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INTRODUCTION: 
 

Nanoelectronics is a fascinating area of research that has significant impact on our 
lives helping in all sort of problems related to medicine, communications, defense, etc. 
Due to confinement of carriers in three dimensions, quantum dots (QDs) are ideal 
candidates for the design of nanoscale optoelectronic devices and quantum information 
processing. However efficient design of QD based devices is still a huge challenge 
despite significant advancements in their growth and characterization techniques. This is 
mainly because QD morphology such as their chemical composition, size, shape etc. 
significantly changes during the growth of capping layer and the post-growth annealing 
process. Thus modeling and simulations of QDs with realistic dimensions, atomistic 
resolution, and essential physical effects such as strain, piezoelectricity etc is critical to 
understand their electronic and optical properties. This can also provide an efficient way 
to explore their design space to guide experiments before actual experimentation. 
 

Most of the commercial simulators are based on continuum models and are 
fundamentally limited to qualitative description of the QD properties. NEMO 3-D, based 
on fully atomistic strain and electronic structure calculations, is a multi-scale simulator 
that has been compiled and tested to run on multiple cores of modern age 
supercomputers. Its capabilities include computation of the electronic structure within an 
empirical tight-binding model for quantum dots (3-D confinement), nanowires (2-D 
confinement), quantum wells (1-D confinement), and bulk (no confinement); strain is 
computed from classical valence force field method. Further details about the simulator 
can be found at: https://engineering.purdue.edu/gekcogrp/software-projects/nemo3D/ and 
the source code can be downloaded from the NEMO3D distributions group on 
nanoHUB.org: https://nanohub.org/groups/nemo_3d_distribution/ .  
 

NEMO 3-D is a large and complex simulator; and understanding of its source 
code requires considerable knowledge of quantum mechanics, condensed matter theory, 
and parallel programming. Even for just running a simple QD simulation without 
knowing its source code, good amount of knowledge about QD modeling, XML files, 
parallel programming, and Linux/Unix commands is imperative. The inputs to NEMO 3-
D executable are specified in an XML based input deck which contains many selectable 
options to set up execution and output parameters. The purpose of this user guide is to 
instruct a first time user about basic steps for the compilation of NEMO 3-D source code 
on a Linux/Unix based machine, setup of an input deck for a simple QD simulation, and 
understanding of various output files that are generated from a typical QD simulation. It 



is advised that a user MUST first become fully familiar and comfortable with the simple 
example provided in this manual before moving on to a more complex QD device.             

 
(A) NEMO 3-D Source Code Compilation 

Below a step-by-step procedure is presented to download and compile NEMO 3-
D code on Linux/Unix based server. As an example, the commands are only presented for 
a Purdue University machine coates.rcac.purdue.edu. However, this procedure can be 
used to compile the code at any server machine that has c/c++ language compilers, MPI 
libraries etc. A user MUST select appropriate compiler in the make.inc file according 
to the environment where NEMO 3-D is being compiled.  

 
Step-1: Downloading the source code from the CVS repository. 
This part is only for those who have an account on max.ecn.purdue.edu for having an access to the CVS 
repository. (For an account please contact gekco@purdue.edu) 
 
(a) In your command prompt (assumed $) type 
    $ cvs co NEMO_3D 
    After you do this, it will download few license files along with a script file CVS_nemo3d_setup.sh.  
(b) cd to NEMO_3D folder and run this script file: 
    $ cd NEMO_3D 
    $ ./CVS_nemo3d_setup.sh 
    This command will download all the folders and files from the CVS repository to your local folder. 
 
An alternative way is to download the complete software in the form of a tar file from http://nanoHUB.org 
svn repository. This can be done by requesting membership on 
https://nanohub.org/groups/nemo_3d_distribution . After getting the membership, you can 
download the tar file containing NEMO 3-D source code. Now you can unzip this file: 
 
$tar   –xzvf   nemo_3d_08_dec_2008.tar.gz 
 
Step-2: Loading modules  
 
(a) In your command prompt type (on coates.rcac.purdue.edu) 
     
    $ module load mpich2-intel64 
 
A user must load a correct available module here. NEMO 3-D can be compiled on a bunch of different 
platforms using various modules. Please see the make.inc file for available list of compilers.  
  
Step-3: Building/Making 
    cd to build directory in NEMO_3D 
    $ cd build/ 
    Set an environment variable for the XERCESCROOT in NEMO_3D  
    $ setenv XERCESCROOT `pwd`/../xerces-c-src2_1_0
    (You would also find this path at the very end of your downloading all the files n step-1/b.)  
     
    $ vi make.inc 
    go to the list of compiler options and use (on Coates) BUILD_TYPE = intel9_32_mpi_intelfast  
    
 



    Make sure you comment out all other options. Then type, 
    $ make 
    (This will take some time, about 15-20 minutes, and create the executable in nemo3d/bin directory) 
  
Step-4: Running 
 
    cd to nemo3d/bin directory. 
    $ cd nemo3d/bin 
    You would see that an executable (nemo3d.ex) has been created in the bin directory. 
     
    (a) For serial job 
    Now to run a simple serial job, do the following. Go to the example folder and copy one of the example 
files to the bin folder. Then give the run command, for example 
 
    $ ./nemo3d.ex example.xml (Next section will explain how to build an XML file).  
     
    Outputs will be created in the binary format. To convert to ASCII format do 
    $ ln -s nemo3d-i386-(press tab key for full name)  fmtdat.ex  
    $ ./fmtdat.ex -a2 example_nd_Ek 
    
    (b) parallel job 
    To tun a parallel MPI job you should use the pbs system. Here, how we do it on coates at Purdue: 
    $ cd test 
    $ qsub Pbs_test 
    
    Example of Pbs_test.pbs file is given below. 
 
------------------ 
Pbs_test.pbs 
------------------ 
 
#!/bin/tcsh 
#PBS -me -l nodes=1:ppn=8,walltime=80:00:00  
#PBS -q ncn 
#PBS -o nemo.out 
#PBS -e nemo.err 
# name of the executable goes on next line 
 
set executable="~/NEMO_3D/nemo3d/bin/nemo3d.ex" 
 
##set 
set PBS_O_WORKDIR="~/NEMO_3D/nemo3d/bin/nemo3d.ex " 
 
cd $PBS_O_WORKDIR 
 
set machinefile=`basename $PBS_NODEFILE` 
 
cp $PBS_NODEFILE  machinefile.txt 
 
module load mpich2-intel64 
 
mpirun -machinefile machinefile.txt -np 8 $executable ~/NEMO_3D/nemo3d/bin/example.xml >> live.txt 

 



This pbs script uses 1 node and 8 processors per node. So the code will run on 8 cores of 
a single cluster node in parallel. The simulation job will be submitted to ncn queue. 
Output and error log files are nemo.out and nemo.err respectively. 
(B) Setting up an Input Deck  

The previous section explains how NEMO 3-D code can be downloaded and 
compiled to get an executable. NEMO 3-D executable runs on XML based input file, 
referred to as example.xml in the last section. This XML file is modified by the user to 
specify device geometry, tight binding material parameters, execution options and output 
files needed. The executable examines the contents of this file according to predefined 
syntactical rules. If the file is correctly edited, NEMO 3-D extracts input parameters from 
this file and executes the code according to the requirements specified in the XML file. 
The input deck XML is divided into four major parts: 

1. Geometry Construction 
2. Material Database 
3. Execution Parameters 
4. Output Parameters 

Below each part of the XML file will be described in detail. To explain the 
construction of the input XML file, example device geometry will be used consisting of a 
single InAs quantum dot in GaAs buffer. The quantum dot is placed on top of a wetting 
layer 0.5nm thick. The details of the geometry are shown in the figure below.  
 

 
 
Figure D.1: An example device geometry consisting of a single InAs quantum dot. The 
height of the quantum dot is h (nm) and base diameter is d (nm). The strain domain is 



marked as Dstrain and electronic structure domain is marked as Delec. The substrate 
thickness is s (nm) and cap layer is c (nm) thick.  
 
 
 
(B.1) Geometry Construction 

 
In NEMO 3-D input deck, geometry is constructed by dividing it into various 

components. For example, the device shown in figure D.1 can be divided into four 
components: (1) Strain domain (2) Electronic Domain (3) Wetting Layer (4) Quantum 
dot. Now all of these components will be represented by one shape unit inside the input 
deck. More important is to know that since the geometry is constructed in NEMO 3-D 
atomistically, so each subsequent shape replaces the atoms of the previous shape on 
which this is being placed. For example, let us suppose, we have a box shape of size 
30x30x30nm3 made up of GaAs with its bottom left corner at (0, 0, 0). Now we define a 
second shape of size 10x10x10nm3 starting at (10, 10, 10) coordinate made up of InAs 
material. The second shape will replace all the ‘Ga’ atoms with coordinates 10 <= x <= 
20, 10 <= y <= 20, and 10 <= z <= 20 by ‘In’ atoms. This implies that we define the 
largest shape first, then the next smaller, then the next smaller and so on. Each shape 
replaces the atoms of the previous shapes by its material specification within the 
boundary of its spatial dimensions.  

In order to fully understand the geometry construction for the input deck of 
NEMO 3-D, let us construct the geometry defined in figure D.1. The size of various 
shapes is: 

(1) Strain Domain: 30x30x30nm3, Shape: Box, Material: GaAs 
(2) Wetting Layer: 30x30x30nm3, Shape: Box, Material: InAs 
(3) Electronic Domain: 20x20x20nm3, Shape: Box, Material: GaAs 
(4) Quantum Dot: 10x10x4nm3, Shape: Dome, Material: InAs     

In the input deck, the following shapes will be defined: 
Shape 1: Box type, GaAs Material, Starting point: (0, 0, 0), Length in x, y, z is: 30, 30, 
30 (nm) 
This is the strain domain of the system. Since this is the largest one, we define it as the 
first shape. 
Shape 2: Box type, InAs Material, Starting Point: (0, 0, 12.5), Length in x, y, z is: 30, 30, 
0.5 (nm) 



This is the wetting layer. Since the wetting layer is grown on the whole substrate, its 
lateral size is 30nm. The quantum dot will be placed in the middle of the whole structure. 
The wetting layer z coordinate is calculated as (30-4)/2 = 13nm-0.5nm = 12.5nm 
Shape 3: Box type, GaAs Material, Starting point: (5, 5, 5), Length in x, y, z is: 20, 20, 
20 (nm) 
This is the electronic box. Since the quantum dots are highly confined systems, so we 
normally choose the smaller region to calculate the electronic structure. This reduces the 
computational time. Here Shape 1 will be selected for only strain calculations and Shape 
3 will be selected for both strain and electronic structure calculations. This shape is also 
placed in the middle of Shape 1. 
Shape 4: Box type, InAs Material, Starting Point: (5, 5, 12.5), Length in x, y, z is: 20, 20, 
0.5 (nm) 
Since Shape 3 has replaced the wetting layer atoms of Shape 2, we have to redefine the 
wetting layer inside the electronic domain. 
Shape 5: Dome type, InAs Material, Starting Point: (10, 10, 13), Length in x, y, z: 10, 10, 
4 (nm) 
This is the quantum dot which is placed in the middle of whole structure. 
Hence the geometry of a single quantum dot device in figure D.1 can be described in 
NEMO 3-D input deck with the help of five shapes. Below, I have explained the XML 
description of each shape component along with a brief description of each of the 
options. Five such components constitute the whole geometry.    



 



 



Besides describing the geometry of the device, we have to select some parameters related 
to entire simulation domain. These parameters define the crystal structure to be 
constructed, the tight binding parameters to be used etc. Brief description of these options 
is presented below: 
 

    
 
 



(B.2) Material Database 
 

This part of the input deck XML file is the material database. Here, tight binding 
and strain parameters of various materials are specified. Each material starts with: 
 
<group type="obj"> 
    <name>material_1</name>       This is the material number in the data base 
    <cTag>Material</cTag>      This is the tag for the source code to read this option. 
    <desc>GaAs bulk properties (spds*)</desc>   The name of the material and 
parameter type. 
 
There are currently nineteen (19) materials described in the database. The user does not 
need to change anything in this section unless new materials need to be specified. A new 
material can be added by duplicating a material group with resetting material parameters. 
   
(B.3) Execution Parameters  
  

After specifying the geometry and adding the required materials into the material 
data base, the next step is to select execution options from the execution parameter set. 
NEMO 3-D is a huge software package and it allows computation of many different 
parameters under different settings. For example, we can turn off or on the strain 
calculation. We can turn on or off the electronic structure calculations. We can turn on or 
off optical matrix element calculations etc. The flexibility to turn ON/OFF various 
parameters means that we can reduce the computation time by selecting only those 
parameters that are needed in a particular study.  

The execution parameters that are needed to be selected are described below. 
There are other parameters that have not been described below but are accessible. These 
parameters are not important for quantum dot simulations and hence should be left with 
their default values.  



 
 
 
 
NEMO 3-D allows the application of external electrical and magnetic fields for the study 
of quantum confined stark shifts and g-factor engineering. Below, the execution 
parameters related to the application of external electrical or magnetic fields are 
described: 



 



 
 
 
 
 

Typical quantum dot simulation contains millions of atoms. The corresponding 
single particle Hamiltonians are also very large. The calculation of Eigen-values and 
Eigen-vectors of these large Hamiltonians poses a very computationally expensive 
problem. NEMO 3-D have various Eigen-solvers that are optimized to run on many cores 



to quickly find the Eigen-values and Eigen-vectors to these multi-million atom 
Hamiltonians. Below I have described the settings of only one Eigen-solver “Lanczos” 
which is more commonly used for quantum dot simulations. The settings of other Eigen-
solvers are more or less similar and can be easily adjusted. 
 

 



 
 
 
Below the selection of strain parameters is described. Strain is calculated in NEMO 3-D 
by relaxing the atoms according to the valence force field method by minimizing the total 
energy of the system. The selection of the correct strain model and the boundary 
conditions is critical for proper strain calculations: 



 



 



 
 
(B.4) Output Parameters   
 

The final section of the NEMO 3-D input deck is the output parameter section. 
After selecting the right parameters in the execution parameter section, the NEMO 3-D 
simulation will compute the various physical quantities for a quantum dot simulation. 
However, in general, all of the computed quantities are not needed. For example, one 
might need the electronic structure including the strain and external electrical field, but 



not the strain data or electrical field data. The solution will be to turn ON the strain, 
external field and electronic structure calculations in the execution parameters section 
and turn OFF the strain and external field in the output parameter section. The electronic 
structure will be turned ON in the output parameter section. These settings will generate 
output files which contain the electronic structure data including the strain and the 
external fields. Since the quantum dot simulations are multi-million atom simulations, so 
the output files will be very large. By turning OFF the unnecessary output files in the 
output parameter section, much of the disk space can be saved. 

Below, the various options available in the output parameter section of the NEMO 
3-D input deck are described:  

 

 



 



(C) Format of Output Files Generated by NEMO 3-D 

After compiling NEMO 3-D source code to obtain an executable and setting up 
the input deck XML file for the device geometry construction, the simulation can be run 
serially on a single processor or as a parallel job or various processors using a pbs script 
as defined in section A. If the job completes successfully, the working directory will 
contain the output files that were selected in the output parameter section. Below, the 
name and format of various output files are presented for the first time user to understand 
the output generated by NEMO 3-D simulations. In general, the output files generated by 
NEMO 3-D have the name of XML file as their prefix. For example, if the name of input 
deck is example.xml, then all of the output files will have name example.nd_*.  

  
(1) Energy Dispersion: The name of this file is *Ek. This file contains E versus k 
values. The format is: 

   <kx ky kz Energy> 
 

(2) Eigen-vectors: For each Eigen-value (energy level), one Eigen-vector file is 
computed. For example, if *Ek file contains 10 energy levels, then there will be 10 
Eigen-vector files corresponding to each energy level. The name of the files will be 
*evec_i, where i is the index number of the energy level to which this Eigen-vector 
belong. The format of the file is: 
   <real complex>  real and complex parts of Eigen-vector. 
 
(3) Wave functions: For each Eigen-value (energy level), one wave function file is 
computed. For example, if *Ek file contains 10 energy levels, then there will be 10 wave 
function files corresponding to each energy level. The name of the files will be *wf_i, 
where i is the index number of the energy level to which this wave function belong. The 
format of the file is:    < |ψ|2 > 
     
(4) Local Band Structure: Local band structure file contains local band edge data in the 

sub domain specified in the execution parameter section. One file is generated for 
each processor. The name of file is:  *Ek_proc_pn_kx0.000_ky_0.000_kz_0.000_r 
where pn is the processor number. The format of the file is: 

  <kx ky kz x y z energy  atomType> 
 



(5) Trace of Eigen-values: The name of file is *eval. The file contains Eigen-value 
versus iteration number of the Lanczos Eigen-solver. The format of the file is: 

    <Iteration number Eigen-value> 
 
(6) Optical Matrix Element: The output files generated are optical transition rates for 

incident light polarization along the X, Y and Z Cartesian coordinates. The file names 
are *TransX, *TransY, and *TransZ. The format of the files is: 
 <energy_state_i energy_state_f  energy_gap transition_rate> 
 

(7) Atom Position Files: Atom position file before the strain contains atom coordinates 
in the Cartesian real space. The name of the file is *rAtom_0. The atom positions file 
after the strain contains coordinates in the Cartesian real space after strain relaxation. 
The name of this file is *rAtom_1. The format of both files is: 
    <x y z> 
 

(8)  Atom Type File: This file contains the type of each atom in the form of a unique 
ASCII number assigned to the atom. For example, In atom is assigned a number 14, 
As atom is assigned a number 12, Ga atom is assigned a number 10 etc. The name of 
the file is *aType and format of the file is: 
    <atom_type> 
 

(9)  Neighbor Index File: The name of the file is *nbrIndx. This file contains 
information of 4 nearest neighbors for each atom in the geometry. The ordering is the 
same as the ordering of the atom positions in the rAtom file. The format of this file is: 
  <neighbor-1 neighbor_2 neighbor_3 neighbor_4> 



 

Note: This document is created to serve as a guide for first time users of NEMO 
3-D software who intend to use it for quantum dot simulations. The manual is 
created with great care to provide accurate information. However, the authors do 
not take any responsibility of any kind for the contents presented. The entire risk 
as to the quality, the performance, and the fitness of the manual for any particular 
purpose lies with the party using it. In no event will the authors or any party who 
distributed the manual be liable for damages or for any claim(s) by any third 
party, including but not limited to, any lost profits, lost monies, lost data or data 
rendered inaccurate, losses sustained by third parties, or any other special, 
incidental or consequential damages arising out of the use or inability to use the 
program, even if the possibility of such damages has been advised against.    


