Organic-Inorganic Hybrids for Energy & Environmental Applications

Emmanuel P. Giannelis Materials Science and Engineering

Cornell University College of Engineering

Acknowledgements

Coworkers and Collaborators

ENERGY MATCHINES PENTER - PRENCY

- Thanos Bourlinos
- Xiaonan Duan
- Luis Estevez
- Jason Fang
- Nikhil Fernandes
- Liling Fu
- Rafael Herrera
- Antonios Kelalarakis
- Robert Rodriguez
- Abigail Switzer
- Genggeng Qi
- Yanbing Wang

– Yue Wang

- Larry Cathles (EAS, Cornell)
- Christopher Jones (Georgia Tech)
- Ramanan Krishnamoorti (Houston)
- Peter Mirau (WPAFB)
- Ah-Hyung Alissa Park (Columbia)
- Rich Vaia (WPAFB)

Center for **Energy and Sustainability**

Abdullah University of Science and Technology

Cornell University

Energy Needs in 2050

from Lewis & Nocera (2006, PNAS); Nocera (2006, Daedalus)

Polymer Nanocomposites: Opportunities

Synergy

- change of crystal phase/morphology of polymer
- effect on structure/dynamics of polymer chains
- "confinement" effects
- …as opposed to simple mixtures

Interfaces

- behavior dominated by interfaces/synergy
- …as opposed to weighted average of bulk properties

Overcome Tradeoffs in Materials Properties/Performance

Polymer Nanocomposites

- **Widespread interest in** *nanocomposites* **has been motivated by the promise of unique performance, design flexibility, and lower cost**
	- **Market forecast for nanocomposites \$800M by 2011 (24% pa)**
- **Persistent challenges with poor miscibility, dispersion and interfacial strength have prevented nanocomposites from realizing their full potential**

New Nanocomposite Platforms

- a) Organic Molecules Tethered on Nanoparticles a
- b) Organic Molecules Tethered on a Porous Matrix foams (**Fig. 2**). By varying the average particle or

Opportunities: Science & Technology

• **Particles carry solvent on their back**

- No volatiles environmentally friendly
- **Tunable materials properties**
	- Fluidity (liquid, gels, LC, solid)
	- conductivity, magnetic susceptibility, refractive index
	- **External fields can be used for assembly**

Gen-1 NIMs

Nanoparticle Cores: SiO $_2$, TiO $_2$, γ -Fe $_2$ O $_3$, ZnO, Au, Ag, PbS, CNTs, C $_{60}$

Gen-2 NIMs

Acid-Base Titration: NIMs Transition

New Platform: NIMs Without Corona

Dispersion of New NIMs

Structure: Experiment & Theory

Au NIMS

Modulating Optical Response

Opportunities in Upstream Exploration and Production

- **Map the well connectivity in the field What is the T, P, pH, salinity in the reservoir?**
- **Map the oil-water interface**
- **Delivery of surfactants into the reservoir are there surfactants that survive 100** °**C and 100 Kppm salinity (M2+) ?**
- **Estimate oil saturation is oil present in droplets or big patches?**

State of the Art for Nanoparticle Tracers

A large number of fluorescent tracers has been developed especially for biological systems quantum dots encapsulated dyes

…

Stable particle suspensions is a well-known technology practiced in many different fields steric stabilization electrostatic stabilization

Fluorescent nanoparticles that are stable at 100 °**C & 100 Kppm salinity (Ca 2+, Mg2+ and SO⁴ 2- ions) are required**

Stability of NP Suspensions

Fluorescent Nanoparticle Tracers

-
- **2. Uniform size nanoparticles**
- **3. Nanoparticles disperse in water (or other solvents) chemistry/length of hairs can be readily controlled**
- **4. Synthesis has been scaled-up to Kg**

Fluorescence Spectra of Nanoparticle Tracers

Tracers can be detected at 5 ppm level

Saturation at concentrations larger than 200 ppm due to self-quenching

Stability of Nanoparticles in High Salinity

Stable Nanoparticles

Unstable Nanoparticles

15 hr at 150 °**C 62 hr at 150** °**C**

16 hr at 150 °**C 56 hr at 150** °**C**

Concentration: 1000 ppm

Nanohybrid Platforms

a) Organic Molecules Tethered on Nanoparticles b) Organic Molecules Tethered on a Porous Matrix α foams (**Fig. 2**). By varying the average particle or

Carbon Dioxide Capture & Sequestration

- **CO2 is a greenhouse gas**
- **Post-combustion capture has the greatest near-term potential for reducing CO² emissions**
- **A challenge because of the scale of CO² to be captured**
	- **Low concentration of CO² in flue gas**
	- **Often with other gases including H₂O**
- **Simple amines such as MEA is the state of the art**
	- **Corrosive: increases construction cost**
	- **Evaporate and degrade: need to be replaced frequently**
- **Several carbon capture technologies under development**

New CO² Capture Platform

Silica Capsules with Mesoporous Shell

Tetraethylenepentamine (TEPA)

Polyethylenimine (PEI, Mn~430)

CO² Capture Platform

Benchmarking Between Sorbents

Maximum capacity at higher amine loadings with capsules

Capsules with thinner shell and larger size are better for capture

SnO² Capsules for Battery Anodes

Surface Modification

Controlling Surface Properties

RO/FO Thin-Film Composite (TFC) Membranes

Salt rejection rate and permeability of the membrane remained virtually unchanged

Battery Separators

