Organic-Inorganic Hybrids for Energy & Environmental Applications

Emmanuel P. Giannelis Materials Science and Engineering

Cornell University College of Engineering

Acknowledgements

Coworkers and Collaborators

- Thanos Bourlinos
- Xiaonan Duan
- Luis Estevez
- Jason Fang
- Nikhil Fernandes
- Liling Fu
- Rafael Herrera
- Antonios Kelalarakis
- Robert Rodriguez
- Abigail Switzer
- Genggeng Qi
- Yanbing Wang

Yue Wang

- Lynden Archer (ChemE, Cornell)
- Larry Cathles (EAS, Cornell)
- Christopher Jones (Georgia Tech)
- Ramanan Krishnamoorti (Houston)
- Peter Mirau (WPAFB)
- Ah-Hyung Alissa Park (Columbia)
- Rich Vaia (WPAFB)

Center for Energy and Sustainability

King Abdullah University of Science and Technology

Cornell University

Energy Needs in 2050

from Lewis & Nocera (2006, PNAS); Nocera (2006, Daedalus)

Polymer Nanocomposites: Opportunities

Synergy

- change of crystal phase/morphology of polymer
- effect on structure/dynamics of polymer chains
- "confinement" effects
- ...as opposed to simple mixtures

Interfaces

- behavior dominated by interfaces/synergy
- ...as opposed to weighted average of bulk properties

Overcome Tradeoffs in Materials Properties/Performance

Polymer Nanocomposites

- Widespread interest in *nanocomposites* has been motivated by the promise of unique performance, design flexibility, and lower cost
 - Market forecast for nanocomposites \$800M by 2011 (24% pa)
- Persistent challenges with poor miscibility, dispersion and interfacial strength have prevented nanocomposites from realizing their full potential

New Nanocomposite Platforms

- a) Organic Molecules Tethered on Nanoparticles
- b) Organic Molecules Tethered on a Porous Matrix

Opportunities: Science & Technology

Particles carry solvent on their back

- No volatiles environmentally friendly
- Tunable materials properties

•

- Fluidity (liquid, gels, LC, solid)
- conductivity, magnetic susceptibility, refractive index
- External fields can be used for assembly

Gen-1 NIMs

Nanoparticle Cores: SiO₂, TiO₂, γ -Fe₂O₃, ZnO, Au, Ag, PbS, CNTs, C₆₀

Gen-2 NIMs

Acid-Base Titration: NIMs Transition

New Platform: NIMs Without Corona

Dispersion of New NIMs

Structure: Experiment & Theory

Au NIMS

Modulating Optical Response

Opportunities in Upstream Exploration and Production

- Map the well connectivity in the field What is the T, P, pH, salinity in the reservoir?
- Map the oil-water interface
- Delivery of surfactants into the reservoir are there surfactants that survive 100 ° C and 100 Kppm salinity (M²⁺)?
- Estimate oil saturation is oil present in droplets or big patches?

Saudi Aramco: Nanotech Europe 09

State of the Art for Nanoparticle Tracers

A large number of fluorescent tracers has been developed especially for biological systems quantum dots encapsulated dyes

...

Stable particle suspensions is a well-known technology practiced in many different fields steric stabilization electrostatic stabilization

Fluorescent nanoparticles that are stable at 100 °C & 100 Kppm salinity (Ca^{2+,} Mg²⁺ and SO₄²⁻ ions) are required

Stability of NP Suspensions

Fluorescent Nanoparticle Tracers

- 2. Uniform size nanoparticles
- 3. Nanoparticles disperse in water (or other solvents) chemistry/length of hairs can be readily controlled
- 4. Synthesis has been scaled-up to Kg

Fluorescence Spectra of Nanoparticle Tracers

Tracers can be detected at 5 ppm level

Saturation at concentrations larger than 200 ppm due to self-quenching

Stability of Nanoparticles in High Salinity

Stable Nanoparticles

Unstable Nanoparticles

15 hr at 150 ° C 62 hr at 150 ° C

16 hr at 150 °C 56 hr at 150 °C

Concentration: 1000 ppm

Nanohybrid Platforms

a) Organic Molecules Tethered on Nanoparticlesb) Organic Molecules Tethered on a Porous Matrix

Carbon Dioxide Capture & Sequestration

- CO₂ is a greenhouse gas
- Post-combustion capture has the greatest near-term potential for reducing CO₂ emissions
- A challenge because of the scale of CO₂ to be captured
 - Low concentration of CO₂ in flue gas
 - Often with other gases including H₂O
- Simple amines such as MEA is the state of the art
 - Corrosive: increases construction cost
 - Evaporate and degrade: need to be replaced frequently
- Several carbon capture technologies under development

New CO₂ Capture Platform

Silica Capsules with Mesoporous Shell

Tetraethylenepentamine (TEPA)

Polyethylenimine (PEI, Mn~430)

CO₂ Capture Platform

Benchmarking Between Sorbents

Maximum capacity at higher amine loadings with capsules

Capsules with thinner shell and larger size are better for capture

SnO₂ Capsules for Battery Anodes

Surface Modification

Controlling Surface Properties

RO/FO Thin-Film Composite (TFC) Membranes

Salt rejection rate and permeability of the membrane remained virtually unchanged

Battery Separators

