This tool version is unpublished and cannot be run. If you would like to have this version staged, you can put a request through HUB Support.
Band Structure Lab
Computes the electronic structure of various materials in the spatial configuration of bulk (infinitely periodic), quantum wells (confined in one dimension, infinitely periodic in 2 dimensions), and wires (confined in 2 dimensions and infinitely...
Launch Tool
Archive Version 2.0.1
Published on 09 Sep 2008, unpublished on 26 Sep 2008 All versions
doi:10.4231/D3125Q85Q cite this
Category
Published on
Abstract
- Chapter 5 of Quantum Transport by S. Datta (Cambridge, 2005)
- bulk effective mass table is not correct for light, and heavy hole bands
- charge self-consistent calculation appears to be unstable for some devices
- nanowire dimensions exceeding 5-6nm in diameter appear to crash the simulations. More work is needed in the tool
Powered by
OMEN
Credits
Bandstructure Lab is based on the tight binding model of Boykin and Klimeck, and builds on the work of several Ph.D. students and other researchers:
M. Luisier, A. Paul | ... Core C simulator, beginning with Version 2.0 |
A. Paul | ... GUI development and OMEN integration of version 2.0 |
M. Luisier, N. Neophytou, Y. Liu | ... Core Matlab simulator, prior to Version 2.0 |
A. Matsudaira, M. McLennan | ... GUI development of version 1.0 |
R. Kim | ... Led the integration effort of Version 1.0 |
J. Wang, N. Neophytou | ... Nanowire simulation theory |
A. Rahman | ... Bulk and thin-film simulation theory |
Sponsored by
NCN@Purdue, MSD FCRP, SRC
Cite this work
Researchers should cite this work as follows:
- For the tight-binding methodology:
Gerhard Klimeck, Fabiano Oyafuso, Timothy B. Boykin, R. Chris Bowen, and Paul von Allmen, "Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots" (INVITED), Computer Modeling in Engineering and Science (CMES) Volume 3, No. 5 pp 601-642 (2002). - For nanowire model and results:
Jing Wang, Anisur Rahman, Gerhard Klimeck and Mark Lundstrom, "Bandstructure and Orientation Effects in
Ballistic Si and Ge Nanowire FETs", IEEE International Electron Devices Meeting (IEDM) Tech. Digest, pp. 537-540, Washington D. C., Dec. 5-7, 2005.