoelectricity etc is critical to
understand their electronic and optical properties. This can also provide an efficient way
to explore their design space to guide experiments before actual experimentation.

Most of the commercial simulators are based on continuum models and are
fundamentally limited to qualitative description of the QD properties. NEMO 3-D, based
on fully atomistic strain and electronic structure calculations, is a multi-scale simulator
that has been compiled and tested to run on multiple cores of modern age
supercomputers. Its capabilities include computation of the electronic structure within an
empirical tight-binding model for quantum dots (3-D confinement), nanowires (2-D
confinement), quantum wells (1-D confinement), and bulk (no confinement); strain is
computed from classical valence force field method. Further details about the simulator
can be found at: https://engineering.purdue.edu/gekcogrp/software-projects/nemo3D/ and
the source code can be downloaded from the NEMO3D distributions group on
nanoHUB.org: https://nanohub.org/groups/nemo_3d_distribution/ .

NEMO 3-D is a large and complex simulator; and understanding of its source
code requires considerable knowledge of quantum mechanics, condensed matter theory,
and parallel programming. Even for just running a simple QD simulation without
knowing its source code, good amount of knowledge about QD modeling, XML files,
parallel programming, and Linux/Unix commands is imperative. The inputs to NEMO 3-
D executable are specified in an XML based input deck which contains many selectable
options to set up execution and output parameters. The purpose of this user guide is to
instruct a first time user about basic steps for the compilation of NEMO 3-D source code
on a Linux/Unix based machine, setup of an input deck for a simple QD simulation, and
understanding of various output files that are generated from a typical QD simulation. It

is advised that a user MUST first become fully familiar and comfortable with the simple
example provided in this manual before moving on to a more complex QD device.

(A) NEMO 3-D Source Code Compilation

Below a step-by-step procedure is presented to download and compile NEMO 3-
D code on Linux/Unix based server. As an example, the commands are only presented for
a Purdue University machine coates.rcac.purdue.edu. However, this procedure can be
used to compile the code at any server machine that has c/c++ language compilers, MPI
libraries etc. A user MUST select appropriate compiler in the make.inc file according
to the environment where NEMO 3-D is being compiled.

Step-1: Downloading the source code from the CVS repository.
This part is only for those who have an account on max.ecn.purdue.edu for having an access to the CVS
repository. (For an account please contact gekco@purdue.edu)

(a) In your command prompt (assumed $) type
 $ cvs co NEMO_3D
 After you do this, it will download few license files along with a script file CVS_nemo3d_setup.sh.
(b) cd to NEMO_3D folder and run this script file:
 $ cd NEMO_3D
 $./CVS_nemo3d_setup.sh
 This command will download all the folders and files from the CVS repository to your local folder.

An alternative way is to download the complete software in the form of a tar file from http://nanoHUB.org
svn repository. This can be done by requesting membership on
https://nanohub.org/groups/nemo_3d_distribution . After getting the membership, you can
download the tar file containing NEMO 3-D source code. Now you can unzip this file:

$tar –xzvf nemo_3d_08_dec_2008.tar.gz

Step-2: Loading modules

(a) In your command prompt type (on coates.rcac.purdue.edu)

 $ module load mpich2-intel64

A user must load a correct available module here. NEMO 3-D can be compiled on a bunch of different
platforms using various modules. Please see the make.inc file for available list of compilers.

Step-3: Building/Making
 cd to build directory in NEMO_3D
 $ cd build/
 Set an environment variable for the XERCESCROOT in NEMO_3D
 $ setenv XERCESCROOT `pwd`/../xerces-c-src2_1_0
 (You would also find this path at the very end of your downloading all the files n step-1/b.)

 $ vi make.inc
 go to the list of compiler options and use (on Coates) BUILD_TYPE = intel9_32_mpi_intelfast

 Make sure you comment out all other options. Then type,
 $ make
 (This will take some time, about 15-20 minutes, and create the executable in nemo3d/bin directory)

Step-4: Running

 cd to nemo3d/bin directory.
 $ cd nemo3d/bin
 You would see that an executable (nemo3d.ex) has been created in the bin directory.

 (a) For serial job
 Now to run a simple serial job, do the following. Go to the example folder and copy one of the example
files to the bin folder. Then give the run command, for example

 $./nemo3d.ex example.xml (Next section will explain how to build an XML file).

 Outputs will be created in the binary format. To convert to ASCII format do
 $ ln -s nemo3d-i386-(press tab key for full name) fmtdat.ex
 $./fmtdat.ex -a2 example_nd_Ek

 (b) parallel job
 To tun a parallel MPI job you should use the pbs system. Here, how we do it on coates at Purdue:
 $ cd test
 $ qsub Pbs_test

 Example of Pbs_test.pbs file is given below.

Pbs_test.pbs

#!/bin/tcsh
#PBS -me -l nodes=1:ppn=8,walltime=80:00:00
#PBS -q ncn
#PBS -o nemo.out
#PBS -e nemo.err
name of the executable goes on next line

set executable="~/NEMO_3D/nemo3d/bin/nemo3d.ex"

##set
set PBS_O_WORKDIR="~/NEMO_3D/nemo3d/bin/nemo3d.ex "

cd $PBS_O_WORKDIR

set machinefile=`basename $PBS_NODEFILE`

cp $PBS_NODEFILE machinefile.txt

module load mpich2-intel64

mpirun -machinefile machinefile.txt -np 8 $executable ~/NEMO_3D/nemo3d/bin/example.xml >> live.txt

This pbs script uses 1 node and 8 processors per node. So the code will run on 8 cores of
a single cluster node in parallel. The simulation job will be submitted to ncn queue.
Output and error log files are nemo.out and nemo.err respectively.
(B) Setting up an Input Deck

The previous section explains how NEMO 3-D code can be downloaded and
compiled to get an executable. NEMO 3-D executable runs on XML based input file,
referred to as example.xml in the last section. This XML file is modified by the user to
specify device geometry, tight binding material parameters, execution options and output
files needed. The executable examines the contents of this file according to predefined
syntactical rules. If the file is correctly edited, NEMO 3-D extracts input parameters from
this file and executes the code according to the requirements specified in the XML file.
The input deck XML is divided into four major parts:

1. Geometry Construction
2. Material Database
3. Execution Parameters
4. Output Parameters

Below each part of the XML file will be described in detail. To explain the
construction of the input XML file, example device geometry will be used consisting of a
single InAs quantum dot in GaAs buffer. The quantum dot is placed on top of a wetting
layer 0.5nm thick. The details of the geometry are shown in the figure below.

Figure D.1: An example device geometry consisting of a single InAs quantum dot. The
height of the quantum dot is h (nm) and base diameter is d (nm). The strain domain is

marked as Dstrain and electronic structure domain is marked as Delec. The substrate
thickness is s (nm) and cap layer is c (nm) thick.

(B.1) Geometry Construction

In NEMO 3-D input deck, geometry is constructed by dividing it into various

components. For example, the device shown in figure D.1 can be divided into four
components: (1) Strain domain (2) Electronic Domain (3) Wetting Layer (4) Quantum
dot. Now all of these components will be represented by one shape unit inside the input
deck. More important is to know that since the geometry is constructed in NEMO 3-D
atomistically, so each subsequent shape replaces the atoms of the previous shape on
which this is being placed. For example, let us suppose, we have a box shape of size
30x30x30nm3 made up of GaAs with its bottom left corner at (0, 0, 0). Now we define a
second shape of size 10x10x10nm3 starting at (10, 10, 10) coordinate made up of InAs
material. The second shape will replace all the ‘Ga’ atoms with coordinates 10 <= x <=
20, 10 <= y <= 20, and 10 <= z <= 20 by ‘In’ atoms. This implies that we define the
largest shape first, then the next smaller, then the next smaller and so on. Each shape
replaces the atoms of the previous shapes by its material specification within the
boundary of its spatial dimensions.

In order to fully understand the geometry construction for the input deck of
NEMO 3-D, let us construct the geometry defined in figure D.1. The size of various
shapes is:

(1) Strain Domain: 30x30x30nm3, Shape: Box, Material: GaAs
(2) Wetting Layer: 30x30x30nm3, Shape: Box, Material: InAs
(3) Electronic Domain: 20x20x20nm3, Shape: Box, Material: GaAs
(4) Quantum Dot: 10x10x4nm3, Shape: Dome, Material: InAs

In the input deck, the following shapes will be defined:
Shape 1: Box type, GaAs Material, Starting point: (0, 0, 0), Length in x, y, z is: 30, 30,
30 (nm)
This is the strain domain of the system. Since this is the largest one, we define it as the
first shape.
Shape 2: Box type, InAs Material, Starting Point: (0, 0, 12.5), Length in x, y, z is: 30, 30,
0.5 (nm)

This is the wetting layer. Since the wetting layer is grown on the whole substrate, its
lateral size is 30nm. The quantum dot will be placed in the middle of the whole structure.
The wetting layer z coordinate is calculated as (30-4)/2 = 13nm-0.5nm = 12.5nm
Shape 3: Box type, GaAs Material, Starting point: (5, 5, 5), Length in x, y, z is: 20, 20,
20 (nm)
This is the electronic box. Since the quantum dots are highly confined systems, so we
normally choose the smaller region to calculate the electronic structure. This reduces the
computational time. Here Shape 1 will be selected for only strain calculations and Shape
3 will be selected for both strain and electronic structure calculations. This shape is also
placed in the middle of Shape 1.
Shape 4: Box type, InAs Material, Starting Point: (5, 5, 12.5), Length in x, y, z is: 20, 20,
0.5 (nm)
Since Shape 3 has replaced the wetting layer atoms of Shape 2, we have to redefine the
wetting layer inside the electronic domain.
Shape 5: Dome type, InAs Material, Starting Point: (10, 10, 13), Length in x, y, z: 10, 10,
4 (nm)
This is the quantum dot which is placed in the middle of whole structure.
Hence the geometry of a single quantum dot device in figure D.1 can be described in
NEMO 3-D input deck with the help of five shapes. Below, I have explained the XML
description of each shape component along with a brief description of each of the
options. Five such components constitute the whole geometry.

Besides describing the geometry of the device, we have to select some parameters related
to entire simulation domain. These parameters define the crystal structure to be
constructed, the tight binding parameters to be used etc. Brief description of these options
is presented below:

(B.2) Material Database

This part of the input deck XML file is the material database. Here, tight binding
and strain parameters of various materials are specified. Each material starts with:

<group type="obj">
 <name>material_1</name>  This is the material number in the data base
 <cTag>Material</cTag>  This is the tag for the source code to read this option.
 <desc>GaAs bulk properties (spds*)</desc> The name of the material and
parameter type.

There are currently nineteen (19) materials described in the database. The user does not
need to change anything in this section unless new materials need to be specified. A new
material can be added by duplicating a material group with resetting material parameters.

(B.3) Execution Parameters

After specifying the geometry and adding the required materials into the material
data base, the next step is to select execution options from the execution parameter set.
NEMO 3-D is a huge software package and it allows computation of many different
parameters under different settings. For example, we can turn off or on the strain
calculation. We can turn on or off the electronic structure calculations. We can turn on or
off optical matrix element calculations etc. The flexibility to turn ON/OFF various
parameters means that we can reduce the computation time by selecting only those
parameters that are needed in a particular study.

The execution parameters that are needed to be selected are described below.
There are other parameters that have not been described below but are accessible. These
parameters are not important for quantum dot simulations and hence should be left with
their default values.

NEMO 3-D allows the application of external electrical and magnetic fields for the study
of quantum confined stark shifts and g-factor engineering. Below, the execution
parameters related to the application of external electrical or magnetic fields are
described:

Typical quantum dot simulation contains millions of atoms. The corresponding
single particle Hamiltonians are also very large. The calculation of Eigen-values and
Eigen-vectors of these large Hamiltonians poses a very computationally expensive
problem. NEMO 3-D have various Eigen-solvers that are optimized to run on many cores

to quickly find the Eigen-values and Eigen-vectors to these multi-million atom
Hamiltonians. Below I have described the settings of only one Eigen-solver “Lanczos”
which is more commonly used for quantum dot simulations. The settings of other Eigen-
solvers are more or less similar and can be easily adjusted.

Below the selection of strain parameters is described. Strain is calculated in NEMO 3-D
by relaxing the atoms according to the valence force field method by minimizing the total
energy of the system. The selection of the correct strain model and the boundary
conditions is critical for proper strain calculations:

(B.4) Output Parameters

The final section of the NEMO 3-D input deck is the output parameter section.
After selecting the right parameters in the execution parameter section, the NEMO 3-D
simulation will compute the various physical quantities for a quantum dot simulation.
However, in general, all of the computed quantities are not needed. For example, one
might need the electronic structure including the strain and external electrical field, but

not the strain data or electrical field data. The solution will be to turn ON the strain,
external field and electronic structure calculations in the execution parameters section
and turn OFF the strain and external field in the output parameter section. The electronic
structure will be turned ON in the output parameter section. These settings will generate
output files which contain the electronic structure data including the strain and the
external fields. Since the quantum dot simulations are multi-million atom simulations, so
the output files will be very large. By turning OFF the unnecessary output files in the
output parameter section, much of the disk space can be saved.

Below, the various options available in the output parameter section of the NEMO
3-D input deck are described:

(C) Format of Output Files Generated by NEMO 3-D

After compiling NEMO 3-D source code to obtain an executable and setting up
the input deck XML file for the device geometry construction, the simulation can be run
serially on a single processor or as a parallel job or various processors using a pbs script
as defined in section A. If the job completes successfully, the working directory will
contain the output files that were selected in the output parameter section. Below, the
name and format of various output files are presented for the first time user to understand
the output generated by NEMO 3-D simulations. In general, the output files generated by
NEMO 3-D have the name of XML file as their prefix. For example, if the name of input
deck is example.xml, then all of the output files will have name example.nd_*.

(1) Energy Dispersion: The name of this file is *Ek. This file contains E versus k
values. The format is:

 <kx ky kz Energy>

(2) Eigen-vectors: For each Eigen-value (energy level), one Eigen-vector file is
computed. For example, if *Ek file contains 10 energy levels, then there will be 10
Eigen-vector files corresponding to each energy level. The name of the files will be
*evec_i, where i is the index number of the energy level to which this Eigen-vector
belong. The format of the file is:
 <real complex> real and complex parts of Eigen-vector.

(3) Wave functions: For each Eigen-value (energy level), one wave function file is
computed. For example, if *Ek file contains 10 energy levels, then there will be 10 wave
function files corresponding to each energy level. The name of the files will be *wf_i,
where i is the index number of the energy level to which this wave function belong. The
format of the file is: < |ψ|2 >

(4) Local Band Structure: Local band structure file contains local band edge data in the

sub domain specified in the execution parameter section. One file is generated for
each processor. The name of file is: *Ek_proc_pn_kx0.000_ky_0.000_kz_0.000_r
where pn is the processor number. The format of the file is:

 <kx ky kz x y z energy atomType>

(5) Trace of Eigen-values: The name of file is *eval. The file contains Eigen-value
versus iteration number of the Lanczos Eigen-solver. The format of the file is:

 <Iteration number Eigen-value>

(6) Optical Matrix Element: The output files generated are optical transition rates for

incident light polarization along the X, Y and Z Cartesian coordinates. The file names
are *TransX, *TransY, and *TransZ. The format of the files is:
 <energy_state_i energy_state_f energy_gap transition_rate>

(7) Atom Position Files: Atom position file before the strain contains atom coordinates
in the Cartesian real space. The name of the file is *rAtom_0. The atom positions file
after the strain contains coordinates in the Cartesian real space after strain relaxation.
The name of this file is *rAtom_1. The format of both files is:
 <x y z>

(8) Atom Type File: This file contains the type of each atom in the form of a unique
ASCII number assigned to the atom. For example, In atom is assigned a number 14,
As atom is assigned a number 12, Ga atom is assigned a number 10 etc. The name of
the file is *aType and format of the file is:
 <atom_type>

(9) Neighbor Index File: The name of the file is *nbrIndx. This file contains
information of 4 nearest neighbors for each atom in the geometry. The ordering is the
same as the ordering of the atom positions in the rAtom file. The format of this file is:
 <neighbor-1 neighbor_2 neighbor_3 neighbor_4>

Note: This document is created to serve as a guide for first time users of NEMO
3-D software who intend to use it for quantum dot simulations. The manual is
created with great care to provide accurate information. However, the authors do
not take any responsibility of any kind for the contents presented. The entire risk
as to the quality, the performance, and the fitness of the manual for any particular
purpose lies with the party using it. In no event will the authors or any party who
distributed the manual be liable for damages or for any claim(s) by any third
party, including but not limited to, any lost profits, lost monies, lost data or data
rendered inaccurate, losses sustained by third parties, or any other special,
incidental or consequential damages arising out of the use or inability to use the
program, even if the possibility of such damages has been advised against.

