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ABSTRACT 
 
 
 
Wang, Jing.  Ph.D., Purdue University, August, 2005.  Device Physics and Simulation of 
Silicon Nanowire Transistors.  Major Professor: Mark S. Lundstrom. 
 
 

As the conventional silicon metal-oxide-semiconductor field-effect transistor 

(MOSFET) approaches its scaling limits, many novel device structures are being 

extensively explored.  Among them, the silicon nanowire transistor (SNWT) has attracted 

broad attention from both the semiconductor industry and academia.  To understand 

device physics in depth and to assess the performance limits of SNWTs, simulation is 

becoming increasingly important.  The objectives of this thesis are: 1) to theoretically 

explore the essential physics of SNWTs (e.g., electrostatics, transport and bandstructure) 

by performing computer-based simulations, and 2) to assess the performance limits and 

scaling potentials of SNWTs and to address the SNWT design issues.  A full three-

dimensional, self-consistent, ballistic SNWT simulator has been developed based on the 

effective-mass approximation with which we have evaluated the upper performance 

limits of SNWTs with various cross-sections (i.e., triangular, rectangular and cylindrical).  

The results show that SNWTs provide better scaling capability than planar MOSFETs.  A 

microscopic, quantum treatment of surface roughness scattering (SRS) in SNWTs has 

also been accomplished, and it shows that SRS is less important in SNWTs with small 

diameters than in planar MOSFETs.  Finally, bandstructure effects in SNWTs with small 

diameters have been examined by using an empirical tight binding model, and a channel 

orientation optimization has been done for both silicon and germanium nanowire field-

effect transistors. 
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1. INTRODUCTION 

 
1.1 Background – The Emerging of Silicon Nanowire Transistors 

  

 Integrated Circuit (IC) technology has been regarded as one of the most important 

inventions in engineering history.  The tremendous progress in IC technology in the past 

four decades has become the driving power of the Information Technology (IT) 

revolution, which has marvelously changed our lives and the whole world.  The secret of 

the miracle in IC technology is actually simple: scaling down the dimension of each 

transistor, the basic element of integrated circuits, and increasing the total number of 

transistors in one IC chip.  The device scaling has been successfully predicted by 

Moore’s law [1] – the number of transistors on one IC chip has quadrupled every three 

years and the feature size of each transistor has shrunk to half of its original value at the 

same time.  To date, microprocessors with >100 million transistors have been realized, 

and the corresponding metal-oxide-semiconductor field-effect transistor (MOSFET) gate 

lengths in modern IC chips have entered the sub-100nm regime.  

Continued success in device scaling is necessary for maintaining the successive 

improvements in IC technology.  As the MOSFET gate length enters the nanometer 

regime, however, short channel effects (SCEs) [2], such as threshold voltage (VT) rolloff 

and drain-induced-barrier-lowering (DIBL), become increasingly significant, which 

limits the scaling capability of planar bulk or silicon-on-insulator (SOI) MOSFETs.  At 

the same time, the relatively low carrier mobility in silicon (compared with other 

semiconductors) may also degrade the MOSFET device performance (e.g., ON-current 

and intrinsic device delay).  For these reasons, various novel device structures and 

materials – silicon nanowire transistors [3] [4], carbon nanotube FETs [5] [6], new 

channel materials (e.g., strained silicon, pure germanium) [7] [8], molecular transistors 
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[9], et al. – are being extensively explored.  Among all these promising post-CMOS 

structures, the silicon nanowire transistor (SNWT) has its unique advantage – the SNWT 

is based on silicon, a material that the semiconductor industry has been working on for 

over thirty years; it would be really attractive to stay on silicon and also achieve good 

device metrics that nanoelectronics provides.  As a result, the silicon nanowire transistor 

has obtained broad attention from both the semiconductor industry [10] [11] and 

academia [3] [12] [13].  According to the fabrication technology, recently reported 

SNWTs can be categorized into two groups:  

1) The first-type SNWTs can be viewed as ‘narrow-channel’ SOI MOSFETs 

realized by using a ‘top-down’ approach [10] [11] [12] [13] [14] [15].  

Different from planar SOI FETs, the channel (Si body) widths of SNWTs are 

lithography-defined and comparable to the Si body thicknesses, so the gate 

stacks are allowed to wrap around the wire channels to realize multi-gate or 

gate-all-around FETs, which offer better gate control than planar MOSFETs 

[4] [13] [16].  In current experimental SNWT structures [10] [11] [12] [13] 

[14] [15], the wire dimensions (i.e., Si body thickness and width) range from 

10nm to 100nm.  At the scaling limit, where the device gate length is probably 

shorter than 10nm [17], this dimension has to be scaled down to the sub-10nm 

regime to maintain good electrostatic integrity. [4]  To do this, very-high-

resolution lithography (e.g., <5nm) is required to define the nanowire widths.  

Therefore, the ultimate scaling of the top-down SNWTs could be limited by 

the highest resolution of lithography that can be achieved in practice. It should 

also be noted that the minimum lithography-defined length in the circuits 

based on the top-down SNWTs should be the SNWT channel (Si body) width 

instead of the transistor gate length.  

2) To avoid very-high-resolution lithography in the SNWT fabrication, a number 

of experimental groups [3] [18] [19] [20] [21] [22] [23] are trying to 

synthesize semiconductor (e.g., Si, Ge, GaN) nanowires by using ‘bottom-up’ 

approaches, such as the Vapor-Liquid-Solid (VLS) growth technique [19] [22] 

[23].  With this technology, single-crystal Si nanowires with a diameter as 
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small as 2-3nm have been achieved. [19] [20]  Based on these bottom-up 

nanowires, various types of devices and circuit components have been 

experimentally demonstrated, e.g., field-effect transistors (FETs) [3] [18] [24], 

nanowire heterojunctions [22] [23] [25], logic gates [26], memory [27], 

decoders [28], bipolar transistors [29], thin-film transistors [30], light emitting 

diodes (LEDs) [31], lasers [32] [33], photodetectors [34], and nanosensors 

[35].  For the FET application, in particular, the bottom-up technique offers a 

possible, low-cost solution to achieve nanowires with ultra-small diameters 

and relatively smooth interfaces, which are essentially important for scaling 

the transistor gate length below 10nm. 

In brief, the rapid progress in nanofabrication technology has shed light on the 

potential use of silicon nanowire transistors in future electronics.  Consequently, 

understanding device physics of SNWTs and developing TCAD (Technology Computer 

Aided Design) tools for SNWT design become increasingly important.  The principle 

objective of the thesis is to theoretically explore device physics of silicon nanowire 

transistors by doing computer-based numerical simulations.  With the simulation tools we 

develop, we will subsequently assess the ultimate performance limits of SNWTs and 

address the important issues in SNWT device design. 

 

1.2 Overview of the Methodology 

  

 In this section, we briefly discuss the simulation techniques we use in this work.  

The details of the methodology will be discussed in the following chapters. 

 

1.2.1 The self-consistent simulation scheme 

  

 Simulation of electron devices normally involves a self-consistent simulation 

scheme between the electrostatic potential and the charge distribution inside the devices.  

When a device is coupled to the contacts (electrodes), some charge is transferred into or 

out of the device (e.g., for the source/drain contacts), or some electric field lines penetrate 
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into or inject out of the device (e.g., for the gate contact); both effects will result a self-

consistent potential ( )SCU r
G

 (see Fig. 1.1).  This potential is called ‘self-consistent’ 

because changes in ( )SCU r
G

 alter the charge density ( )rρ
G

 inside the device, which in 

turn modifies the potential ( )SCU r
G

 until both the charge density and the potential attain 

consistent values.  To correctly model this process, we need to solve two major equations 

in our simulations.  The first one is Poisson equation [36], 

( ) ( )( ) ( )SCr U r rε ρ∇ ∇ = −
JG G JG G G

,    (1.1) 

which determines the self-consistent potential ( )SCU r
G

 for a given charge density ( )rρ
G

 

(see Fig. 1.1).  Here the dielectric coefficient ( )rε
G

 is, in general, position-dependent due 

to the material transition from one simulated region to another (e.g., from the Si body to 

SiO2 layers).  

The second one is the transport equation that is solved to obtain the electron 

(carrier) density ( )n r
G

inside the device for a given ( )SCU r
G

.  In the semiclassical context, 

carrier transport is described by the Boltzmann Transport Equation (BTE) [36].  In BTE, 

it is assumed that the motion of a single particle (e.g., electron) obeys Newton’s second 

law while the collective behavior of the particle system (e.g., a collection of electrons) is 

described by statistical mechanics. [36]  This assumption works quite well when the 

device size is relatively large (i.e., much larger than the de Broglie wavelength of 

electrons). [36]  In the nanometer regime, however, the wave-like behavior of electrons 

becomes substantially significant, so the semiclassical transport equation may not be 

valid anymore.  As a result, a full quantum mechanical transport model, such as the non-

equilibrium Green’s function (NEGF) approach [37] [38], is necessary. 

 

1.2.2 The NEGF formalism 

 

 The NEGF approach is a widely used method for nanoscale device simulation. 

[39] [40] [41] [42]  A tutorial description of this formalism is available in [38].  Here we 
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simply review the basic concepts and procedure that we need for the SNWT simulation.  

Within the NEGF formalism, the device is represented by a Hamiltonian, H, which is 

coupled to two infinite reservoirs, the source (S) and drain (D).  The S/D reservoirs are 

characterized by their respective Fermi levels, Sµ  and Dµ , which are determined by the 

applied voltage biases.  Coupling between the active device and the S/D contacts can be 

described by introducing the self-energy matrices, SΣ and DΣ .  Incoherent carrier 

transport (due to scattering) inside the device can also be captured by the self-energy 

( ScatΣ ) method.  Once H, SΣ , DΣ , Sµ , Dµ  and ScatΣ  are obtained, the electron density 

matrix and transmission coefficient at a given energy can be evaluated [38], and then the 

electron density and terminal currents are computed by doing numerical integrations over 

the energy space (see Fig. 1.1).  (To be concise in this section, we refer readers to [37] 

and [38] for the details of the NEGF formalism.) 

 
Fig. 1.1 Schematic Structure of a device coupled to the source/drain contacts and the self-

consistent scheme that is used in the SNWT simulation. 

Source Drain 

Sµ  Dµ  
Device 

{ H , SCU , ScatΣ } 

SΣ  DΣ  

NEGF 

SCU ρ⎯⎯→  

{ H, SΣ , DΣ , ScatΣ , Sµ , Dµ } 

Poisson Eq. 
SCUρ ⎯⎯→  
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 To discretize the operators, H, SΣ , DΣ , and ScatΣ , the effective-mass (EM) 

approximation [43] [44] is adopted.  With the EM approximation, the Si and SiO2 regions 

in SNWTs are treated as continuous materials, which allows a real space discretization of 

the operators based on the Finite Difference Method (FDM) or the Finite Element 

Method (FEM). [44] [45] [46] [47]  To reduce the huge computational complexity in the 

three-dimensional (3D) real space simulation, we utilize a coupled/uncoupled mode-

space representation, which greatly minimizes the size of the operator matrices (i.e., H, 

SΣ , DΣ , ScatΣ , et al.) while keeping very high simulation accuracy. [44] [45] [47]  This 

allows us to generate a practical, full 3D, quantum mechanical simulator that can be used 

for SNWT simulation and design.  The details of this quantum mechanical SNWT 

simulator will be discussed in Chapter 3. 

Within the NEGF formalism, the self-consistent procedure for a quantum 

mechanical simulation of SNWTs consists of the following steps: 

1) Given a particular SNWT structure, we first select an appropriate method (e.g., 

FDM or FEM) to discretize all the operators. 

2) To start the self-consistent loop, we need to give a guess value of ( )SCU r
G

.  

This guess value may be obtained from a semiclassical simulation (e.g., a 

ballistic solution of BTE [48]). 

3) For a given ( )SCU r
G

, we can write down the device Hamiltonian, H, and then 

calculate the contact self-energy matrices, SΣ  and DΣ , and the self-energy 

matrix, ScatΣ , that represents incoherent carrier transport in SNWTs. 

4) With all the information obtained in the steps above, the retarded Green’s 

function is evaluated and then the density matrix is computed. 

5) Knowing the electron density inside the SNWT, a 3D Poisson equation is 

solved for the self-consistent potential, ( )SCU r
G

. 

6) Steps 3) – 5) are iterated until both the computed self-consistent potential and 

the electron density converge. 
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7) With the converged self-consistent potential and density matrix, the terminal 

currents of SNWTs are calculated. 

 

1.2.3 Atomistic simulations of SNWTs 

 

 Due to the two-dimensional (2D) quantum confinement, the bulk crystal 

symmetry is not preserved in silicon nanowires any more.  For this reason, atomistic 

bandstructure effects are expected to be important in nanowires with small diameters.  In 

this thesis, we also explore the impact of bandstructure effects on SNWT device 

characteristics by performing atomistic simulations.  Instead of doing a full 3D, atomistic 

simulation within the NEGF formalism, which is discouraged by its huge computational 

burden, we perform the atomistic simulations in the following way.  First, we calculate 

the energy dispersion (E-k) relations of silicon nanowires by using a nearest-neighbor 

sp3d5s* tight binding approach [49] [50] [51].  Based on the computed E-k relations, the 

current-voltage characteristics of the corresponding SNWTs are then evaluated with a 

semi-numerical, ballistic FET model, named ‘FETToy’ [52] [53].  (The FETToy model 

will be introduced in Chapter 2.)  By doing this, the bandstructure effects on SNWTs 

with arbitrary wire orientation and cross-sectional shapes can be investigated.  The details 

of these atomistic simulations of SNWTs will be found in Chapter 6. 

  

1.3 Outline of the Thesis 

 

 This thesis is divided into the following chapters: 

1) Before we perform the detailed quantum mechanical simulation of SNWTs, a 

simple, analytical theory of ballistic SNWTs is presented in Chapter 2.  This 

model is derived by modifying an analytical approach (‘FETToy’) proposed 

by A. Rahman et al. [52] for ballistic planar MOSFETs and then extended by J. 

Wang et al. [54] for ballistic high electron mobility transistors (HEMTs).  The 

model treats 3D electrostatics, captures the finite semiconductor capacitance 

effect (or the so called ‘quantum capacitance limit’ [55] [56]) and can be used 
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to include detailed, numerical bandstructures of SNWTs (see Chapter 6).  The 

results of this chapter illustrate the essential physics and peculiarities of one-

dimensional (1D) nanowire FETs. 

2) In Chapter 3, we present a self-consistent, full 3D quantum simulation of 

SNWTs based on the effective-mass approximation [43] [44]. First, we 

introduce the coupled/uncoupled mode space approach, which significantly 

reduces the computational expense while maintaining great accuracy as 

compared with the full 3D real space representation.  Then we present the 

simulation results of ballistic SNWTs with various cross-sections (e.g., 

triangular, rectangular and cylindrical).  Within the NEGF framework shown 

in this chapter, scattering in SNWTs can be phenomenologically treated by a 

simple model, so called the ‘Büttiker probes’ [57], which was previously 

adopted in MOSFET simulations [42].  The details of this method will be 

shown in Appendix. 

3) Chapter 4 discusses the performance limits and scaling potential of ballistic 

SNWTs.  It consists of three different topics.  Sec. 4.1 shows a comparison 

between the upper performance limit of SNWTs with that of the planar 

double-gate MOSFET. [4]  In Sec. 4.2, we propose a general approach to 

compare planar vs. non-planar (nanowire) FETs with the consideration of both 

Electrostatic integrity (gate control) and Quantum confinement (so called the 

‘EQ approach’). [58]  Sec. 4.3 introduces a conceptual study of the channel 

material optimization for both planar MOSFETs and nanowire FETs based on 

the effective-mass approximation. [59] 

4) In Chapter 5, we perform a microscopic simulation of surface roughness 

scattering (SRS) in SNWTs. [60]  The transport model we use is the coupled 

mode space approach that has been introduced in Chapter 3.  By using the 3D 

finite element method, the microscopic structure of the Si/SiO2 interface 

roughness [61] [62] is directly implemented.  The results show that SRS 

behaves quite differently in a SNWT as compared with a conventional planar 
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MOSFET, and SRS in a 1D SNWT is not as significant as that in a 2D 

MOSFET due to the reduction of density-of-states in the SNWT channel.  

5) Chapter 6 discusses atomistic simulations of Si and Ge nanowire FETs. [63] 

[64]  Based on a nearest-neighbor sp3d5s* tight binding approach [49] [50] 

[51], we develop a simulator that can calculate E-k relations for unrelaxed Si 

and Ge nanowires with arbitrary wire orientations and cross-sectional shapes.   

With the calculated E-k relations, current-voltage characteristics of various Si 

and Ge nanowire FETs are computed by using the FETToy model, introduced 

in Chapter 2.  The impact of bandstructure effects on SNWT performance is 

investigated and the channel orientation optimization for Si and Ge nanowire 

FETs is performed.  Finally, the validity of the widely-used parabolic 

effective-mass approximation for current-voltage calculation of n-type 

SNWTs is examined. 

6) Chapter 7 summarizes the thesis and proposes possible directions for future 

research.   
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2. ANALYTICAL THEORY OF BALLISTIC NANOWIRE 

TRANSISTORS 

 
This chapter describes an analytical theory of ballistic silicon nanowire transistors 

(SNWTs). The model is derived by modifying an analytical approach proposed by A. 

Rahman et al. for ballistic planar MOSFETs [52] and extended by J. Wang et al. [54] for 

ballistic high electron mobility transistors (HEMTs).  Although detailed numerical 

simulations of SNWTs will be performed in the following chapters, a simple analytical 

theory still has its special uses and importance:  

1) The analytical theory may explicitly demonstrate the dependence of device 

metrics (e.g., ON-current, transconductance) on device parameters (e.g., oxide 

capacitance, electron effective-mass) and applied voltage biases, which helps 

to understand the essential physics of one-dimensional (1D) nanowire FETs 

and to interpret numerical simulation results.  

2) The simple model is highly efficient compared with three-dimensional (3D) 

numerical simulators, so it can be used to obtain a quick estimation of the 

ballistic performance limit for a given SNWT structure. 

3) Although the calculations in this chapter are all based on the effective-mass 

approximation [43] [44] (an ellipsoidal parabolic energy band is assumed), 

this analytical approach can also be extended to compute the ballistic currents 

with arbitrary E-k diagrams [52].  Therefore, it will play an important role 

when evaluating the bandstructure effects on SNWT performance (Chapter 6). 

This chapter is divided into the following sections: Sec. 2.1 describes the 

methodology and basic assumptions, Sec. 2.2 shows the simulation results and discusses 

the peculiarities of 1D nanowire FETs, and Sec. 2.3 summarizes the chapter. 
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2.1 Methodology 

 

  In [52], the authors proposed a general ballistic FET model (named ‘FETToy’ 

[53]) that correctly captures quantum confinement, two-dimensional (2D) electrostatics, 

and bias-charge self-consistency in ballistic FETs.  It generalizes Natori’s model [65] by 

treating 2D electrostatics and by properly treating the 1D electrostatics – even in the 

quantum capacitance limit, where the gate insulator capacitance is much greater than the 

semiconductor (or quantum) capacitance [55] [56].  Fig. 2.1 summarizes the essential 

aspects of this model.  It consists of three capacitors, GC , SC , and DC , which describe the 

electrostatic couplings between the top of the barrier and the gate, the source and the 

drain, respectively. [52]  The potential at the top of the barrier is obtained as 

( )
TopG SD

scf G D S
G D S G D S G D S G D S

QC CCU V V V
C C C C C C C C C C C C

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + + + + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 

(2.1) 

where VG, VS, and VD are the applied biases at the gate, the source and the drain, 

respectively, and QTop is the mobile charge at the top of the barrier, which is determined 

by Uscf, the source and drain Fermi levels (EFS and EFD) and the E-k relation for the 

channel material.  To be specific, the group velocity of each state is calculated from the 

tabulated E-k data of the channel materials, and the carrier density is then evaluated by 

assuming that the states with a positive (negative) group velocity are in equilibrium with 

the source (drain) reservoir.  (For channel materials with a parabolic energy band, the +k 

states always obtain a positive group velocity, while the –k states acquire a negative one.)  

The process of computing the potential at the top of the barrier from Eq. (2.1), then 

updating the mobile charge there continues until convergence is achieved after which the 

drain current is readily evaluated from the known populations of all the states in the 

energy band.  For a detailed discussion of the model and the equations for the calculation 

of the mobile charge and electronic current for a planar double-gate MOSFET, please 

refer to [52].  
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(a) 

 

 
(b) 

Fig. 2.1 Illustration of the essential features of the analytical ballistic model.  (a) The 3-
capacitor model to treat 2D (3D) electrostatics in nanoscale FETs.  (b) The semiclassical 
ballistic transport model to calculate the electron current and the mobile (electron) charge 

at the top of the barrier. 
 

 

In this work, we modify this model to simulate ballistic nanowire transistors. 

Compared with a planar double-gate MOSFET, a nanowire FET has two major 

differences that need to be considered in this simulation: 

+k -k 

EFD 

QTop 
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E(k) 
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Ballistic Transport 
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CDCSVS 

EC(x) Electrostatics



13 

1) For a planar double-gate MOSFET, the gate oxide capacitance, GC , is 

analytically obtained as 

     02
G

ox

C
T
κε

= ,                                                      (2.2) 

 where κ  is the oxide dielectric constant, 0ε  is the permittivity of vacuum and 

oxT  is the oxide thickness.  For a nanowire FET, however, the gate oxide 

capacitance does not have an analytical expression in general, so it should be 

numerically computed by solving a 2D Poisson equation at the cross-section 

of the SNWT.  In this section, we assume a coaxial gate geometry, for which 

the gate oxide capacitance, GC , can be analytically obtained as [66] 

02
2ln

G
ox Si

Si

C
T T

T

πκε
=

⎛ ⎞+
⎜ ⎟
⎝ ⎠

,                       (2.3) 

 where SiT is the diameter of the silicon body. 

2) Due to the 1D E-k relation for a nanowire FET, the equations for the SNWT 

charge density and current are different from those for 2D planar MOSFETs. 

[52]  To be specific, the mobile charge at the top of the barrier is obtained as 

( ) ( ) ( )1 1
1/ 2 1/ 22 2

D D
Top F F D

qN qNQ q n n Uη η+ −
− −= − + = − ℑ − ℑ − ,          (2.4) 

 where q is the electron charge and 

  
*

1 2

2 B x
D

k TmN M
π

=
=

,                       (2.5) 

 here *
xm  is the electron effective-mass in the transport direction, =  is Plank 

constant, Bk  is Boltzmann constant, T  is the ambient temperature and M  is 

the valley degeneracy (for a cylindrical SNWT with a [ ]100  oriented channel, 

4M =  and  * 0.19x em m= , where em  is the free electron mass). Fη  in Eq. (2.4) 

is defined as 
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( )( )0S scf
F

B

qU
k T

µ ε
η

− −
= ,                                       (2.6) 

 where Sµ  is the source Fermi level and ( )0ε  represents the lowest subband 

level at the top of the barrier when 0scfU = .  DU  in Eq. (2.4) is defined by the 

following equation 

  DS
D

B

VU
k T

= ,                                                    (2.7) 

 where DS D SV V V= −  is the applied drain bias.  The function ( )j ηℑ  is so 

called Fermi integral [36], which is defined as 

( ) ( ) ( )0

1
1 1 exp

j

j
x dx

j x
η

η
∞

ℑ =
Γ + + −∫ .                               (2.8) 

 Similarly, the electron current for a nanowire FET can be analytically 

expressed as 

( ) ( )0 0
1ln

1

F

F D

B B
F F D U

qk T qk T eI I I M U M
e

η

ηη η
π π

+ −
−

⎛ ⎞+
= − = ℑ −ℑ − =⎡ ⎤ ⎜ ⎟⎣ ⎦ +⎝ ⎠= =

. (2.9) 

The self-consistent simulation scheme of this simple analytical model is as 

follows.  We start with a guess solution of Uscf, and the mobile charge, QTop, is thus  

evaluated from Eq. (2.4).  Then the computed QTop is fed back into Eq. (2.1) to obtain an 

updated Uscf.  This process is iterated until a converged Uscf is achieved.  After that, the 

electron current of the device is evaluated from Eq. (2.9). 

Finally, let us briefly discuss several basic assumptions we have made in this 

simple analytical approach: 

1)  We assume a coaxial gate geometry and neglect the quantum confinement so 

that an analytical expression of the gate oxide capacitance is obtained.  In 

general, to evaluate the gate oxide capacitance for an arbitrary SNWT 

structure with the consideration of quantum confinement, which keeps the 

electron charge centroid somehow away from the Si/SiO2 interfaces, a 2D 

Poisson equation needs to be numerically solved together with a 2D 

Schrödinger equation. (To be concise, it is not shown here.) 
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2)  In this section, only one subband at each valley is included when evaluating 

electron charge and current.  This is a sound approximation when the Si body 

thickness (diameter) of the nanowire is sufficiently small (e.g., <2nm).  For 

nanowire FETs with thicker bodies, multiple subbands should be considered. 

As described in [54], this simple analytical model can be easily extended to 

include multi-subbands in the calculation of mobile charge density and 

terminal currents. 

3)  As mentioned earlier, this simple analytical model is based on a semiclassical 

ballistic transport model, in which the quantum mechanical tunneling from the 

source to the drain is not considered.  According to [17], source-to-drain 

tunneling may not be important when the channel length of the FET is >8nm, 

especially for the ON-state.  Therefore, the semiclassical ballistic transport 

model is well acceptable in this simple analytical simulation. 

 

2.2 Simulation Results and Essential Physics of 1D Nanowire FETs 

 

 In this section, we simulate an idealized, ballistic nanowire FET by using the 

simple analytical approach described in Sec. 2.1.  A coaxial gate geometry configuration 

is assumed and the channel is [ ]100  oriented, so the valley degeneracy is 4M = (i.e., the 

four unprimed valleys, [ ]010 , 010⎡ ⎤⎣ ⎦ , [ ]001 , and 001⎡ ⎤⎣ ⎦ , are degenerate) and the 

longitudinal effective-mass is * 0.19x em m= .  A hypothetically thin silicon body, 1nmSiT = , 

is selected to guarantee that only the lowest subband at each valley is occupied.  

Moreover, we assume the oxide layer thickness is 1nmoxT =  and two oxide dielectric 

constants, κ , are used in the simulation: 1) 3.9κ =  is for a SiO2 layer and 2) 80κ = is 

for a hypothetical high-K insulator (e.g., ZrO2), which is selected to illustrate the full-

degenerate and quantum capacitance effects in nanowire FETs.  To capture the 3D 

electrostatics in the simulated nanowire FETs, we assume that 

0.88G
G

G D S

C
C C C

α = =
+ +

,                                    (2.10) 
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and 

0.035D
D

G D S

C
C C C

α = =
+ +

.                                  (2.11) 

A) I-V Characteristics: 

 Figure 2.2 plots the (a) ( )log DSI  vs. GSV  transfer characteristics and (b) DSI  vs. 

DSV  characteristics of the simulated SNWT with a SiO2 layer ( 3.9κ = ).  Fig. 2.3 is the 

same plot for the SNWT with a high-K insulator layer ( 80κ = ).  It is shown that 

for 3.9κ = , the channel conductance increases with gate voltage, while for 80κ = , it 

saturates when the gate voltage is sufficiently high (this effect is also clearly illustrated in 

Fig. 2.3a – the current saturates under low drain bias when the gate voltage is larger than 

0.5V).  To explain this, we first need to obtain an expression for the nanowire FET 

current under low drain bias.  From Eq. (2.9), under low drain bias ( 1DU �  or 

D FU η� ), 

( ) ( ) 2
0 / / 2

1 1F F

F DS BB B DS
D

F

V k T qqk T qk T q VI M U M M
e h eη η

η
π η π − −

∂ℑ
= = =

∂ + += =
.     (2.12) 

So the channel conductance [2] of a nanowire FET is obtained as 
22 1

1 Fd
qg M
h e η−=

+
.                 (2.13a) 

At the non-degenerate condition, 0Fη <  and 1Fη �  (i.e., the source Fermi level is well 

below the top of the barrier), 2(2 / ) F
dg M q h eη� .  As the gate voltage increases, Fη  is 

raised and the channel conductance increases.  But once the full-degenerate condition, 

1Fη �  (i.e., the source Fermi level is well above the top of the barrier), is satisfied, the 

channel conductance saturates to a fixed value (independent of any device parameters),  

( )22 /dg M q h= ,   (full-degenerate)             (2.13b)  

which is so called quantum conductance [37].  For the SNWT with a high-K insulator 

layer ( 80κ = ), due to the large gate capacitance, the top of the barrier can be efficiently 

lowered by increasing the gate voltage.  Consequently, the device easily enters the full-

degenerate regime when the gate bias is large than 0.5V.  For the SNWT with a SiO2 
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layer ( 3.9κ = ), however, the gate capacitance is significantly lower than that for 80κ =  

and the full-degenerate condition can not be achieved at the bias range (0V-1V) used in 

this simulation. 

 

 

 

Fig. 2.2 (a) ( )log DSI  vs. GSV  transfer characteristics and (b) DSI  vs. DSV  characteristics 
of the simulated SNWT with a SiO2 insulator layer ( 3.9κ = ). 

 

 

(a) 

(b) 
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(a) 

 
(b) 

Fig. 2.3 (a) ( )log DSI  vs. GSV  transfer characteristics and (b) DSI  vs. DSV  characteristics 
of the simulated SNWT with a high-K insulator layer ( 80κ = ). 

 

 

B) Quantum Capacitance: 

 It is clear from Eq. (2.4) that the mobile charge, QTop, depends on the potential at 

the top of the barrier, Uscf.  To describe this relation, a non-linear, quantum or 

semiconductor capacitance can be defined as [52] [55] [56] 

Saturation of the 
drain current 
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Top
Q

scf

Q
C

U
∂

≡
∂

.                (2.14) 

Under high drain bias (e.g., ON-state), ( ) ( )1 1/ 2/ 2Top D FQ qn qN η+
−= − = − ℑ , so 

( )2
1/ 21

2
Top Top FF D

Q
scf F scf B F

Q Q q NC
U U k T

ηη
η η

−∂ ∂ ∂ℑ∂
= = =
∂ ∂ ∂ ∂

.                (2.15) 

In general, the quantum capacitance, QC , needs to be evaluated numerically from Eq. 

(2.15).  At the non-degenerate ( 0Fη <  and 1Fη � ) or full-degenerate ( 1Fη � ) limits, 

however, an analytical relation between QC  and Fη  can be obtained as follows.  

According to the properties of the Fermi integrals [36], 

( ) ( )expj η ηℑ � , when 0η <  and 1η � ,           (2.16a) 

and 

( ) ( )
1

2

j

j j
ηη

+

ℑ
Γ +

� , when 1η � ,    (2.16b) 

the quantum capacitance, QC ,  is obtained as 

( ) ( )
2 4 *

1
2

exp
exp

2 2
FD x

Q F
B F B

q N q mC M
k T k T

η
η

η π
∂

= = ⋅
∂ =

, (non-degenerate)  (2.17a) 

or 

( ) ( )( )
4 * 4 *2 1/2

1/21
2 2 2 2

2 2
2 3/ 2 0

x xD F
Q F

B F B S scf

q m q mq NC M M
k T k T qU

η η
η π π µ ε

−∂
= = ⋅ =

Γ ∂ ⎡ ⎤− −⎣ ⎦
= =

, 

(full-degenerate).    (2.17b) 

It is implied from Eq. (2.17) that the quantum capacitance increases with the gate 

voltage under low gate bias (non-degenerate) while it decreases with the gate voltage 

under high gate bias (full-degenerate).  This effect is clearly illustrated in Fig. 2.4, the QC  

vs. GSV  plots for the simulated SNWT with (a) a SiO2 layer and (b) a high-K ( 80κ = ) 

insulator layer.  As discussed in [52] [55] [56], when the gate insulator capacitance is 

significantly larger than the quantum capacitance (i.e., / 0Q GC C → ), the FET works at 

the quantum capacitance limit (QCL) – the potential at the top of the barrier is insensitive 
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to the local electron charge, QTop, and is solely determined by the applied voltage biases, 

GV , DV  and SV .  From Fig. 2.4a, we found that G QC C<  when 0.28VGSV > , so the QCL 

is not achieved at the ON-state for the SiO2 layer.  For the high-K ( 80κ = ) insulator 

layer, 94.05 10 F/mG QC C−= i �  under the applied gate voltages ( 0V 1VGSV< < ), so the 

device is working close to the QCL. 

 

 

 
Fig. 2.4 QC  vs. GSV  plots for the simulated SNWT with (a) a SiO2 layer and (b) a high-K 

( 80κ = ) insulator layer. 

(b) 

(a) 
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There are several interesting phenomena that happen at the QCL.  First, let us 

derive an expression for the transconductance of a 1D SNWT.  Transconductance, mg , 

for a FET is defined as [2] 

high DSm V
GS

Ig
V
∂

=
∂

.       (2.18) 

For a SNWT, according to Eqs. (2.9) and (2.6), 

( ) ( ) 2
0 0

1 1

F

D F

scfF FB B F
m U

GS GS F GS GS

Uqk T qk TI q eg M M M
V V V e V

η

η

η η η
π π η π>>

∂∂ℑ ∂ℑ ∂∂
= = = =
∂ ∂ ∂ ∂ + ∂= = =

. (2.19) 

At the QCL, the potential at the top of the barrier, scfU , is solely determined by the 

applied voltage biases, GV , DV  and SV , so Eq. (2.1) is simplified as (assuming 

0Q GC C = ) 

G SD
scf G D S

G D S G D S G D S

C CCU V V V
C C C C C C C C C

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

In our simulation, we assume that the source is always grounded, so 0SV =  and 

G D
scf GS DS G GS D DS

G D S G D S

C CU V V V V
C C C C C C

α α
⎛ ⎞ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠
.       (2.20) 

Thus, 

scf
G

GS

U
V

α
∂

=
∂

.  (at the QCL, assuming 0Q GC C = ).      (2.21) 

Inserting Eq. (2.21) into Eq. (2.19), we obtain the expression for the transconductance of 

a SNWT at the QCL as 
2 22

1 1

F

F F

G
m G

q e qg M M
e h e

η

η η

αα
π −= =

+ +=
.                     (2.22a) 

At the full degenerate limit, 1Fη � , Eq. (2.22a) can be simplified as 

22
m G

qg M
h

α= .  (full degenerate)                 (2.22b) 

Recall Eq. (2.13b), the expression for the channel conductance of a SNWT at the full-

degenerate limit is 
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22
d

qg M
h

= .                         (2.13b) 

Interestingly, an analytical relation between mg  and dg  at the QCL and the full-

degenerate limit is obtained as 

m G dg gα= .  (full degenerate)                      (2.23) 

Fig. 2.5 plots the dg  vs. GSV  (solid) and mg  vs. GSV (dashed) curves for the simulated 

SNWT with a high-K ( 80κ = ) insulator layer.  It is clearly shown that when 0.6VGSV > , 

the device enters the full-degenerate regime and the channel conductance, dg , saturates 

at the quantum conductance value ( )2 5 42 / 4 7.72 10 3.1 10 SM q h − −= × =i i , while the 

transconductance, mg , approaches a value of 42.56 10 S−i , which is slightly (~5%) lower 

than the value ( )2 4 42 / 0.88 3.1 10 2.7 10 SGM q hα − −= × =i i  predicted by Eq. (2.22b).  The 

reason is that Eq. (2.22b) is derived assuming 0Q GC C = .  For the device structure we 

simulate, Q GC C  is not strictly equal to zero but a small value of 

10 93.16 10 / 4.05 10 0.078Q GC C − −= =i i  at the ON-state, which causes the small 

discrepancy between the numerical results and the analytical expression. 

 

 
Fig. 2.5 The dg  vs. GSV  (solid) and mg  vs. GSV (dashed) curves for the simulated SNWT 

with a high-K ( 80κ = ) insulator layer. 
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 Another good way to show the features at the QCL is to plot the mobile electron 

density at the top of the barrier, /mobile TopN Q q= − , vs. the drain bias, DSV .  As we know, 

for a conventional MOSFET, the gate insulator capacitance is much smaller than the 

semiconductor capacitance at the ON-state, so mobileN  is controlled by the gate voltage [2] 

[65] and is independent of the drain bias if we neglect the drain induced barrier lowering 

(DIBL) effect [2].  At the QCL, however, the potential at the top of the barrier is fixed by 

the applied voltage biases and the increasing drain bias vacates the –k states ( n− ) while 

leaving the +k states ( n+ ) unchanged.  Therefore, the mobile electron density, mobileN , at 

the QCL rapidly decreases from the equilibrium value, max 0DSVn n == , to max / 2n , as the 

drain bias increases from zero.  When the drain bias exceeds ( )( )0S scfqU qµ ε⎡ ⎤− −⎣ ⎦ , all 

the –k states ( n− ) have been nearly depleted, so the increasing DSV  will not significantly 

reduce mobileN  any more and mobileN  starts to saturate at a fixed value, max / 2n .  It should 

also be noted that if DIBL is considered, the mobileN  will increase with DSV  under high 

drain bias since increasing DSV  lowers the top of the barrier and consequently increases 

the degeneracy factor, Fη .  Fig. 2.6 plots the mobileN  vs. DSV  curves (solid) for the 

simulated SNWTs with (a) a SiO2 layer and (b) a high-K ( 80κ = ) insulator layer.  The 

former device is working well below the QCL while the latter one is close to the QCL 

(see Fig. 2.4).  Differences between the two plots clearly illustrate the quantum 

capacitance effect discussed above.  This effect become more and more important for the 

device characteristics of nanoscale FETs [52] [56] as the gate capacitance continues to be 

raised by scaling down the oxide thickness and/or adopting high-K materials. 
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(a) 3.9κ =  

 
(b) 80κ =  

Fig. 2.6 The mobileN  vs. DSV  curves (solid) for the simulated SNWTs with (a) a SiO2 layer 
( 3.9κ = ) and (b) a high-K ( 80κ = ) insulator layer.  The former device is working well 

below the QCL while the latter one is close to the QCL.  For 80κ = , the discrepancy 
between the computed mobileN  under high DSV  and the theoretically predicted value, 

max / 2n , is caused by both DIBL and the fact that the ratio Q GC C  is not strictly equal to 
zero but a small value (~0.1) under high DSV . 
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C) Injection Velocity: 

 It is also interesting to explore the average injection velocity, injυ , under high 

drain bias.  For a SNWT, injυ  is obtained as 

( )

( )

( )
( )

0
0

**
1/ 2

1/ 22

2
2

2

B
F

FB
inj

x FB x
F

qk TMI k T
qn mM k Tmq

η ηπυ
π η

η
π

+

+
−

−

ℑ ℑ
= = =

ℑ
⋅ℑ

=

=

.  (2.24) 

According to the properties of the Fermi integrals (see Eq. (2.16)), 

* *

2 2F

F

B B
inj T

x x

k T e k T
m e m

η

ηυ υ
π π

= = =      (non-degenerate),     (2.25a) 

where Tυ  is the uni-directional thermionic velocity [36] [52] [67], and 

( )
( ) ( )( )

* 1/ 2 *

2 03/ 22 1
2 2 2

S TOPB F F
inj

x F x

Uk T
m m

µ εη υυ
π η

⎡ ⎤− +Γ ⎣ ⎦= = =
Γ

  (full-degenerate), (2.25b) 

where Fυ  is the Fermi velocity [36] [67].   

In Fig. 2.7, we plot the high- DSV  injection velocity, injυ , vs. gate voltage, GSV , 

curves for the simulated SNWTs with (a) a SiO2 layer ( 3.9κ = ) and (b) a high-K 

( 80κ = ) insulator layer.  Two ambient temperatures, 300K (solid) and 77K (dashed), are 

considered.  It is clearly shown that under low gate bias (non-degenerate), injυ  is equal to 

Tυ  and independent of the gate bias.  Under high GSV , the carrier degeneracy makes injυ  

monotonically increase with the gate bias for both 3.9κ =  and 80κ = .  For 80κ = , 

when 0.5GSV V> , the device enters the full-degenerate regime, so / 2inj Fυ υ=  and is 

independent of the temperature.  Consequently, the two curves (solid and dashed) in Fig. 

2.7b lie on top of each other when 0.5V 1.0VGSV< < . 
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(a) 3.9κ =  

 
(b) 80κ =  

Fig. 2.7 The high DSV  injection velocity, injυ , vs. gate voltage, GSV , curves for the 
simulated SNWTs with (a) a SiO2 layer ( 3.9κ = ) and (b) a high-K ( 80κ = ) insulator 

layer.  Two ambient temperatures, 300K (solid) and 77K (dashed), are selected. 
 

 

2.3 Summary 

 

 In this chapter, we presented a simple, analytical theory of ballistic nanowire 

FETs.  The model was derived by modifying an analytical approach that was previously 

used for ballistic planar MOSFETs [52].  A coaxial SNWT was simulated using this 
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model and the results illustrate the essential physics and peculiarities of 1D nanowire 

FETs, such as the saturation of channel conductance at the full-degenerate limit and the 

saturation of transconductance at the quantum capacitance limit and the full-degenerate 

limit.  As mentioned in [52], detailed bandstructure information can also be implemented 

into this analytical model, so this approach provides an opportunity to investigate the 

bandstructure effects on the ballistic limits of SNWTs (see Chapter 6). 
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3. A THREE-DIMENSIONAL QUANTUM SIMULATION OF 

BALLISTIC SILICON NANOWIRE TRANSISTORS WITH THE 

EFFECTIVE-MASS APPROXIMATION 

 
In this chapter, we present a three-dimensional (3D), quantum mechanical 

simulation approach to treat silicon nanowire transistors (SNWTs) within the effective-

mass approximation [43] [44].  Ballistic transport is assumed, which gives the upper 

performance limit of the devices.  The use of a mode space approach (either coupled or 

uncoupled) [41] [45] [47] produces high computational efficiency that makes our 3D 

quantum simulator practical for extensive device simulation and design. Scattering in 

SNWTs can also be treated by a simple model that uses so-called Büttiker probes [57], 

which was previously used in MOSFET simulations [42].  The detailed of this method 

will be shown in Appendix.  With the use of this simulator, the ballistic performance 

limits of SNWTs with various cross-sections can be evaluated (Chapter 4) and a 

microscopic treatment of surface roughness scattering in SNWTs becomes feasible 

(Chapter 5). 

 

3.1 Introduction 

 

Different from a planar MOSFET, which has a uniform charge and potential 

profile in the transverse direction (normal to both the gate and the source-to-drain 

direction), a SNWT has a 3D distribution of electron density and electrostatic potential.  

As a result, a 3D simulator is required for the simulation of SNWTs.  In this chapter, we 

propose a 3D self-consistent, quantum simulation of SNWTs based on the effective-mass 

approximation [43] [44].  The calculation involves a self-consistent solution of a 3D 

Poisson equation and a 3D Schrödinger equation with open boundary conditions.  Using 



29 

the finite element method (FEM), we solve the 3D Poisson equation rigorously to obtain 

the electrostatic potential. [45]  At the same time, we solve the 3D Schrödinger equation 

by a (coupled/uncoupled) mode space approach, which provides both computational 

efficiency and high accuracy as compared with direct real space calculations [41] [45] 

[47].  Since the (coupled/uncoupled) mode space approach treats quantum confinement 

and transport separately, the procedure of the calculation is as follows: 

Step 1: Solve the 3D Poisson equation for the electrostatic potential; 

Step 2: Solve a two-dimensional (2D) Schrödinger equation with a closed 

boundary condition at each slice (cross-section) of the nanowire transistor 

(see Fig. 3.1) to obtain the electron subbands (along the nanowire) and the 

corresponding eigenfunctions; 

Step 3: Solve (coupled/uncoupled) one-dimensional (1D) transport equations by 

the nonequilibrium Green’s function (NEGF) approach [37] [38] for the 

electron charge density; 

Step 4: Go back to Step 1 to calculate the electrostatic potential.  If it converges, 

then calculate the electron current by the NEGF approach (as in Step 3) 

and output the results.  Otherwise continue Steps 2 and 3. 

Different transport models (in Step 3) can be implemented into our simulator.  In 

this chapter, we will focus on the ballistic NEGF model, which gives the upper 

performance limit of SNWTs.  In Appendix, we will introduce a dissipative NEGF model 

with a simple treatment of scattering with the Büttiker probes [42] [57], which offers a 

phenomenological way to capture scattering in the quantum mechanical framework. 

A rigorous treatment of scattering and a detailed calculation of bandstructures are 

very important to understand physics in Si nanowires in detail.  However, the huge 

computational cost involved in such a rigorous model can prevent it from being used for 

extensive device simulation and design.  As we will show, the use of the effective-mass 

approximation and the simple treatment of scattering with the Büttiker probes (see 

Appendix) greatly reduces the computational complexity while still capturing the 

essential device physics of SNWTs (i.e., 3D electrostatics, quantum confinement, source-

to-drain tunneling and scattering, etc), so the method we discuss in this chapter (and 
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Appendix) can be used as a practical 3D quantum approach for device study and design 

of SNWTs. [4]  This chapter is divided into the following sections: Sec. 3.2 describes our 

methodology for ballistic SNWTs and provides the basic equations, Sec. 3.3 discusses the 

simulation results for ballistic SNWTs with arbitrary cross-sections (e.g., triangular, 

rectangular and cylindrical), and Sec. 3.4 summarizes key findings. 

 

3.2 Theory 

 

Figure 3.1 shows a schematic structure of the Si nanowire transistors simulated in 

this chapter.  This intrinsic device structure is connected to two infinite reservoirs, the 

source (S) and the drain (D), so the S/D extension regions are terminated using open 

boundary conditions.  As shown in Fig. 3.1b, a uniform grid with a grid spacing of a is 

used along the channel (x) direction.  In the y-z plane (the cross-section of the SNWT), a 

2D finite element mesh with triangular elements is generated by Easymesh-1.4 [68], 

which allows us to treat nanowires with arbitrary cross-sections (e.g., triangular, 

rectangular and cylindrical).  By doing this, a 3D finite element mesh with prism 

elements is constructed.  When solving the Poisson equation, the 3D Laplacian is directly 

discretized by the FEM approach.  The obtained linear system is solved using a 

Preconditioned Conjugate Gradient method with Incomplete Cholesky factorization [45].  

More details about the numerical techniques can be found in [45]. 

As mentioned earlier, we solve the 3D Schrödinger equation by the mode space 

approach [41] [45] [47], which is based on an expansion of the active device Hamiltonian 

in the subband eigenfunction space.  As a result, we need to solve a 2D Schrödinger 

equation by the FEM at each slice of the SNWT to obtain the subband eigenenergy levels 

and eigenfunctions (modes).  After that, the original 3D device Hamiltonian is 

transformed into a 1D Hamiltonian in the x direction, which can be used to calculate 

electron density and current within the NEGF formalism.  In this section, we will first 

give an overview of the coupled mode space (CMS) approach for the SNWT simulation 

(Subsection 3.2.1), which is mathematically equivalent to a direct real space solution if 

adequate modes are included (to be discussed later) [41] [45] [47].  Then we will 
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introduce the uncoupled mode space (UMS) approach (Subsection 3.2.2) and a fast 

uncoupled mode space (FUMS) approach (Subsection 3.2.3), which are a simplification 

of the CMS approach to provide high computational efficiency.  The simulation results in 

Sec. 3.3 illustrate that the UMS and FUMS approaches show excellent agreement with 

the CMS approach for SNWT simulations. 

 

 

 

Fig. 3.1 The simulated SNWT structures in this work.  (a) A schematic graph of an 
intrinsic SNWT with arbitrary cross-sections (for clarity, the SiO2 substrate is not shown 

here).   (b) The gird used in the simulation of SNWTs.  (c) The cross-sections of the 
simulated triangular wire (TW), rectangular wire (RW) and cylindrical wire (CW) FETs.   
TSi is the silicon body thickness, WSi is the silicon body width and WWire is the wire width.  
For the TW, the direction normal to each gate is <111>, so the channel is <101> oriented.  
In contrast, for the channel of the RW, both <101> and <100> orientations are possible.  

For the CW, we assume the channel to be <100> oriented. 
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3.2.1 The coupled mode space approach 

 
In this part of the work, we will briefly review the coupled mode space approach 

and list basic equations for our particular case of interest. 

In the 3D domain, the full stationery Schrödinger equation is given by 

( ) ( )3 , , , ,DH x y z E x y zΨ = Ψ ,      (3.1) 

where 3DH  is the 3D device Hamiltonian.  Assuming an ellipsoidal parabolic energy 

band with a diagonal effective-mass tensor (for the case that the effective-mass tensor 

includes non-zero off-diagonal elements, please refer to [69]), 3DH  is defined as 

( ) ( ) ( ) ( )
2 2 2 2

3 * 2 * *

1 1 , ,
2 , 2 , 2 ,D

x y z

H U x y z
m y z x y m y z y z m y z z

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

= = = , (3.2) 

here *
xm , *

ym  and *
zm  are the electron effective-mass in the x, y, and z directions, 

respectively, and ( ), ,U x y z  is the electron conduction band-edge profile in the active 

device.  We note that the effective-mass varies in the y and z directions due to the 

transition between the Si body and the SiO2 layer.  Now let us expand the 3D electron 

wavefunction in the subband eigenfunction space, 

( ) ( ) ( ), , , ;n n

n
x y z x y z xϕ ξΨ = ⋅∑ ,                                (3.3) 

where ( )0, ;n y z x xξ =  is the nth  eigenfunction of the following 2D Schrödinger equation 

at the slice ( 0x x= ) of the SNWT, 

( ) ( ) ( ) ( ) ( )
2 2

0 0 0 0* *

1 1 ( , , ) , ; , ;
2 , 2 ,

n n n
sub

y z

U x y z y z x E x y z x
y m y z y z m y z z

ξ ξ
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− − + =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

= = , 

(3.4) 

here ( )0
n
subE x  is the nth subband energy level at 0x x= .  According to the property of 

eigenfunctions, ( ), ;n y z xξ  satisfies the following equation for any x , 

( ) ( ) ,,
, ; , ;m n

m ny z
y z x y z x dydzξ ξ δ=∫v ,                           (3.5) 
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where ,m nδ  is the Kronecker delta function [36]. 

Inserting Eqs. (3.2) and (3.3) into Eq. (3.1) and using the relation described by Eq. 

(3.4), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

* 2 , ; , ; , ;
2 ,

n n n n n n n
sub

n n nx

x y z x x E x y z x E x y z x
m y z x

ϕ ξ ϕ ξ ϕ ξ∂ ⎛ ⎞
− ⋅ + ⋅ = ⋅⎜ ⎟∂ ⎝ ⎠

∑ ∑ ∑= . 

(3.6) 

Now we multiply by ( ), ;m y z xξ  on both sides and do an integral within the y-z 

plane.  According to Eq. (3.5), we obtain the following 1D coupled Schrödinger equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
22 2

2
2

12 2

m n
n m m m

mn mn mn sub
n n n

x x
a x c x x b x E x x E x

x x
ϕ ϕ

ϕ ϕ ϕ
∞

=

∂ ∂⎛ ⎞
− − − + =⎜ ⎟ ∂ ∂⎝ ⎠

∑ ∑ ∑= = = , 

(3.7) 

where 

( ) ( ) ( ) ( )*,

1 , ; , ;
,

m n
mn y z

x

a x y z x y z x dydz
m y z

ξ ξ= ∫v ,                      (3.8a) 

( ) ( ) ( ) ( )*,

1 , ; , ;
,

m n
mn y z

x

b x y z x y z x dydz
m y z x

ξ ξ∂
=

∂∫v ,                  (3.8b) 

and 

( ) ( ) ( ) ( )
2

* 2,

1 , ; , ;
,

m n
mn y z

x

c x y z x y z x dydz
m y z x

ξ ξ∂
=

∂∫v .                (3.8c) 

The basic equation for the CMS approach is Eq. (3.7).  In our simulation, since the 

electron wavefunction is mainly located in the silicon, we can neglect mna  if m n≠  

( mm mna a� ) [47] and simplify Eq. (3.7) as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

2
22 2

m n n m m m
mm mn mn sub

n n
a x x c x x b x x E x x E x

x x
ϕ ϕ ϕ ϕ ϕ∂ ∂

− − − + =
∂ ∂∑ ∑= = = . 

(3.9) 

From the derivation above, it is clear that the CMS formalism, Eqs. (3.7) and (3.8), 

is mathematically equivalent to the real space calculation if all the modes 

(i.e., , 1,..., YZm n N= , where YZN  is the number of nodes in the y-z plane) are included.  In 

practice, due to strong quantum confinement in SNWTs, usually only a few of the lowest 
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subbands (i.e., , 1,...,m n M= , YZM N� ) are occupied and need to be included in the 

calculation (which means that if we increase the mode number, M, the device 

characteristics such as the electron density profile and terminal currents will not change 

any more).  Thus, with the first M subbands considered (i.e., m,n=1,…,M), Eq. (3.9) 

represents an equation group that contains M equations, each representing a selected 

mode.  We can write down these M equations in a matrix format 

( )
( )

( )

( )
( )

( )

( )
( )

( )

1 1 1
11 12 13 1

2 2 2
21 22 23 2

1 2 3

...

...
... ... ... ... ...... ... ...
... ... ... ... ...... ... ...

...

M

M

M M M
M M M MM

h h h hx x x
h h h hx x x

H E

h h h hx x x

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,       (3.10) 

where 

( ) ( ) ( ) ( )
2 2 2

2
, 22 2

m
mn m n mm sub mn mnh a x E x c x b x

x x
δ

⎡ ⎤∂ ∂
= − + − −⎢ ⎥∂ ∂⎣ ⎦

= = = , (m,n=1,2,…,M). (3.11) 

By using the coupled mode space approach, the size of the device Hamiltonian, H, 

has been reduced to X XM N M N⋅ × ⋅  ( XN  is the number of nodes in the x direction, and 

the mode number M we need is normally less than five for the SNWT structures we 

simulate), which is much smaller than that in the real space representation, 

YZ X YZ XN N N N⋅ × ⋅  ( YZN is ~1,000 for the device structures simulated in this chapter). 

After the device Hamiltonian H is obtained, we can calculate the electron density 

and current using the NEGF approach.  The NEGF approach, a widely used method for 

the simulation of nanoscale electronic devices, has been discussed in [37] [38].  Here we 

list the relevant equations for our particular case. 

The retarded Green’s function of the active device is defined as [37] 

( ) ( ) ( ) ( ) 1
1 2SG E ES H E E E

−
⎡ ⎤= − −Σ −Σ −Σ⎣ ⎦ ,                  (3.12) 

where the device Hamiltonian, H, is defined by Eq. (3.10),  SΣ  is the self-energy that 

accounts for the scattering inside the device (in the ballistic limit, it is equal to zero), 1Σ  

( 2Σ ) is the self-energy caused by the coupling between the device and the source (drain) 

reservoir.  If we discretize the equations by the 1D (in the x direction) finite difference 
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method (FDM), the matrix S in Eq. (3.12) is equal to an X XM N M N⋅ × ⋅  identity matrix. 

The self-energies, 1Σ  and 2Σ , are defined as [37] 

[ ] ( ) ( ) ( )1 ,1 ,1 , 1 1 , 1 1, exp
X Xm m p m N q m Np q t jk a δ δ− + − +Σ = − , ( 1j = − )  (FDM),     (3.13) 

[ ] ( )2 , , , ,, exp
X X X Xm N m N p mN q mNp q t jk a δ δΣ = − , (m=1,2,…, M,  p,q=1,2,…,MNX)  (FDM), 

(3.14) 

where ( ) ( )2 2
,1 02m mm xt a a x == =  and ( ) ( ) ( )

2 2
, 12

X Xm N mm x N at a a x = −= = ( ( )mma x  is defined 

by Eq. (3.8a)), and ,1mk  and , Xm Nk  are determined by ( ) ( ),1 ,10 2 1 cosm
sub m mE E t k a= + −  and 

( ) ( ), ,1 2 1 cos
X X

m
sub X m N m NE E N a t k a⎡ ⎤= − + −⎣ ⎦ , respectively. 

If we discretize the equations by the 1D (in the x direction) FEM, the matrix S in 

Eq. (3.12) becomes a X XM N M N⋅ × ⋅  block diagonal matrix 

0

0

0

0 0
0 0

0
0

0 0

S
S

S

S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" "
% #

# % % #
# % % %

" "

 (FEM),                            (3.15) 

where S0 is a X XN N×  matrix [46] 

0

/ 3 / 6 0 0
/ 6 2 / 3 / 6
0 / 6 2 / 3

0
2 / 3 / 6

0 0 / 6 / 3

a a
a a a

a a
S

a a
a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

" "
% % #
% % #

# % % % %
# % % %

" "

 (FEM).             (3.16) 

The self-energies, 1Σ  and 2Σ , are defined as [46] [47] 

[ ] ( ) ( )1 ,1 ,1 , 1 1 , 1 1,
X Xm m p m N q m Np q jk at δ δ− + − +Σ = −  (FEM),         (3.17) 

[ ]2 , , , ,,
X X X Xm N m N p mN q mNp q jk at δ δΣ = − , (m=1,2,…, M and p,q=1,2,…,MNX) (FEM). (3.18) 
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By inserting Eqs. (3.13)-(3.14) or (3.15)-(3.18) into Eq. (3.12), we can evaluate 

the retarded Green’s function, G(E), at a given energy E.  Then the spectral density 

functions due to the S/D contacts can be obtained as [37] 

( ) ( ) ( ) ( )†
1 1A E G E E G E= Γ  and ( ) ( ) ( ) ( )†

2 2A E G E E G E= Γ ,         (3.19) 

where ( ) ( ) ( )†
1 1 1E j E E⎡ ⎤Γ ≡ Σ −Σ⎣ ⎦  and ( ) ( ) ( )†

2 2 2E j E E⎡ ⎤Γ ≡ Σ −Σ⎣ ⎦ , which determine 

the electron exchange rates between the active device region and the S/D reservoirs at 

energy E.  In this coupled mode space, the diagonal elements of the spectral function 

matrices represent the local density of states (LDOS) in the device for each mode.  We 

define the LDOS for mode m as 1
mD  (due to the source) and 2

mD  (due to the drain).  Here 

1
mD  and 2

mD  are both 1XN ×  vectors obtained as 

[ ] ( ) ( )1 1
1 1 , 1m

X XD p A m N p m N p
aπ

⎡ ⎤= − + − +⎣ ⎦ , (p=1,2,…,NX),  (3.20) 

[ ] ( ) ( )2 2
1 1 , 1m

X XD p A m N p m N p
aπ

⎡ ⎤= − + − +⎣ ⎦ , (p=1,2,…,NX).  (3.21) 

Then the 1D electron density (in m-1) for mode m can be calculated by 

( ) ( )1 1 2, ,m m m
D S Dn D f E D f E dEµ µ

+∞

−∞
⎡ ⎤= +⎣ ⎦∫ ,                     (3.22)  

where f is the Fermi-Dirac statistics function [36], and Sµ ( Dµ ) is the source (drain) 

Fermi level, which is determined by the applied bias.  The electron density obtained by 

Eq. (3.22) is a 1D distribution (along the x direction).  To obtain a 3D electron density, 

we need to couple Eq. (3.22) with the quantum confinement wavefunction for mode m, 

( ) ( ) ( )
2

3 1, , , ;m m m
D Dn x y z n x y z xξ= .           (3.23) 

The total 3D electron density needs to be evaluated by summing the contributions 

from all the subbands in each conduction-band valley.  Then this 3D electron density is 

fed back to the Poisson solver for the self-consistent calculations.  Once self-consistency 

is achieved, the electron current is computed by 

( ) ( ) ( ), ,SD S D
qI T E f E f E dEµ µ
π

+∞

−∞
⎡ ⎤= −⎣ ⎦∫= ,          (3.24) 

where the transmission coefficient, T(E), can be evaluated as [37] 
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( ) ( ) ( ) ( ) ( )†
1 2T E trace E G E E G E⎡ ⎤= Γ Γ⎣ ⎦ .          (3.25) 

To obtain the total electron current, we also need to add up current components in all the 

conduction-band valleys. 

 

3.2.2 The uncoupled mode space approach 

 

In the simulation of SNWTs, we assume that the shape of the Si body is uniform 

along the x direction.  As a result, the confinement potential profile (in the y-z plane) 

varies very slowly along the channel direction.  For instance, the conduction band-edge 

( ), ,U x y z  takes the same shape but different values at different x.  For this reason, the 

eigenfunctions ( ), ;m y z xξ  are approximately the same along the channel although the 

eigenvalues ( )m
subE x  is different.  So we assume 

( ) ( ), ; ,m my z x y zξ ξ=                      (3.26) 

or               ( ), ; 0m y z x
x
ξ∂

=
∂

, (m=1,2,…,M),          (3.27) 

which infers 

( ) ( ) ( )
2

*,

1 ,
,

m
mm mm y z

x

a x a y z dydz
m y z

ξ= = ∫v ,                  (3.28a) 

( ) 0mnb x =  and ( ) 0mnc x = , (m,n=1,2,…,M).                   (3.28b) 

Inserting Eq. (3.28b) into Eq. (3.11), we obtain  0mnh =  ( m n≠  and m,n=1,2,…,M), 

which means that the coupling between the modes is negligible (all the modes are 

uncoupled).  Thus the device Hamiltonian H becomes a block-diagonal matrix 

11

22

0 0
0 0

0
0

0 0 MM

h
h

H

h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" "
% #

# % % #
# % % %

" "

.    (3.29) 
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Since all the input matrices at the RHS of Eq. (3.12) are either diagonal or block-diagonal, 

the retarded Green’s function G(E) is block-diagonal, 

( )

( )
( )

( )

1

2

0 0
0 0

0
0

0 0 M

G E
G E

G E

G E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

" "
% #

# % % #
# % % %

" "

,               (3.30) 

where ( )mG E  (m=1,2,…,M) is the Green’s function for mode m and is obtained as 

( ) ( ) ( ) ( ) 1

1 2
m m m m m

mm SG E ES h E E E
−

⎡ ⎤= − −Σ −Σ −Σ⎣ ⎦ ,      (3.31) 

here mS , m
SΣ , 1

mΣ  and 2
mΣ  are all X XN N×  matrices and defined as 

[ ] ( ) ( ), 1 , 1m
X XS p q S m N p m N q⎡ ⎤= − + − +⎣ ⎦ , (p,q=1,2,…,NX),    (3.32) 

[ ] ( ) ( ), 1 , 1m
S S X Xp q m N p m N q⎡ ⎤Σ = Σ − + − +⎣ ⎦ , (p,q=1,2,…,NX),   (3.33) 

[ ] ( ) ( )1 1, 1 , 1m
X Xp q m N p m N q⎡ ⎤Σ = Σ − + − +⎣ ⎦ , (p,q=1,2,…,NX),    (3.34) 

and 

[ ] ( ) ( )2 2, 1 , 1m
X Xp q m N p m N q⎡ ⎤Σ = Σ − + − +⎣ ⎦ , (p,q=1,2,…,NX).    (3.35) 

Knowing the retarded Green’s function, the spectral density functions due to the S/D 

contacts for each mode m can be obtained as [37] 

( ) ( ) ( ) ( )†
1 1
m m m mA E G E E G E= Γ  and ( ) ( ) ( ) ( )†

2 2
m m m mA E G E E G E= Γ ,   (3.36) 

where ( ) ( ) ( )†
1 1 1
m m mE i E E⎡ ⎤Γ ≡ Σ −Σ⎣ ⎦  and ( ) ( ) ( )†

2 2 2
m m mE i E E⎡ ⎤Γ ≡ Σ −Σ⎣ ⎦ .  The LDOS for 

mode m, 1
mD  (due to the source) and 2

mD  (due to the drain), can then be evaluated by 

[ ] [ ]1 1
1 ,m mD p A p p
aπ

=  and [ ] [ ]2 2
1 ,m mD p A p p
aπ

= , (p=1,2,…,NX).    (3.37) 

After that, the electron charge density is computed by Eqs. (3.22) and (3.23).  For 

the calculation of electron current, the total transmission coefficient can be written as a 

summation of the transmission coefficient ( )mT E  for each mode m, 

( ) ( )
1

M
m

m
T E T E

=

=∑ ,                                              (3.38) 
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where ( )mT E  is obtained as [37] 

( ) ( ) ( ) ( ) ( )†
1 2

m m m m mT E trace E G E E G E⎡ ⎤= Γ Γ⎣ ⎦ .                    (3.39) 

Finally, Eq. (3.38) is inserted into Eq. (3.24) to compute the electron current for 

the SNWT.  

As we will show in Sec. 3.3, this UMS approach shows excellent agreement with 

the CMS approach while maintaining higher computational efficiency. (The validity of 

the UMS approach for planar MOSFET simulation has been established by Venugopal et 

al. [41] by doing a careful study of the UMS approach vs. 2D real space approach.) 

 

3.2.3 A fast uncoupled mode space approach 

 

As described earlier, for both CMS and UMS approaches, we need to solve NX 2D 

Schrödinger equations, shown in Eq. (3.4), in a self-consistent loop to obtain the electron 

subbands and eigenfunctions.  For the device structures simulated in this chapter, this part 

of simulation usually takes more than 90% of the computational complexity, which 

makes parallel programming necessary.  To increase the efficiency of our simulator and 

to make it executable on a single processor, we introduce a fast uncoupled mode space 

approach [45] [47], which only involves one 2D Schrödinger equation problem in a self-

consistent loop and still provides excellent computational accuracy as compared with the 

CMS and UMS approaches.  (The transport part of calculation in FUMS is the same as 

that in UMS.) 

Recall the assumption made in Subsection 3.2.2 that the eigenfunctions 

( ), ;m y z xξ  are invariant along the x direction, ( ) ( ), ; ,m my z x y zξ ξ= .  Now we suppose 

that the average wavefunctions ( ),m y zξ  are the eigenfunctions of the following 2D 

Schrödinger equation 

( ) ( ) ( ) ( )
2 2

* *

1 1 ( , ) , ,
2 , 2 ,

m m m
sub

y z

U y z y z E y z
y m y z y z m y z z

ξ ξ
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− − + = ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

= = .  (3.40) 

Here the average conduction band-edge ( ),U y z  is obtained as 
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( ) ( )
0

1, , ,XL

X

U y z U x y z dx
L

= ∫ ,                                  (3.41)  

where LX is the total length of the simulated SNWT, including the S/D extensions.  After 

computing the eigenvalues m
subE  and eigenfunctions ( ),m y zξ  of this Schrödinger 

equation, we use the first order stationery perturbation theory to obtain the subband 

profile as [45] [47] 

( ) ( ) ( ) ( ) ( )
2 2

, ,
, , , , ,m m m m

sub sub y z y z
E x E U x y z y z dydz U y z y z dydzξ ξ= + −∫ ∫v v . (3.42) 

So far the subbands ( )m
subE x  and the corresponding eigenfunctions ( ), ;m y z xξ  

have been obtained approximately by only solving one 2D Schrödinger equation.  The 

simulation results in Sec. 3.3 will show that this FUMS approach has great accuracy for 

the calculation of both internal characteristics (e.g., the subband profiles) and terminal 

currents.  The use of the FUMS approach highly improves the efficiency of our simulator 

and makes it a practical model for extensive device simulation and design [4].  (The 

simulation of a ballistic SNWT with a 10nm gate length and a 3nm Si body thickness 

normally takes <15 minutes per bias point on one 1.2GHz ATHLON processor). 

 

3.3 Results 

 

In this section, we first verify the validity of the FUMS approach by comparing its 

results with those obtained by the UMS and CMS approaches.  Then we adopt the FUMS 

as a simulation tool to explore device physics (i.e., both internal characteristics and 

terminal currents) of ballistic SNWTs with various cross-sections (e.g., triangular, 

rectangular and cylindrical). 

 

3.3.1 Benchmarking of the FUMS approach 

 

As mentioned in Sec. 3.2, for both CMS and UMS approaches, we need to solve a 

2D Schrödinger equation at each slice of the SNWT to obtain the electron subbands and 

the corresponding eigenfunctions (modes).  Fig. 3.2 shows the electron wavefunctions at 
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a slice of the SNWTs with a triangular, rectangular or cylindrical cross-section, 

respectively.  After solving all the NX 2D Schrödinger equations, the electron subband 

levels are obtained (see Fig. 3.3, circles).  For the FUMS approach, however, only one 

2D Schrödinger equation needs to be solved, and the subband profile can then be 

calculated by Eq. (3.42).  Fig. 3.3 clearly illustrates that this approximation (solid lines) 

provides excellent agreement with the rigorous calculation (circles), which shows that the 

FUMS approach correctly computes the electron subbands in SNWTs. 

 

 

 
Fig. 3.2 The 2D modes (the square of the modulus of the electron wavefunctions in the 
(010) valleys) in a slice of  (a) triangular wire (TW), (b) rectangular wire (RW) and (c) 

cylindrical wire (CW) transistors.  For clarity, the SiO2 substrates for TW and RW FETs 
are not shown here. 
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Figure 3.4 compares the computed IDS vs. VGS characteristics for the simulated 

cylindrical SNWT by the FUMS (dashed lines), UMS (circles) and CMS (crosses) 

approaches, respectively.  It is clear that all the three approaches are in excellent 

agreement (<0.5% error), thus indicating that the FUMS approach, which has much 

higher computational efficiency than CMS and UMS, is an attractive simulation tool for 

modeling Si nanowire transistors.  Although the sample device structure we use in Fig. 

3.3 and Fig. 3.4 is a cylindrical SNWT, our conclusion is also applicable for SNWTs with 

arbitrary cross-sections (assuming the shape of the Si body is uniform along the x 

direction).  In the following parts of this chapter, we will use the FUMS approach to 

investigate the device physics in various SNWTs.  

 

3.3.2 Device physics and characteristics 

 

The NEGF transport model we use in this chapter provides an opportunity to 

illustrate the LDOS of the simulated SNWTs.  Fig. 3.5 shows the LDOS together with the 

electron subbands for a ballistic cylindrical SNWT with 10nm gate length and 3nm Si 

body thickness.  Strong oscillations in the LDOS plot are clearly observed, which is due 

to the quantum mechanical reflection. [41]  To be specific, the states injected from the 

drain are reflected off the drain-to-source barrier at the high drain bias and these reflected 

states strongly interfere with the injected ones.  At the source end, the states injected at 

energies around the source barrier are also reflected and interfere.  It should be noted that 

the occurrence of quantum inference in ballistic SNWTs relies on the quantum coherence 

(complete preservation of electron phase information) inside the devices.  If scattering 

(dephasing mechanism) is included, as we will see in Appendix, the quantum interference 

and the oscillations in the LDOS are smeared out.  In addition, the presence of states 

below the first electron subband is also visible in the LDOS plot, which is caused by 

source-to-drain tunneling [17]. 
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Fig. 3.3 The electron subband profile in a cylindrical SNWT with 10nm gate length 

(VGS=0.4V and VDS=0.4V).  The silicon body thickness, TSi (as shown in Fig. 3.1c), is 
3nm, and the oxide thickness is 1nm.  The S/D doping concentration is 2·1020cm-3 and the 

channel is undoped.  The solid lines are for the approximation method (solving a 2D 
Schrödinger equation only once) used in the FUMS approach, while the circles are for the 

rigorous calculation (solving 2D Schrödinger equations NX times) adopted in the UMS 
and CMS approaches. 

 
 
 

 
Fig. 3.4 The IDS vs. VGS curves for a cylindrical SNWT in the logarithm (left) and linear 

(right) scales (VDS=0.4V).  The device structure is the same as that in Fig. 3.3.  The 
crosses are for the CMS approach, the circles are for the UMS approach, and the dashed 

lines are for the FUMS approach. 
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Fig. 3.5 The computed LDOS (in 1/(eV·m)) and electron subbands (dashed lines) of a 

ballistic cylindrical SNWT with 10nm gate length and 3nm Si body thickness (the details 
of the device geometry are described in the Fig. 3.3 caption).  (VGS=0.4V and VDS=0.4V). 
 

 

Figure 3.6 plots the 1D electron density (in m-1) profile along the channel of the 

simulated cylindrical SNWT.  It is clearly observed that the oscillations in the LDOS of 

the device result in an oscillation in the 1D electron density, even at the room temperature 

and more apparent at low temperature (77K).  In general, such an oscillation in the 

electron density profile occurs in all kinds of transistors with 1D channels (e.g., the 

carbon nanotube transistor [70]).  It is interesting to mention that there is no evident 

oscillation in the electron density profile in a planar MOSFET (see Fig. 8 on p. 3736 in 

[41]) although its LDOS also bears strong oscillations (see Fig. 4 on p. 3735 in [41]).  

The reason is that in a planar MOSFET there is a transverse direction (normal to both the 

Si/SiO2 interfaces and the channel direction), in which the electron wavefunction is 

assumed to be a plane wave, thus resulting in numerous transverse modes in the device. 

These transverse modes wash out the oscillations in the LDOS and cause a smooth 

electron density profile.  So the oscillation in the electron density profile is a special 

property of SNWTs as compared with planar MOSFETs. 
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Fig. 3.6 The 1D electron density profile along the channel of the simulated cylindrical 
SNWT (the details of the device geometry are described in the Fig. 3.3 caption).  The 

solid line is for T=300K while the dashed line is for T=77K. (VGS=0.4V and VDS=0.4V). 
 
 

 

 

Figure 3.7 illustrates the transmission coefficient, calculated from Eqs. (3.38) and 

(3.39), for the simulated cylindrical SNWT.  When the total electron energy increases 

above the source end of the first subband, the electrons start to be injected into the 

channel, so the transmission coefficient begins to increase from zero.  As the electron 

energy continues to go up, the second and third subbands (modes) become conductive 

successively, which results the step-like shape of the transmission coefficient curve.  We 

also observe that the transmission coefficient is above zero even when the total electron 

energy is below the top of barrier of the first subband, which is the evidence of source-to-

drain tunneling [17]. 
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Fig. 3.7 The transmission coefficient and electron subbands in the simulated cylindrical 

SNWT (the details of the device geometry are described in the Fig. 3.3 caption). 
(VGS=0.4V and VDS=0.4V). 

 

 

In Fig. 3.8, we compare the IDS vs. VGS characteristics for SNWTs with triangular, 

rectangular and cylindrical cross-sections. Two interesting phenomena are evidently 

visible:  

1) The cylindrical wire (CW) and triangular wire (TW) transistors have higher 

threshold voltages, VT (that is defined as IDS(VGS=VTH)=10-8A when 

VDS=0.4V), than the rectangular wire (RW).  The reason is that the cross-

sectional areas of the CW and the TW are smaller that that of the RW, which 

leads to stronger quantum confinement in the CW and the TW as compared 

with the RW. 

2) The CW, a gate-all-around structure, offers the best subthreshold swing and 

the highest ON-OFF current ratio under the same gate overdrive, VGS -VT, due 

to its best gate control among all the three simulated structures. 

These results clearly show that our simulator correctly treats the 3D electrostatics, 

quantum confinement and transport in ballistic SNWTs with arbitrary cross-sections. 
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Fig. 3.8 The IDS vs. VGS curves for the triangular wire (TW) FET with <101> oriented 

channels, rectangular wire (RW) FET with <101> oriented channels and cylindrical wire 
(CW) FET with <100> oriented channels.  (VDS=0.4V).  All the SNWTs have the same 

silicon body thickness (TSi=3nm), oxide thickness (Tox=1nm), gate length (L=10nm) and 
gate work function (WF=4.05eV).  The Si body width, WSi, of the RW is 4nm.  In the 

calculation of the TW and RW FETs, whose channels are <101> oriented, the effective-
masses of electrons in the (100) and (001) valleys are obtained from [71] 

as * 0.585x em m= , * 0.19y em m=  and * 0.318z em m= . 
 

 

3.4 Summary 

 

In this chapter, we presented a computationally efficient, three-dimensional 

quantum simulation of various ballistic silicon nanowire transistors based on the 

effective-mass approximation. [43] [44]  The coupled/uncoupled mode space approaches 

[41] [45] [47] were adopted to decompose the 3D device Hamiltonian, which greatly 

reduces the simulation time while keeping excellent computational accuracy.  The use of 

a fast uncoupled mode space approach further scales down the computational complexity 

and makes our simulator executable on a single processor.  This enables our approach to 

be used as a practical 3D quantum model for extensive device simulation and design. [4] 
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Although we focused on ballistic simulations in this chapter, a simple treatment of 

scattering with the Büttiker probes [42] [57], previously applied to MOSFET simulations, 

can also be implemented into our SNWT simulator.  The basic equations for the Büttiker 

probes and the relevant simulation results will be shown in Appendix. 
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4. BALLISTIC PERFORMANCE LIMITS AND SCALING 

POTENTIAL OF SILICON NANOWIRE TRANSISTORS 

 
In this chapter, we explore the ballistic performance limits and scaling potential of 

silicon nanowire transistors (SNWTs) by using the simulation capability developed in 

Chapter 2 and Chapter 3 (based on the effective-mass approximation [43] [44]).  Three 

different topics will be discussed.  Sec. 4.1 shows a comparison between the upper 

performance limit of SNWTs with that of the planar double-gate (DG) MOSFET. [4]  In 

Sec. 4.2, we propose a general approach to compare planar vs. non-planar (nanowire) 

FETs with the consideration of both Electrostatic integrity (gate control) and Quantum 

confinement (so called the ‘EQ approach’). [58]  Sec. 4.3 introduces a conceptual study 

of the channel material optimization for both planar MOSFETs and nanowire FETs based 

on the effective-mass approximation. [59] 

 

4.1 The Ballistic Performance Limits of Silicon Nanowire Transistors 

 

 In this section, we adopt the ballistic simulator that has been described in Chapter 

3 to investigate the upper performance limits of SNWTs with various cross-sections (i.e., 

triangular, rectangular and cylindrical).  The simulation results are compared with those 

for a ballistic planar DG MOSFET [39] [48] [72] [73], which is simulated by a two-

dimensional (2D) quantum simulator, NanoMOS-2.5 [40]. 

 

4.1.1 Device structures 

 

 Silicon nanowire transistors with various types of cross-sections are being 

extensively explored by a number of experimental groups.  In [13], the authors reported 
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triangular parallel wire channel transistors; the device was built on a Si (001) wafer and 

the Si body layer was etched along the (111) surfaces, so the cross-section of the Si body 

becomes an isosceles triangle and the channel of the device is <110> oriented.  At the 

same time, different types of tri-gate/gate-all-around FETs were fabricated by using wires 

with rectangular cross-sections. [11] [12] [14] [15]  The diameters of these wire 

transistors are around 30-100nm and the gate lengths are >50nm.  In this section, we 

extract the geometry configurations from those experimental structures and project them 

to the device structures at the scaling limit, where the transistor gate length is <10nm [17] 

and the Si body of these wire FETs becomes small nanowires with triangular/rectangular 

cross-sections.  In addition, we also simulate the cylindrical SNWT [16], a gate-all-

around structure, which offers the optimum gate control and scaling potential among all 

kinds of SNWTs.  In Fig. 4.1, the cross-sections of all the simulated SNWTs and planar 

DG MOSFETs are schematically illustrated. 

 

 

 
Fig. 4.1 The cross-sections of the symmetric planar double-gate (DG) MOSFET and 

various nanowire FET structures – the cylindrical wire (CW), triangular wire (TW) and 
rectangular wire (RW) FETs.  (The channel (x) direction is perpendicular to the paper 

surface.)  Here TSi is the silicon body thickness, WSi is the silicon body width and WWire is 
the wire width.  For the CW FET, TSi= WSi is equal to the diameter of the circular Si body. 
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4.1.2 Methodology 

 

The simulation tool for SNWTs we use in this section is the ballistic simulator we 

developed in Chapter 3.  For the simulated SNWT structures, the fast uncoupled mode 

space (FUMS) approach offers excellent accuracy (<0.5%) as compared with the rigorous 

coupled mode space (CMS) approach.  Therefore, we adopt the FUMS model for all the 

SNWT simulations in this work, which greatly reduces the computation time.  For the 

planar DG MOSFETs, we adopt a 2D quantum simulator, NanoMOS-2.5, which was 

developed by Z. Ren and coworkers [40].   

 In order to compare SNWTs with planar MOSFETs, we need to convert the 

current for a single nanowire into current per unit width.  In this work, based on the 

device structures in the experiments [13] [15], we assume that in a SNWT a number of 

nanowires are placed in parallel to form the channel of the FET.  So the current for a 

single wire can be converted into current per unit width by dividing it by the wire spacing 

parameter, ρ, which is the distance between the geometrical centers of adjacent wires.  

Fig. 4.2 shows the definitions of the wire spacing parameters for different wires.  It 

should be noted that the wire spacing is assumed to be WWire for a triangular SNWT and 

2WSi for a rectangular SNWT, which are both extracted from the relevant experiments 

[13] [15].  For a cylindrical SNWT, we select a minimum wire spacing, ρ= WWire, to 

achieve the optimum device metrics (to be discussed in Subsection 4.1.3).  Hence, the 

cylindrical SNWT with a minimum wire spacing provides an upper performance limit for 

all types of FETs (i.e., both SNWTs and planar MOSFETs). 

 By dividing the current for a single nanowire by the wire spacing parameter, we 

actually guarantee that all the devices (i.e., both SNWTs and planar MOSFETs) have the 

same integration density.  The explanation is as follows.  In our comparison, the SNWTs 

and the DG MOSFETs always possess the same gate (channel) length.  For this reason, to 

achieve an equal integration density, a SNWT and a DG MOSFET must have an identical 

channel width, W0.  Consequently, the current for the SNWT is obtained as 

0 0W
SNWT W

WI I
ρ

= ⋅ ,                                               (4.1) 
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where IW is the current for a single nanowire, which is an output of our SNWT simulator, 

while the current for the DG MOSFET is evaluated as 
0

0
W
MOS MI I W= ⋅ ,                                               (4.2) 

where IM (in µA/µm), the current per unit width for the simulated DG MOSFET, is 

directly computed by the MOSFET simulator, NanoMOS-2.5 [40].  When comparing the 

currents for the two devices, i.e., 0W
SNWTI  vs. 0W

MOSI , we can simply eliminate W0 from both 

Eq. (4.1) and Eq. (4.2).  Thus, the quantities we are actually comparing are /WI ρ  vs. MI , 

which implies that we should convert the current for a single wire (IW ) into current per 

unit width by dividing it by the wire spacing parameter (ρ), if we require the SNWT and 

the DG MOSFET have an equal integration density.  

 

 

 
Fig. 4.2 The definitions of wire spacing parameter, ρ, for SNWTs with various cross-

sections (from the top to the bottom – triangular, rectangular and cylindrical). 
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 The basic concepts of our comparison methodology are briefly summarized as 

below.  As we know, the performance of an integrated circuit chip is evaluated by its 

integration density, power consumption and switching speed [2].  In our comparison 

between SNWTs and DG MOSFETs, we fix the integration density of both devices (as 

described earlier) as well as the static power density per unit chip area (we adopt a 

different gate work function for each device to achieve a specified OFF-current, 

10µA/µm [74]).  Then we compare the switching speed of each device; there are two 

parameters that determine the switching speed of the circuit: 1) the ON-current, which 

determines the interconnect delay, and 2) the intrinsic device (transistor) delay, τ . [2] 

For a planar MOSFET, an analytical expression of τ  is obtained as [2] 

( )G DD T

ON

C V V
I

τ
−

= ,                                                 (4.3) 

where TV is the threshold voltage and GC  is the gate capacitance, which, at most cases 

(i.e., if quantum confinement is not so significant), can be simply expressed as [2] 

ox
G

ox

C W
T
ε

= ,                                                    (4.4) 

where oxT  is the oxide thickness, oxε  is the SiO2 dielectric constant and W is the 

MOSFET channel width.  Eqs. (4.3) and (4.4) are widely used to compute the intrinsic 

device delay of conventional MOSFETs.  For SNWTs, however, which are multi-gate 

structures, Eq. (4.4) is not valid anymore, especially when the Si body thickness/width is 

comparable to the oxide thickness.  Consequently, a new equation for the intrinsic device 

delay, τ , is adopted in this work, 

ON OFF

ON

Q Q
I

τ −
= ,                                               (4.5) 

where ONQ  ( OFFQ ) is the total electron charge inside the device at the ON (OFF) state. 

(For conventional planar MOSFETs, Eq. (4.5) gives the same results as the previous 

equations, Eqs. (4.3) and (4.4)).  Since this is a simulation study, ONQ  and OFFQ  can be 

directly obtained from the numerical simulators, so Eq. (4.5) can be easily used to 

calculate the intrinsic device delays of any types of FETs (e.g., planar MOSFETs, 
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SNWTs with arbitrary cross-sections, and other types of FETs like carbon nanotube FETs 

[5] [6] or molecular transistors [9]). 

 

4.1.3 Results 

  

 In Table 4.1, we list the device characteristics of the simulated DG MOSFETs and 

SNWTs with the same gate length (10nm), oxide thickness (1nm) and Si body 

thicknesses (3nm and 6nm).  The results show that when the Si body is thin (3nm, see 

Table 4.1a), gate control for the DG MOSFET is good, which endows the DG MOSFET 

with good performance at the 10nm-scale.  The triangular wire (TW) and rectangular 

wire (RW) FETs (with no bottom gate) provide comparable subthreshold swings, better 

DIBL and intrinsic device delays, and slightly lower ON-currents.  If we choose a thicker 

body (6nm, see Table 4.1b), which is easier to realize in practice and offers less device-

device variation, the DG MOSFET loses its good gate control (at the 10nm-scale) 

because the two gates are relatively far apart.  For thick Si bodies, the TW and RW FETs 

offer better device metrics, both in the subthreshold region and at the ON-state.  So we 

conclude that the SNWT offers more benefits when the silicon body is relatively thick.  

Another interesting phenomenon is that as the channel length decreases from 

10nm to 4nm, the advantages of the SNWTs over the DG MOSFET (with a 3nm-thick 

body) become more and more significant (Fig. 4.3).  This occurs because the silicon body 

looks thicker (compared with the channel length) as the channel length scales down.  As a 

result, the SNWT provides better scaling capability than the planar DG MOSFET.  We 

also observed that both the TW/RW FETs and DG MOSFETs operate well below the 

cylindrical SNWTs with a minimum wire spacing, which provide the optimum gate 

control (although they could be difficult to fabricate in practice).  These results show that 

there is still room for optimizing gate geometry configuration.  For rectangular SNWTs, 

we compare the device design in <100> oriented channel with that in <110> one and 

observe that the <100> oriented channel does offer 10-15% higher ballistic ON-current 

(see Table. 4.1).  (A similar effect was illustrated in [12] based on a calculation of carrier 

mobility.) 
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Table 4.1 Geometrical parameters and device characteristics of the DG MOSFETs and 
various SNWTs. (VDS=0.4V).  The silicon body thicknesses, TSi (as shown in Fig. 4.1), 

are (a) 3nm and (b) 6nm.  For all the simulated structures, the source/drain (S/D) doping 
concentration is 2·1020cm-3 and the channel is undoped.  There is no S/D overlap with 

channel and the gate length is always equal to the channel length (L=10nm).  The currents 
for SNWTs are divided by the wire spacing parameter, ρ.  For each device, a proper gate 
work function is selected to obtain a specified OFF-current, 10µA/µm [74].  No parasitic 

capacitance is included in the calculation of intrinsic device delays. 
 

(a) TSi=3nm, Tox=1nm and L=10nm 

 DG TW 
<110> 

RW 
<110> 

RW 
<100> 

CW 
<100> 

WSi (nm) n/a 4.2 4.0 4.0 3.0 
WWire (nm) n/a 6.7 6.0 6.0 5.0 
ρ (nm) n/a 6.7 8.0 8.0 5.0 

ION (µA/µm) 2000 1630 1460 1650 3550 
S (mV/dec) 97 91 96 97 77 

DIBL (mV/V) 120 69 104 109 21 
Delay (ps) 0.075 0.056 0.069 0.062 0.046 

  

 

(b) TSi=6nm, Tox=1nm and L=10nm 

 DG TW 
<110> 

RW 
<110> 

RW 
<100> 

CW 
<100> 

WSi (nm) n/a 8.5 4.0 4.0 6.0 
WWire (nm) n/a 10.9 6.0 6.0 8.0 
ρ (nm) n/a 10.9 8.0 8.0 8.0 

ION (µA/µm) 930 940 1680 1860 2290 
S (mV/dec) 144 122 101 102 96 

DIBL (mV/V) 396 195 157 163 129 
Delay (ps) 0.167 0.114 0.092 0.082 0.079 
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 (c) ON-OFF current ratio vs. gate length 

Fig. 4.3 The device characteristics (i.e., (a) swing, (b) DIBL, and (c) ON-OFF current 
ratio) vs. gate length curves for SNWTs and DG MOSFETs (TSi=3nm and Tox=1nm).  

For each device structure, a proper gate work function is selected to achieve a specified 
OFF-current of 10µA/µm [74].  The wire spacing parameters for the SNWTs are listed in 

Table 4.1a. 
 

 

 Figure 4.4 illustrates the variations of OFF (ON) currents for the DG MOSFET 

and SNWTs due to the fluctuation of TSi.  It is shown that the TW and CW FETs suffer 

larger performance variations than the DG MOSFET because their Si body widths (WSi)  

and body thickness (TSi) always fluctuate in the same direction (i.e., both increase or 

decrease).  For the RW FET, WSi and TSi are uncorrelated. If we only consider the 

(a) Swing vs. gate length (b) DIBL vs. gate length 
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fluctuation in TSi, the results show that the RW FET displays comparable – even smaller 

performance variations than the DG MOSFETs, which can be an advantage of the RW 

structure. 

 

 
 

Fig. 4.4 The variations of OFF-current (left) and ON-current (right) vs. TSi curves for the 
simulated DG MOSFETs, TW<110>, RW<110> and CW<100> FETs in Table. 4.1a 

(L=10nm and Tox=1nm).  For each type of device structure, a proper gate work function 
is selected to achieve a specified OFF-current, 10µA/µm [74], for the nominal (TSi=3nm) 

device. 
 

 

 Finally, we examine the role of wire spacing (wire density) on SNWT 

performance.  Fig. 4.5 plots the ON-OFF current ratio vs. ρ (left) and the subthreshold 

swing vs. ρ (right) curves.  Since we design each device for a fixed OFF-current 

(10µA/µm [74]), a different gate work function is needed for each wire spacing 

parameter, ρ.  So the subthreshold swing and ON-OFF current ratio become dependent on 

ρ.  The results show that the ON-OFF current ratio degrades and the subthreshold swing 

increases as the wire spacing is raised.  As a result, maintaining a high wire density is 

important for a SNWT to achieve a high drive current and a small subthreshold swing.   
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Fig. 4.5 The dependence of device performance (i.e., ON-OFF current ratio (left) and 
subthreshold swing (right)) on the wire spacing parameter.  The simulated device is a 

CW<100> FET with TSi=3nm, Tox=1nm and L=10nm. 
 

 

4.1.4 Conclusions 

 

 In this section, we explored the device characteristics and scaling potential of 

ballistic silicon nanowire transistors by using the three-dimensional (3D) numerical 

simulator developed in Chapter 3.  The results were compared with those of the planar 

double-gate MOSFET and it shows that 

1) Triangular and rectangular nanowire FETs, without a bottom gate, offer better 

electrostatics and scaling potential than planar DG MOSFETs, especially when 

the silicon body is thick. 

2) The cylindrical SNWT structures with a minimum wire spacing offer 

substantially better device metrics than any other structures (i.e., the DG 

MOSFET or the triangular/rectangular SNWTs), which implies that there is 

still room for the optimization of gate geometry configurations. 

 ρ 

… …
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3) Maintaining a high wire density is important for nanowire FETs (or any FETs 

with one-dimensional (1D) channels) to achieve good device performance. 

4) While providing better electrostatic integrity (gate control), the SNWT 

structure may also suffer larger device performance variation than the planar 

DG MOSFET due to the stronger quantum confinement in nanowires.  This 

effect will be seriously considered in Sec. 4.2. 

 

4.2 Assessment of the Scaling Potentials of SNWTs vs. Planar MOSFETs Based on a 

General Approach 

 

4.2.1 Introduction 

 

 In Sec. 4.1, we performed a 3D numerical simulation to show that SNWTs do 

offer better gate control (e.g., a better subthreshold swing and a higher ON-OFF current 

ratio) than planar DG MOSFETs.  The results also showed, however, that the SNWT 

structures suffer larger threshold voltage variation than the planar DG MOSFET due to 

stronger quantum confinement in nanowires.  In other words, the advantage of multi-gate 

structures (SNWTs) in terms of electrostatic integrity may be compromised by their 

sensitivity to quantum confinement (which aggravates threshold voltage variation and 

surface roughness scattering).  This effect should be seriously considered when selecting 

gate geometries at the scaling limit.  

In this section, we propose a general approach, which considers both Electrostatic 

integrity and Quantum confinement (so called the “EQ approach”), to compare the device 

performance of nanoscale Si FETs with various gate geometry configurations (i.e., planar 

MOSFETs vs. SNWTs).  This approach is based on the use of a LQ vs. LE plot, where LQ 

is the quantum confinement length to be defined below, and LE denotes the electrostatic 

scale length.  As defined in [75] [76] [77], the electrostatic scale length, LE, describes the 

significance of the 2D (in planar FETs) or 3D (in non-planar FETs) effects such as DIBL 

and VT rolloff in the device [2].  To be specific, the larger the ratio E ChannelL L , the more 

serious the 2D (3D) effects.  (It was shown in [75] that devices with acceptable 
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characteristics could be designed as long as the gate length is greater than ~1.5× the 

electrostatic scale length.)  The quantum confinement length, LQ, is defined as 

0/( )Q B SiL k T dE dT= ,                                            (4.6) 

where E0 is the lowest electron subband level in the quantum mechanically confined Si 

body (to be discussed later), TSi is the Si body thickness, kB is Boltzmann constant and T 

is the ambient temperature.  (When computing the LQ of a SNWT, we assume the Si body 

width, WSi, as shown in Fig. 4.1, to be proportional to TSi, so changing TSi does not alter 

the shape of the cross-section but only its area).  The physical meaning of LQ is explained 

as follows.  If the silicon body thickness variation in a FET is SiT∆ (caused by process 

variations), then the threshold voltage variation, TV∆ , can be obtained approximately as 

0
0

0

/
/( )

Si B Si Si B
T

Si B Si Q

dE T k T T T k TV E q
dT q q k T dE dT L q

∆ ⋅∆ ∆
∆ ≅ ∆ = = = ,  (4.7) 

where q is the charge of a single electron.  As we can see from Eq. (4.7), the larger the LQ 

is, the smaller the threshold voltage variation will be.  So LQ explicitly represents the 

sensitivity of threshold voltage variation to Si body thickness fluctuation.  Based on the 

definitions of LQ and LE, it is easily concluded that a well-tempered device structure 

should have a large LQ (e.g., Q SiL T> ∆ ) as well as a small LE (e.g., E ChannelL L< ).  As a 

result, when plotting the LQ vs. LE curves for different device structures on the same 

figure, the one that has the largest LQ at the same LE offers the best device characteristics 

(considering both electrostatics and quantum confinement). 

In the following subsections, we first provide the equations we use to compute the 

LQ and LE for different nanoscale planar/non-planar structures, and then we compare their 

scaling potentials based on our general approach.  

 

4.2.2 Device structures 
 

 There are three types of device structures to be investigated in this work: 1) the 

symmetric planar DG MOSFET, which is the optimum planar structure in terms of gate 

control, [39] [48] [72] [73] 2) the gate-all-around cylindrical wire (CW) FET that 
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provides the best electrostatic integrity among SNWTs [4] [16] [78], and 3) the 

rectangular wire (RW) FET, a tri-gate structure, which is being extensively explored in 

recent experimental work [11] [12].  (The device structures have been illustrated in Fig. 

4.1.)  Two wafer orientations, (001) and (011), are considered in the simulations.  For the 

(001) wafer, the z direction (shown in Fig. 4.1) is in[ ]001 , while for the (011) wafer the z 

direction is in[ ]011 .  In CW FETs, the /Si SiW T  ratio is always equal to 1.  In contrast, the 

/Si SiW T  ratio in the RW structure can take arbitrary values.  In practice, to make all three 

gates effective in modulating the channel conductance, the WSi in the RW FET is 

normally selected to be comparable to TSi. [11]  In this work, for simplicity, / 1Si SiW T =  is 

always assumed for the RW structure. 

 

4.2.3 Basic equations for the calculation of LE and LQ 

 

A) Equations for the Electrostatic Scale Length LE: 

The electrostatic scale length, LE, is a widely used parameter to describe the 

electrostatic coupling between the drain bias and the potential inside the channel (i.e., the 

larger the LE, the stronger the coupling). [16] [75] [76] [77]  For a symmetric DG 

MOSFET, as indicated in [75], the LE satisfies the equation 

1 tan( / ) tan( / 2 )Si
ox E Si E

ox

T L T Lε π π
ε

= ,           (4.8) 

where Tox is the oxide layer thickness, Siε  and oxε  are the dielectric constants for Si and 

SiO2, respectively.  By numerically solving Eq. (4.8), the LE is computed for given TSi 

and Tox. 

For a cylindrical wire (CW) FET, following the same procedure as in [75], we 

find that the LE satisfies the following equation 

( )
( )

( )
( )

0 01 0

1 01 1

2
0

2
ox E Si E

Si ox
ox E Si E

J T L J T L
J T L J T L

π χ π
ε ε

π χ π
− +

− =
− +

,                         (4.9) 

where ( )0J x  and ( )1J x  are both Bessel functions [79] and 01 2.4048χ = . 
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In general, to obtain LE for a SNWT with arbitrary cross-sections, a numerical 

solution of the 3D Laplace’s equation, 

( ) ( )( ), , , 0y z V x y zε∇ ⋅ ∇ = ,                                 (4.10) 

is necessary (here ( ), ,V x y z  is the electrostatic potential and ( ),y zε  denotes the 

dielectric coefficient in the structure).  To do this, the solutions to Eq. (4.10) are 

decomposed into two domains: one in the channel (x) direction and one at the cross-

section (the y-z plane, see Fig. 4.1) of the wire (i.e., ( ) ( ) ( ), , ,V x y z X x u y z= ⋅ ).  Thus, 

two separate equations are obtained as 

( ) ( )
2

2
2 n

X x
k X x

x
∂

=
∂

,               (4.11) 

and, 

 ( ) ( )( ) ( ) ( )2, , , ,yz yz ny z u y z k y z u y zε ε−∇ ⋅ ∇ = ⋅ ,         (4.12) 

where nk  are coefficients to be determined by satisfying the boundary conditions (to be 

discussed below).  As described in [75], the electrostatic scale length, LE, is defined as 

1 Ek Lπ= , where 2
1k  can be viewed as the lowest eigenvalue of Eq. (4.12).  To evaluate 

1k , we discretize Eq. (4.12) by the finite element method (FEM) [45] subject to the 

boundary conditions, ( ), 0u y z =  at the gate contacts and ( )( ), 0n u y z⋅ ∇ =
G JG

 elsewhere.  

(For the simulated RW structure, which has a floating SiO2 substrate, we follow previous 

work [76] [80] [81] and assume that the buried oxide substrate is thick enough so the 

electric field at the interface between the Si body and the buried oxide substrate is 

negligible.  The validity of this approximation will be discussed in Subsection 4.2.4.)   

Thus, Eq. (4.12) becomes the following linear system 

[ ] [ ] [ ] [ ]2
1 1nN N N N N N

A U k S U
× × × ×

= ,           (4.13) 

where N is the number of the nodes in the simulated cross-section (the 2D mesh in the y-z 

plane) excluding those at the gate contacts (where ( ), 0u y z = ).  By evaluating the 

eigenvalues of Eq. (4.13), 2
1k  (the lowest eigenvalue) and then the LE are computed.  (To 
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verify the validity of this approach, we used it to compute the LE for the CW structure 

and obtained the same result as that from Eq. (4.9).) 

 

B) Equations for the Quantum Confinement Length LQ: 

According to Eq. (4.6), to evaluate the quantum confinement length, LQ, of a 

device, we first need to obtain an expression for the lowest electron subband level, E0.  

To do this, an ellipsoidal parabolic energy band for electrons is assumed and the 

effective-mass approximation [43] [44] is adopted in this work.  For simplicity, we 

neglect the penetration of electron wavefunction into the oxide layers (i.e., the electron 

wavefunction is zero at the Si/SiO2 interfaces).  We also assume that the potential profile 

variations in the cross-section (see Fig. 4.1) are negligible, which is appropriate for ultra-

thin-body structures as confirmed by self-consistent Schrödinger-Poisson simulations.  

With these assumptions, an analytical expression can be obtained for a planar SOI 

MOSFET (e.g., the DG MOSFET) as 
2 2

0 * 22 z Si

E
m T
π

=
= ,                                                   (4.14) 

where *
zm  is the effective-mass in the z direction ( * 0.98z l em m m= =  for the (001) wafer 

and ( )* 2 / 0.318z l t l t em m m m m m= + =  [71] for the (011) wafer).  Inserting Eq. (4.14) into Eq. 

(4.6), the LQ for a planar MOSFET is evaluated as 
* 3

0 2 2/( ) B z Si
Q B Si

k Tm TL k T dE dT
π

= =
=

.                              (4.15) 

For a SNWT, in general, a 2D Schrödinger equation (in the y-z plane) needs to be 

numerically solved to obtain E0.  As mentioned earlier, we assume that the Si body width 

is always proportional to TSi when calculating LQ, so the E0 in a SNWT is also 

proportional to 1/TSi
2 (as in a planar FET), that is, 

0 2
Si

CE
T

= ,                                   (4.16) 

where C is independent of TSi and it can be evaluated after numerically computing E0. 

(To be concise, the mathematical proof of Eq. (4.16) is not shown here.)  The value of C 

depends on the electron effective-masses in the y and z directions and the geometry of the 
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wire cross-sections (e.g., the shape and the /Si SiW T  ratio).  (The C values for the 

simulated SNWT structures are listed in Table 4.2.)  Inserting Eq. (4.16) into Eq. (4.6), 

the quantum confinement length, LQ, for a SNWT is obtained as 

3

2
B

Q Si
k TL T

C
= .                                (4.17) 

It is clearly shown in Eqs. (4.15) and (4.17) that in either a planar or a non-planar FET, 

the quantum confinement length, LQ, is proportional to 3
SiT , thus indicating that LQ is 

quite sensitive to Si body thickness.  So a trade-off between LE and LQ arises; in order to 

achieve better electrostatic integrity (smaller LE), a smaller body thickness ( SiT ) is 

preferred, which will, however, cause larger threshold voltage variation (smaller LQ, see 

Eq. (4.7)).  As we will see, the approach proposed in this section provides an opportunity 

to properly evaluate this trade-off when comparing different gate geometry 

configurations at the scaling limit.   

 

Table 4.2 The C values (defined by Eq. (4.16)) for the simulated CW and RW 
( / 1Si SiW T = ) structures.  Two wafer orientations, (001) and (011), are considered in this 

calculation. 
 

CW RW 
 

(001) (011) (001) (011) 

C [eV-nm2] 2.70 2.70 2.35 2.11 

 

 

 

4.2.4 Results 

 

 Figure 4.6 (left) plots the electrostatic scale length LE vs. Si body thickness TSi 

curves for the cylindrical wire (CW) FET (dashed) and the symmetric planar double-gate 

(DG) MOSFET (solid) on the (001) wafer.  It is clear that the CW FET, a gate-all-around 

structure, has significantly smaller electrostatic scale length than the planar DG MOSFET 
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at the same Si body thickness, thus indicating that the CW FET offers better gate control 

[4] [16].  At the same time, Fig. 4.6 (right) illustrates that the CW FET (dashed) has 

much smaller quantum confinement length than the DG MOSFET (solid), which implies 

stronger quantum confinement and consequently larger threshold voltage variation for the 

CW FET [4].  It is important to mention that these qualitative conclusions inferred from 

the LE vs. TSi and LQ vs. TSi curves are consistent with those obtained from the detailed 

numerical simulations in Sec. 4.1.  It shows that LE and LQ are well-defined parameters 

that can be used to represent the key metrics (i.e., gate control and quantum confinement) 

of the device structure. 

 

 
Fig. 4.6 The electrostatic scale length LE vs. TSi curves (left) and the quantum 

confinement length LQ vs. TSi curves (right) for the cylindrical wire (CW) FET (dashed) 
and the symmetric planar DG MOSFET (solid) on the (001) wafer.  The geometry 

configurations of the two structures have been illustrated in Fig. 4.1 (the oxide thickness 
is fixed to be 1nm) and the effective-masses we use in this calculation are 

* 0.19y em m= and * 0.98z em m= . 
 

In Fig. 4.7, we plot the LQ vs. LE curves for the CW FET (dashed) and the planar 

DG MOSFET (solid) on the (001) wafer.  Interestingly, the two curves are quite close to 

each other, which indicates that the CW FET and the DG MOSFET perform equally well. 
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Based on the results shown in Figs. 4.6 and 4.7, we conclude that the cylindrical wire 

geometry has much better electrostatic integrity than the planar DG structure, but this is 

offset by the fact that the CW geometry also results in much stronger quantum 

confinement.  On balance, the two structures are nearly equal in their scaling potential 

(according to our EQ approach) for the (001) wafer. 

 

 
 

Fig. 4.7 The LQ vs. LE plot for the cylindrical wire (CW) FET (dashed) and the symmetric 
planar DG MOSFET (solid) on the (001) wafer.  The geometry configurations of the two 
structures have been illustrated in Fig. 4.1 (the oxide thickness is fixed to be 1nm) and the 

effective-masses we use in this calculation are * 0.19y em m= and * 0.98z em m= . 
 

 

The LQ vs. LE plot (e.g., Fig. 4.7) can also be used to identify the minimum 

electrostatic scale length (Lmin) for an assumed Si body thickness variation SiT∆ (e.g., 

0.3nmSiT∆ =  for one monolayer variation).  To be specific, if we require /T BV k T q∆ < , 

then LQ must be larger than SiT∆ , as implied by Eq. (4.7).  So we can obtain the minimum 

electrostatic scale length, Lmin, for a given device structure by interpolating the 
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corresponding LQ vs. LE curve (see Fig. 4.7).  From Fig. 4.7, we find that corresponding 

to 0.3nmSiT∆ = , 5.8nmminL = for the CW FET and 6.2nmminL = for the DG MOSFET on 

a (001) wafer.  Using the same approach, we also compute the Lmin for the RW structure.  

Fig. 4.8 compares the Lmin for all the simulated structures, and the results show that for 

the (001) wafer the DG MOSFET has a little larger Lmin than the CW FET and both of 

them provide smaller Lmin than the RW (tri-gate) structure.  For the (011) wafer, however, 

the performance of the planar DG structure degrades so that the advantage of the non-

planar (e.g., CW and RW) FETs becomes more apparent.  The reason for this is that for 

the (001) wafer the effective-mass in the confinement (z) direction ( * 0.98z em m= ) of a 

planar DG FET is much larger than that in the transverse (y) direction ( * 0.19y em m= ), 

which is one of the two confinement directions in a non-planar structure.  So the planar 

DG FET displays much weaker quantum confinement.  For the (011) wafer where the *
zm  

is relatively small (i.e., * 0.318z em m=  [71]), the quantum confinement advantage of the 

DG structure is greatly diminished and consequently the non-planar FETs have 

significantly better overall performance (according to our general approach) due to their 

better electrostatic integrity.  In addition, Fig. 4.8 also illustrates that the cylindrical wire 

FET (gate-all-around) performs substantially better than the rectangular wire structure 

(tri-gate), which agrees with the detailed numerical simulations in Sec. 4.1. 

As indicated in part A of Subsection 4.2.3, when calculating LE for the RW 

structure that has a floating SiO2 substrate, we assume that the electric field at the 

interface between the Si body and the SiO2 substrate is zero (so called the ‘zero-field’ 

assumption).  By doing detailed benchmarking simulations with our 3D numerical 

simulator developed in Chapter 3, we find that for the RW structure simulated in this 

work, the ‘zero-field’ assumption underestimates the subthreshold swing by <2% and the 

DIBL by ~10% .  So this assumption slightly overestimates the electrostatic integrity of 

the RW FETs with an acceptable error, which will not affect any qualitative conclusions 

of the device comparison.     
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Fig. 4.8 The minimum electrostatic scale length, Lmin, for the DG MOSFET, CW FET 

and RW FET.  The geometry configurations of the simulated structures have been 
illustrated in Fig.4.1 (the oxide thickness is fixed to be to 1nm).  Two wafer orientations, 
(001) and (011), are examined.  In this calculation, the Si body thickness variation, SiT∆ , 
is assumed to be equal to 0.3nm, which roughly accounts for one monolayer variation. 

 
 

 

4.2.5 Conclusions 

 

In this section, we proposed a general approach, the EQ approach, to assess the 

scaling potential of SNWTs vs. planar MOSFETs based on both gate control 

(electrostatics) and quantum confinement.  We illustrated this general approach by 

evaluating three different device geometries.  For (001) Si wafers, the results show that 

the non-planar nanowire structures (e.g., the cylindrical wire FET) provides better gate 

control while displaying stronger quantum confinement than planar devices (e.g., double-

gate MOSFETs).  On balance, the CW FET and the planar DG MOSFET perform nearly 

equally well for (001) Si wafers.  For (011) Si wafers, however, where the effective-mass 

in the confinement (z) direction of the planar FET is relatively small, the non-planar wire 

structures are significantly advantageous. 
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4.3 Channel Material Optimization of Planar and Nanowire MOSFETs: A 

Conceptual Study 

 

4.3.1 Introduction 

 

As conventional Si CMOS transistors are approaching their scaling limit, many 

researchers are exploring new materials and device structures to push MOS technology 

towards fundamental limits.  MOSFETs with strained silicon, SiGe, or even III-V 

channels are possibilities [7] [8] [82], as are 1D channels made from nanowires [3] [4] or 

nanotubes [5] [6].  In this section, we theoretically examine the impact of the channel 

material property (i.e., the energy dispersion relation) and device structure (i.e., 2D planar 

vs. 1D nanowire) on the ultimate performance of ballistic MOSFETs.  The results will 

show that when the transport effective-mass is small, it degrades device performance, and 

that planar and nanowire MOSFETs behave differently. 

Different channel materials display different energy dispersion relations and 

different effective-mass at the band-edge.  To achieve high device performance, one 

might expect that a light transport effective-mass would be best since it offers a high 

carrier injection velocity. [36] [67]  On the other hand, a light effective-mass also leads to 

a lower quantum (or semiconductor) capacitance [55] [56], which degrades the ON-

current (ION) of the device.  When the channel length is sufficiently small, strong source-

to-drain (S/D) tunneling occurs at a small transport effective-mass. [17]  Tunneling 

degrades the subthreshold characteristics of the FET and consequently lowers the ON-

current for the same OFF-current (IOFF).  For these reasons, an optimum transport 

effective-mass may exist for a given device structure. 

 

 4.3.2 Device structure and simulation results 

 

The simulated structures of the planar and nanowire FETs are sketched in Fig. 4.9. 

We first employ a ballistic, semiclassical, FET model, ‘FETToy’ [52] [53], introduced in 

Chapter 2.  It is assumed that states at the top of the barrier are filled according to the 
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source and drain Fermi levels, and the electron density and current are computed by 

integrating over filled states (using Landauer’s formula [37]).  The model treats the 

quantum capacitance effect [55] [56] but not S/D tunneling [17].  Fig. 4.10a plots ION vs. 

transport effective-mass, meff, for the nanowire FET.  (Different gate work functions are 

used for each meff to achieve the same IOFF.)  The valley degeneracy, Nval, is equal to 1 

and the electrical effective oxide thickness (EOT) is 0.6nm.  When meff is large enough, 

the device works at the Charge Control Limit (CCL) – the mobile charge at the top of the 

barrier is determined by the gate insulator capacitance and the gate overdrive (not meff), 

so ION is roughly proportional to the electron thermal velocity, which is proportional to 

meff
-1/2 [36] [67].  When meff is sufficiently small, the device reaches the Quantum 

Capacitance Limit (QCL) – the barrier height is solely determined by the applied bias 

(the mobile charge is sensitive to meff), and ION is independently of meff.  For a 2D planar 

FET, as shown in Fig. 4.10b, ION is roughly proportional to meff
-1/2 at CCL, as in the 1D 

case, but ION ~ meff
1/2 at the QCL. [56]  For this reason, a 2D FET displays an optimum 

effective-mass, mop, which provides the highest ION for the same IOFF.  Fig. 4.10c shows 

that mop is inversely proportional to EOT and Nval. 

 

 
(a) 

 
(b) 

Fig. 4.9 Device structures of a planar double-gate MOSFET (a) and a gate-all-around 
cylindrical nanowire FET (b). 
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(a) 

 
(b) 

 
(c) 

Fig. 4.10 (a) ION vs. meff (log-log) for the nanowire FET.  (b) ION vs. meff (log-log) for the 
planar FET.  (c) Optimum meff vs. 1/EOT.  The supplied voltage is VDD=0.4V.  All the 

simulations for this figure are done by using the FETToy model [52] [53].   
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To treat S/D tunneling, we employ detailed numerical simulators for planar 

(NanoMOS-2.5 [40]) and nanowire (developed in Chapter 3) FETs.  Ballistic quantum 

transport is treated with the nonequilibrium Green’s function approach (NEGF) [37] [38].  

For comparison, a ballistic Boltzmann Transport Equation (BTE) model [36] is also used, 

in which S/D tunneling is not included.  Two channel lengths, L=5nm and L=10nm, are 

used for both the planar and nanowire FETs.  Fig. 4.11a clearly shows that both NEGF 

and BTE predict an mop for the planar FET, and mop(NEGF)>mop(BTE) due to the S/D 

tunneling.  When L=5nm, S/D tunneling is more serious and the difference between 

mop(NEGF) and mop(BTE) is larger than for L=10nm.  For the nanowire FET (Fig. 4.11b), 

the semiclassical BTE model does not give an mop (as was also observed in Fig. 4.10a).  

When S/D tunneling is included, however, there does exist an mop for the nanowire FET, 

and its value increases with a decreasing channel length. 

 

4.3.3 Conclusions 

 

In conclusion, we performed a theoretical exploration of how the channel material 

(i.e., the energy dispersion relation) affects the ultimate performance of planar and 

nanowire MOSFETs.  We found that:  

1) Without the consideration of S/D tunneling, there exists an optimum effective-

mass, which offers the highest ION for the same IOFF, for a planar FET.  For a 

nanowire FET, ION increases with a decreasing meff and saturates when meff is 

sufficiently small.   

2) When S/D tunneling is considered, an optimum effective-mass can be defined 

for both planar and nanowire FETs, and its value increases when the channel 

length scales down.   

These results suggest that III-V MOSFETs [82], which display a light transport effective-

mass, might prove advantageous, but only if the channel length is not reduced well below 

10nm. 
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(a) 

  
(b) 

Fig. 4.11 ION vs. meff for a planar FET (a) and a nanowire FET (b) calculated by using the 
detailed numerical simulators (i.e., NanoMOS-2.5 [40] for planar DG MOSFETs and the 

ballistic SNWT simulator developed in Chapter 3). 
 

 

L=10nm

L=5nm
 

L=10nm 

L=5nm 
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5. A THEORETICAL INVESTIGATION OF SURFACE 

ROUGHNESS SCATTERING IN SILICON NANOWIRE 

TRANSISTORS 
 

This chapter describes a theoretical investigation of the effects of surface 

roughness scattering (SRS) [83] [84] [85] on the device characteristics of silicon 

nanowire transistors (SNWTs).  To do this, we adopt the full three-dimensional (3D), 

quantum mechanical simulator, developed in Chapter 3.  The microscopic structure of the 

Si/SiO2 interface roughness [61] [62] is directly treated by using a 3D finite element 

technique.  The results show that 1) SRS reduces the electron density of states in the 

channel, which increases the SNWT threshold voltage, and 2) the SRS in SNWTs 

becomes less effective when fewer propagating modes are occupied, which implies that 

SRS is less important in small-diameter SNWTs with few modes conducting than in 

planar MOSFETs with many transverse modes occupied. 

 

5.1 Introduction 

 

To explore the realistic performance limits of SNWTs, understanding carrier 

transport in Si nanowires becomes increasingly important.  Careful studies are needed to 

experimentally characterize transport in SNWTs, but it is also clear that a theoretical 

understanding is similarly important.  In this chapter, we present a theoretical exploration 

of the Si/SiO2 interface roughness scattering, or surface roughness scattering (SRS) [83] 

[84] [85], in SNWTs. 

It is well-known that scattering due to Si/SiO2 interface roughness is important in 

planar silicon MOSFETs, and it is expected to be even more important in ultra-thin body 

silicon-on-insulator (UTBSOI) MOSFETs [83].  For bulk MOSFETs, electrons are 
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confined at the Si/SiO2 interface by an electrostatic potential well.  Under high gate bias, 

the potential well is thin, electrons are confined very near the interface, SRS increases, 

and the effective mobility decreases.  For UTBSOI MOSFETs, the confining potential is 

determined by the film thickness, and SRS can be enhanced by the roughness at the two 

interfaces. [83]  In a SNWT, the channel is surrounded by the Si/SiO2 interfaces, so one 

might expect SRS to dominate transport.  We will show, however, that SRS may be less 

important in SNWTs than in planar devices because of the one-dimensional (1D) nature 

of the SNWT channel.   

 

5.2 Methodology 

 

In Chapter 3, we developed a self-consistent, full 3D, quantum mechanical 

simulator of SNWTs based on the effective-mass approximation. [43] [44]  In this 

chapter, to investigate the effects of SRS, we apply this simulator for small-diameter 

(~3nm) SNWTs with physically rough Si/SiO2 interfaces.  The simulated structure is a 

gate-all-around SNWT with a rectangular cross-section and a [ ]100  oriented channel (see 

Fig. 5.1).  Following previous work on SRS [83] [84] [85], we assume an abrupt, 

randomly varying interface between the Si and SiO2, parametrized by a root mean square 

(rms) amplitude and an autocovariance function [61] [62].  The statistical nature of the 

roughness will depend on the nanowire fabrication methods and may differ considerably 

from that arising during the high temperature oxidation of a planar Si surface.  

Nevertheless, since our objective is to discuss general insights into the physics of SRS in 

SNWTs, we will employ the roughness parameters for a planar (100) Si/SiO2 interface 

obtained from [61].  Our use of a continuum level description may be questioned, but we 

believe that it is a useful first step that gives insight into how the magnitude and spatial 

coherence of potential fluctuations influence carrier transport.  In contrast to previous 

work [83] [84] [85], which made use of perturbation theory to compute the surface 

roughness scattering rate, we treat the physically rough structure directly. 

The microscopic structure of the Si/SiO2 interface roughness is implemented into 

the 3D simulator according to the following procedure.  We first discretize the simulation 
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domain with a 3D finite element mesh [44] [45]; each element is a triangular prism with a 

2Å height and edge length, comparable to the size of roughness at the (100) Si/SiO2 

interface. [61]  Next, we generate a two-dimensional (2D) random distribution across the 

whole Si/SiO2 interface (unfolding the four interfacial planes into a sheet) according to an 

exponential autocovariance function [61], 

( ) 22 mx L
mC x e−= ∆ ,                                                (5.1) 

where Lm is the correlation length, m∆  is the rms fluctuation of the roughness and x is the 

distance between two sampling points at the interface.  Based on the 2D random 

distribution, the types of the elements at the Si/SiO2 interfaces may be changed from Si to 

SiO2, or reversely, to mimic the rough interfaces (see Fig. 5.1b). 

After the roughness is implemented, electron transport through the rough SNWT 

is simulated by using the non-equilibrium Green’s function approach [37] [38].  With a 

coupled mode space (CMS) representation [41] [44] [45] [47], the wavefunction 

deformation due to the Si/SiO2 interface roughness is treated.  (The simulation 

methodology has been discussed in detail in Chapter 3.)  To emphasize the role of SRS 

on electron transport, we do not include any other scattering mechanisms, so coherent 

transport is assumed inside the device.  (Oscillations in the current due to quantum 

interference might be expected, but the averaging over a thermal distribution of 

wavelengths that occurs is sufficient to suppress them.)  The length of the channel 

( 10nmL = ) is long enough to ensure that sufficient averaging takes place so that sample 

specific effects are not observed.  The simulated results for the rough SNWT are then 

compared with those for a device with the same geometrical parameters (e.g., nominal 

oxide thickness and Si body thickness) but smooth Si/SiO2 interfaces.  By doing this, the 

effects of SRS on SNWT device characteristics can be clearly identified. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 5.1 (a) The schematic diagram of the simulated gate-all-round SNWT.  The 
source/drain doping concentration is 202 10i cm-3 and the channel is undoped.  There is no 
source/drain overlap with the channel and the gate length is L=10nm.  VS, VD, VG are the 
applied voltage biases on the source, the drain and the gate, respectively.  (b) The cross-

section of the SNWT with a specific interface roughness pattern for the slice at X=9.0nm.  
For the device with smooth Si/SiO2 interfaces, the Si body thickness is TSi=3nm, the wire 
width is WSi=3nm, and the oxide thickness is 1nm.  (c) The confined wavefunctions for 

the slices at X=7.8nm, X=8.0nm, and X=8.2nm, respectively.  The shape of the 
wavefunctions changes from slice to slice due to the Si/SiO2 interface roughness. 
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5.3 Results 

 

Figure 5.2 plots the electron subband profile (left column) at the ON-state 

(VGS=VDS= 0.4V) in the simulated SNWT with rough and smooth Si/SiO2 interfaces.  The 

corresponding transmission coefficients (right column) for both the rough and smooth 

SNWTs are also shown.  Note that the modes are coupled in the simulation; we show 

them separately for illustrative purposes only.  It is clearly seen in the Energy vs. X plot 

that the presence of the roughness introduces significant fluctuations in the electron 

subbands, which lead to fluctuating elements in the diagonal terms of the device 

Hamiltonian (for details, see Eq. (3.7) in Chapter 3) and act as a scattering potential.  At 

the same time, the shape of the confined wavefunction also alters from slice to slice in the 

rough SNWT (see Fig. 5.1c for an example), which produces deformation and coupling 

elements in both diagonal and off-diagonal terms of the device Hamiltonian (for details, 

see Eqs. (3.7), (3.8b) and (3.8c) in Chapter 3), and consequently lowers the transmission.  

(This effect has been named ‘wavefunction deformation scattering’ [86] [87] [88].)  To 

examine the significance of wavefunction deformation scattering, we plot an Energy vs. 

Transmission curve (dot-dashed) for the rough SNWT calculated by the uncoupled mode 

space (UMS) approach (see Chapter 3 for details), in which only the variations in the 

electron subbands are included while the deformation and coupling terms are completely 

discarded.  The fact that the UMS approach significantly overestimates the transmission 

for the rough device infers that wavefunction deformation scattering dominates the 

transport.  This is an important finding because common perturbation theory treatments 

[83] [84] [85] of SRS scattering typically treat the subband energy fluctuations but not 

the wavefunction deformation scattering. 

From the Energy vs. Transmission plot, we find that the difference between the 

transmission curve for the rough SNWT and that for the smooth device becomes more 

and more noticeable as energy increases.  This occurs because as energy increases, more 

subbands (modes) become conductive and the coupling between different modes 

efficiently reduces the transmission in the rough SNWT.  In other words, SRS becomes 
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more significant as more modes conduct.  As we will show later, this effect has an 

important impact on the role of SRS on SNWT device characteristics.  

 Figure 5.3a plots the IDS vs. VGS curves in a semi-logarithmic scale for both the 

rough and smooth SNWTs. The results show that there is a distinct threshold voltage (VT) 

increase caused by the SRS.  In the low gate bias region, the lateral displacement of the 

smooth and rough characteristics implies a VT increment of ~30mV for the roughness 

parameters we used (Lm=0.7nm and rms=0.14nm) and varies little from sample to sample.   

The increase in VT due to SRS was unexpected and the reason for it is as follows.  Due to 

SRS, injections at low energies are blocked in the rough SNWT, which reduces the 

density-of-states (DOS) near the band-edge (see Fig. 5.3b).  The lowered DOS near the 

band-edge reduces the charge density in the subthreshold regime, and consequently 

increases VT in the rough SNWT.  This effect would be modest in a conventional 

MOSFET with an energy-independent DOS above the band-edge, but it becomes 

pronounced in a 1D wire with a singularity in the DOS at the band-edge. 

 

 

Fig. 5.2 The electron subband profile (for the (010) valleys) and the corresponding 
transmission coefficients for the simulated SNWT (TSi=WSi=3nm) with smooth and rough 
Si/SiO2 interfaces.  The roughness parameters used are Lm=0.7nm and rms=0.14nm [61].  
The device is at the ON-state (VGS=VDS=0.4V), so the source and drain Fermi levels are 

equal to 0eV and -0.4eV, respectively. 
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(a) 

 

(b) 

Fig. 5.3 (a) IDS vs. VGS curves for the simulated SNWT (TSi=WSi=3nm) with smooth 
(solid) and rough (dashed with symbols) Si/SiO2 interfaces.  (VDS=0.4V).  Three samples 

(triangles, crosses and circles) of the rough SNWT are generated based on the same 
roughness parameters (Lm=0.7nm and rms=0.14nm) but different random number seeds.  
The SNWT threshold voltage (VT) is defined as IDS(VDS=VT, VDS=0.4V)=2·10-7·WSi (A), 
where WSi is in nm.   (b) The reduction of electron DOS at low injection energies caused 

by SRS. 
 

VT shift 

VDS = 0.4V 
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Finally, we explore the effects of SRS on the SNWT drain current above 

threshold.  To do this, we compute a current ratio /Rough Smooth
DS DSI Iβ =  at the same gate 

overdrive, VGS -VT, for both rough and smooth SNWTs.  By comparing currents (rough vs. 

smooth) at the same gate overdrive, the effect of the VT increasing induced by SRS is 

removed.  This allows us to examine whether the roughness can cause a significant 

reduction of SNWT ON-current by back-scattering.  Fig. 5.4 shows the β vs. gate 

overdrive curves for the SNWTs with different wire widths and roughness parameters.  

Several interesting phenomena are observed.  First, all the simulated structures display a 

decreasing β with an increasing gate overdrive.  This occurs because more modes become 

conductive under higher gate bias, which, as described earlier, enhances SRS in the 

SNWTs.  

Second, based on the roughness parameters, Lm=0.7nm and rms=0.14nm, which 

are typical of an oxidized Si/SiO2 interface [61], the SNWT with WSi=3nm (solid) 

achieves a surprisingly high β≈0.9 at a typical ON-state condition (gate overdrive = 0.3V 

for a 0.4V supplied voltage).  The same amount of surface roughness scattering severely 

degrades the mobility of a planar MOSFET under a high gate bias. [86]  To explore the 

effects of the correlation length Lm, two additional values (1.4nm for circles and 3.0nm 

for triangles) were examined.  The results show that β is insensitive to Lm, as expected 

from the averaging over a thermal distribution of electron wavelengths that occurs at 

room temperature and high drain bias (VDS=0.4V).  In contrast, doubling the rms 

(diamonds) clearly degrades β at the same gate overdrive, indicating the importance of 

maintaining relatively smooth Si/SiO2 interfaces for the high performance applications of 

SNWTs.  

Third, increasing the wire width reduces the strength of quantum confinement and 

thus increases the number of conducting modes in the SNWT.  Our results (solid vs. 

dashed) clearly show that with a larger number of conducting modes in the wider 

(WSi=9nm) SNWT, SRS is much stronger than in the narrower (WSi=3nm) device.  This 

observation also suggests that SRS is more serious in a planar MOSFET, which can be 

viewed as a SNWT with a very large wire width. 
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Fig. 5.4 Current ratio β vs. gate overdrive curves for the simulated SNWTs with different 
wire widths (WSi) and roughness parameters (Lm and rms).  At all the cases, the Si body 

thickness is fixed to be TSi=3nm and the drain bias is VDS=0.4V. 
 

 

 

5.4 Summary  

 

In summary, we theoretically investigated the surface roughness scattering in 

silicon nanowire transistors by using a full 3D, self-consistent, quantum mechanical 

simulator, developed in Chapter 3.  The microscopic structure of the Si/SiO2 interface 

roughness [61] [62] was implemented into the simulator using the 3D finite element 

method [44] [45].  We found that  

1) SRS significantly deforms electron wavefunction and subbands, and the 

deformation and coupling terms, instead of the variations in electronic 

subbands, dominate the transport, 

2) SRS reduces the electron density of states in the channel, which increases the 

SNWT threshold voltage, 

Increase WSi 

Double  
rms 
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3) SRS is insensitive to the correlation length of the Si/SiO2 interface roughness 

but very sensitive to the rms, so a smoother Si/SiO2 interface is highly 

preferred for the high performance applications of SNWTs, 

4) SRS in SNWTs becomes less serious when fewer propagating modes conduct, 

implying that SRS will be less important in small-diameter SNWTs than in 

planar MOSFETs with many transverse modes occupied. 

This work provides important insights into the nature of SRS in SNWTs and 

suggests that SRS may not be as important in nanowires as it is in conventional, planar 

MOSFETs. 
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6. ATOMISTIC SIMULATIONS OF SILICON AND GERMANIUM 

NANOWIRE TRANSISTORS 

 
6.1 Introduction 

 

 In nanowires, due to the two-dimensional (2D) quantum confinement, the bulk 

crystal symmetry is not preserved any more.  For this reason, the atomistic bandstructure 

effects may play an important role on the device characteristics of semiconductor 

nanowire transistors, especially when the diameters are small (e.g., <3nm).  In this 

chapter, we perform an atomistic simulation of silicon and germanium nanowire 

transistors to explore their ballistic performance limits with the consideration of 

bandstructure effects. 

 Instead of doing a full three-dimensional (3D), atomistic simulation within the 

non-equilibrium Green’s function (NEGF) formalism [37] [38], which is discouraged by 

its huge computational burden, we accomplish our atomistic simulations according to the 

following ‘two-step’ procedure. 

1) Step 1 is the calculation of the energy dispersion (E-k) relations of silicon and 

germanium nanowires by using a nearest-neighbor sp3d5s* tight binding (TB) 

approach [49] [50] [51].  Within this tight binding approach, 20 orbitals, 

consisting of an sp3d5s* basis with spin-orbital coupling, are used to represent 

each atom in the nanowire Hamiltonian.  The orbital-coupling parameters we 

use are from [49], which have been optimized by Boykin et al. to accurately 

reproduce the band gap and effective-masses of bulk Si and Ge (within a <5% 

deviation from the target values [49]).  (It should be mentioned that bulk bond 

lengths are assumed in our calculations.  In real nanowires, the crystal 

structures will relax to obtain a minimum energy [89].  We expect that the 
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general results of this study will also apply to relaxed structures while some 

quantitative differences may appear.)  At the Si/Ge surfaces, a hard wall 

boundary condition for the wavefunction is applied and the dangling bonds at 

these surfaces are passivated using a hydrogen-like termination model of the 

sp3 hybridized interface atoms. [90]  As demonstrated in [90], this technique 

successfully removes all the surface states from the semiconductor band gap.  

Based on this sp3d5s* tight binding approach, we have developed a simulator 

that can treat Si and Ge nanowires with arbitrary wire orientations and cross-

sectional shapes. 

2) Step 2 is to evaluate the I-V characteristics of the Si/Ge nanowire FETs based 

on the E-k relations obtained in Step 1.  Here we exploit a semi-numerical 

ballistic FET model, ‘FETToy’ [52] [53], introduced in Chapter 2.  This 

model captures 3D electrostatics, quantum capacitance [55] [56] and bias-

charge self-consistency in ballistic FETs.  (Since the model assumes a 

semiclassical transport, source-to-drain tunneling [17] and band-to-band 

tunneling [2] [36] are not considered.)  In the past, this model was used to 

evaluate the I-V characteristics of Si MOSFETs [52] and high electron 

mobility transistors [54] with parabolic energy bands and Ge MOSFETs with 

numerical E-k relations [91].  More details about this model can be found in 

the cited references [52] [53] [54] [91] and Chapter 2 of this thesis.  With this 

method, ballistic I-V characteristics of both n-type and p-type Si/Ge nanowire 

FETs can be evaluated. 

This chapter is divided into the following sections.  Sec. 6.2 shows the calculated 

energy dispersion relations of Si and Ge nanowires with various wire orientations, Sec. 

6.3 presents a performance evaluation and optimization of Si and Ge nanowire FETs, Sec. 

6.4 explores the validity of the widely used parabolic effective-mass approximation [43] 

[44] [92] for the I-V calculation of Si nanowire transistors, and Sec. 6.5 summarizes the 

chapter. 
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6.2 Calculated Energy Dispersion Relations 

 

 Figure 6.1 shows an example of one of the simulated nanowire structures in this 

work.  The transport orientation of the wire is along the [ ]100  direction, the shape of the 

cross-section is circular (or more strictly, octangular) and the wire diameter is 3nm.  A 

unit cell of the nanowire crystal consists of four atomic layers along the x (transport) 

direction and has a length of a0=5.43Å (for Si) and a0=5.65Å (for Ge). [49]  It should be 

noted that although Fig. 6.1 is only for a specific nanowire structure with a particular 

wire orientation and cross-sectional shape, nanowires with various wire orientations (e.g., 

[ ]100 , [ ]110 , [ ]111  and [ ]112 ) and cross-sectional shapes (e.g., circular and rectangular) 

are explored in this work. 

  

 

 

Cross-Section 

 
 

Fig. 6.1 The atomistic structure of a [ ]100  orientation nanowire with a circular cross-
section and a 3nm wire diameter (D=3nm). 
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Z 
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 Figure 6.2a illustrates the E-k relation for the Si nanowire structures shown in Fig. 

6.1.  For the wire conduction band, it is clear that the six equivalent ∆ valleys in the bulk 

Si conduction band split up into two groups due to quantum confinement [93] [94], which 

we call ‘unprimed-primed-splitting’ here.  Four unprimed valleys, [ ]010 , 010⎡ ⎤⎣ ⎦ , [ ]001 , 

and 001⎡ ⎤⎣ ⎦ , are projected to the Γ point (kx=0) in the one-dimensional (1D) wire Brillouin 

zone ( 00 // aka x ππ ≤≤− ) to form the conduction band-edge.  Two primed valleys (i.e., 

[ ]100  and 100⎡ ⎤⎣ ⎦ ), located at 0 00.815 2 / 1.63 /xk a aπ π= ± ⋅ = ±  in the bulk Brillouin zone, 

are zone-folded to 0/37.0 akx π±=  in the wire Brillouin zone to form the off-Γ states.  

(A similar observation has been reported in [93] and [94] for square Si nanowires with a 

[ ]100  transport direction and four confinement directions along the equivalent <110> 

axes.)  For the wire valence band, the degeneracy between the light hole and heavy hole 

in bulk Si is lifted up by quantum confinement.  Fig. 6.2b plots the effective-mass m* at 

the Γ point in the wire conduction band vs. wire diameter D for a [ ]100  oriented Si 

nanowire with a circular cross-section.  It is clearly shown that m* increases with a 

decreasing D, due to the nonparabolicity of the ∆ valleys in the bulk Si conduction band. 

[36] [95]  (The effects of this nonparabolicity on the device performance of Si nanowire 

FETs will be discussed in detail in Sec. 6.4.) 

 In Fig. 6.3a, we plot the E-k relation for a [ ]111  oriented Ge nanowire with a 

circular cross-section and a 4nm diameter.  The range of the 1D Brillouin zone for this 

wire is 0 0/ 3 / 3xa k aπ π− ≤ ≤ , since the length of the unit cell is 03a  for this 

structure.  Three L valleys in bulk Ge, 111⎡ ⎤⎣ ⎦ , 111⎡ ⎤⎣ ⎦  and 111⎡ ⎤⎣ ⎦ , are projected to the point 

0/ 3xk aπ= , while another three L valleys in bulk Ge, 111⎡ ⎤⎣ ⎦ , 111⎡ ⎤⎣ ⎦  and 111⎡ ⎤⎣ ⎦  are 

projected to 0/ 3xk aπ= − .  These states form the lowest valleys in the conduction band 

of this Ge nanowire.  Fig. 6.3b shows the E-k relation for a [ ]112  oriented Si nanowire 

with a circular cross-section and a 2nm diameter.  Fig. 6.3c compares the calculated band 
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gaps (solid with circles) for [ ]112  oriented Si nanowires with a circular cross-section vs. 

the experimental results (diamonds) obtained from [20].  The results clearly show that our 

tight binding calculation provides good agreement with the measured data [20]. 

 

 
(a) 

 
(b) 

Fig. 6.2 (a) The E-k relations for a [ ]100  oriented Si nanowire with a circular cross-
section and a 3nm wire diameter (the atomistic structure of this nanowire is shown in Fig. 

6.1).  (b) The effective-mass m* at the Γ point in the wire conduction band vs. wire 
diameter D for a [ ]100  oriented Si nanowire with a circular cross-section. 
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D=3.0nm 
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(c) 

Fig. 6.3 (a) The E-k relations for a [ ]111  oriented Ge nanowire with a circular cross-

section and a 4nm wire diameter.  (b) The E-k relations for a [ ]112  oriented Si nanowire 
with a circular cross-section and a 2nm wire diameter.  (c) Comparison between the 

calculated band gaps (solid with circles) for [ ]112  oriented Si nanowires with a circular 
cross-section and experimental data (diamonds) [20]. 

 
  

In the final part of this section, let us discuss an interesting bandstructure effect, 

‘band-splitting’ [50] [51] [96], in silicon nanowires with small diameters.  Fig. 6.4a 

shows the calculated conduction band for a [ ]100  oriented Si nanowire with a square 

cross-section (four confinement directions along the equivalent <100> axes) and a 

1.36nm wire width.  The results clearly show that the degeneracy of the 4-fold Γ valleys 

Ge [111] 
D=4.0nm 

(a) 

Si [112] 
D=2.0nm 

(b) 
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in this [ ]100  oriented square wire is lifted by the interaction between the four equivalent 

valleys.  Fig. 6.4b plots the wire width (D) dependence of the splitting energy, defined as 

the difference between the highest and the lowest energy (at the Γ point) of the four split 

conduction bands.  The splitting energy is seen to fluctuate as a function of the number of 

atomic layers and the envelope decreases with the wire width according to D-3, analogous 

with the band-splitting observed in Si quantum wells [50] [51] [96]. 

 

 
(a) 

 
(b) 

Fig. 6.4 (a) The calculated conduction band for a [ ]100  oriented Si nanowire with a 
square cross-section and a 1.36nm wire width.  (b) The splitting energy (at the Γ point) vs. 
wire width (D) for the simulated Si nanowires.  The closed circles are for the wires with 

an odd number of atomic layers while the open circles are for the ones with an even 
number of atomic layers. 

Band-
splitting 
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6.3 Performance Evaluation and Optimization of Silicon and Germanium Nanowire 

Transistors 

 

 In this section, we adopt the semi-numerical ballistic FET model, ‘FETToy’ [52] 

[53], introduced in Chapter 2, to calculate the I-V characteristics of Si and Ge nanowire 

FETs based on the numerical E-k relations calculated by our tight binding model.  The 

device performance (e.g., ON-current and intrinsic device delay) of ballistic n-/p-type Si 

and Ge nanowire FETs will be compared for different wire orientations.  By doing this, 

an optimum wire orientation in terms of device performance can be defined for both Si 

and Ge nanowire FETs.  Finally, the dependence of the device performance on wire 

diameter will also be explored. 

 As mentioned earlier in Chapter 2, there are two parameters, αG and αD, used in 

the FETToy model to describe the electrostatic couplings between the top of the barrier 

and the gate and the drain, respectively.  To treat the short channel effects (SCEs) [2] in 

FETToy simulations, the values of αG and αD are tuned for a given structure in such a 

way that the FETToy model provides the same sub-threshold swing and drain induced 

barrier lowering (DIBL) as our detailed numerical simulator developed in Chapter 3.  All 

the values of αG and αD used in this section are listed in Table 6.1.  (When extracting αG 

and αD, a simple parabolic energy band is assumed for both the FETToy model and the 

detailed numerical simulator.  And it is found that the values of αG and αD are not 

sensitive to the bandstructures of the channel materials.)   

Figure 6.5 plots the IDS vs. VGS curves in a semi-logarithmic scale for the 

simulated n-type and p-type Si nanowire FETs with a circular cross-section and a 3nm 

wire diameter.  The channel orientation is [ ]100  and the gate length is assumed to be 

L=8nm.  In our simulations, we assume a different gate work function for each structure 

to achieve a specified OFF-current, 10 A/ m (2 )Dµ µ i , where D is the wire diameter.  Then 

we can compare the device performance of Si and Ge nanowire FETs with various wire 

orientations.  Fig. 6.6 shows the ON-currents (a) and intrinsic device delays (b) for the 

simulated n-/p-type Si and Ge nanowire FETs with four different channel orientations – 

[ ]100 , [ ]110  and [ ]111 , which are the three major crystal orientations, as well as [ ]112 , 
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which is one of the favored growth orientations for bottom-up nanowires [19] [20] [97].  

All the devices have the same wire diameter, 3nm, which is selected with the 

consideration of the tradeoff between the SCEs control and the threshold voltage 

fluctuation (see Sec. 4.2 for the details).  The results clearly show that [ ]110  is the 

optimum channel orientation, which offers the highest ON-current and the fastest intrinsic 

device delay for the same OFF-current, for both n-type and p-type Si/Ge nanowire FETs.  

With this optimum channel orientation, the n-type (p-type) Ge nanowire FET displays a 

~40% (~30%) higher ON-current than the Si counterpart.   

 In Fig. 6.7, we explore the dependence of nanowire FET performance on the wire 

diameter.  As we know, when the wire diameter varies, 1) it affects the strength of the 

quantum confinement in the wire and consequently alters its bandstructure (e.g., band-

edges and effective-masses), and 2) it also changes the electrostatic scale length [58] of 

the nanowire FET and, therefore, affects the SCEs of the device.  In our work, to separate 

these two effects, we first simulate the devices without the consideration of SCEs 

(assuming a perfect gate control, αG=1 and αD=0).  Fig. 6.7a shows the intrinsic device 

delays of the simulated Si and Ge nanowire FETs at three different wire diameters, 2nm, 

3nm and 4nm.  Four channel orientations, [ ]100 , [ ]110 , [ ]111  and [ ]112 , are explored.  It 

is clear that for pFETs, the device performance is improved with a decreasing wire 

diameter at all the cases.  The reason is as follows.  As shown in Fig. 6.2a, quantum 

confinement in a nanowire lifts up the degeneracy between the light hole and heavy hole 

in the valence band, which reduces the average hole effective-mass and consequently 

raises the injection velocity of the holes.  When the wire diameter scales down, quantum 

confinement becomes stronger, which leads to a higher hole injection velocity.  This is 

why the p-type nanowire FETs with smaller wire diameters display higher device 

performance.  For nFETs, however, the dependence of device performance on wire 

diameter is sensitive to the material type (e.g., Si or Ge) and the wire orientation.  To 

explain this, we have to understand how quantum confinement affects the conduction 

band properties of Si and Ge nanowires. 

1) Nonparabolicity.  Due to the nonparabolicity of the bulk Si/Ge conduction 

bands [36] [95], the effective-masses of the lowest conduction-band valleys in 
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a nanowire increase as the strength of quantum confinement increases (or the 

wire diameter decreases).  (An example for a [ ]100  oriented Si nanowire is 

illustrated in Fig. 6.2b.)  Since the electron injection velocity is inversely 

proportional to the square root of the effective-mass, nonparabolicity leads to 

a decreasing device performance as the wire diameter scales down. 

2) Unprimed-primed-splitting.  As shown in Fig. 6.2a, quantum confinement in a 

[ ]100  oriented Si nanowire lifts up the degeneracy between the unprimed and 

primed valleys in the bulk Si conduction band and reduces the average 

effective-mass in the transport direction of the wire.  In fact, this unprimed-

primed-splitting effect also occurs in Si/Ge nanowires with other orientations.  

In general, unprimed-primed-splitting increases the average injection velocity 

of electrons and consequently causes an increasing device speed with a 

decreasing wire diameter. 

3) Band-splitting.  For most of the wire orientations of a Si/Ge nanowire, band-

splitting is modest in the diameter range of 2nm – 4nm.  However, for some 

particular wire orientations (e.g., Si [ ]110 ), band-splitting becomes significant 

when the wire diameter is ~3nm.  It increases the curvature of the lowest 

conduction band in the wire and, therefore, reduces the effective-mass at the 

conduction band-edge of the wire.  For this reason, band-splitting in 

nanowires with some particular wire orientations may lead to an increasing 

device performance with a decreasing wire diameter. 

In a real Si/Ge nanowire, all these three effects mentioned above co-exist, and the 

competition between them finally determines the dependence of the device performance 

on wire diameter.  This explains why for n-type Si/Ge nanowire FETs, there is no general 

trend to describe how the wire diameter affects device performance.  Fig. 6.7b shows the 

same results as in Fig. 6.7a except that the SCEs are considered.  (The values of αG and 

αD used are listed in Table 6.1.)  It is shown that the SCEs degrade the performance of 

nanowire FETs and this effect becomes more serious when the wire diameter is relatively 

large (e.g., 4nm). 
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Table 6.1 The values of αG and αD for different structures simulated in this section.  The 
gate length is L=8nm and the oxide thickness is 1nm. 

 

Wire Diameter (nm) 2.0 3.0 4.0 

αG 0.91 0.84 0.77 

αD 0.014 0.032 0.059 
 

 

 

 

 
Fig. 6.5 IDS vs. VGS curves in a semi-logarithmic scale for the simulated n-type (right) and 

p-type (left) Si nanowire FETs with a circular cross-section and a 3nm wire diameter.  
The channel orientation is [ ]100  and the gate length is L=8nm.  αG=0.84 and αD=0.032 
are adopted to account for the SCEs.  Two drain biases, VDS=0.4V and VDS=0.05V, are 

used in the simulation. 
 

  

p-type n-type 
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(a) 

 
(b) 

Fig. 6.6 The ON-currents (a) and intrinsic device delays (b) for the simulated n-/p-type Si 
and Ge nanowire FETs with four different channel orientations, [ ]100 , [ ]110 , [ ]111  and 

[ ]112 .  For all the devices, the wire diameter is 3nm, the gate length is 8nm and the oxide 
thickness is 1nm.  The supplied voltage (VDD) is 0.4V. 
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(a) 

 
(b) 

Fig. 6.7 The dependence of the intrinsic device delay on the wire diameter for the 
simulated Si and Ge nanowire FETs (a) without and (b) with the consideration of the 

SCEs.  Four channel orientations, [ ]100 , [ ]110 , [ ]111  and [ ]112 , are explored.  For all 
the devices, the gate length is 8nm and the oxide thickness is 1nm.  The supplied voltage 

(VDD) is 0.4V. 
 



97 

6.4 On the Validity of the Parabolic Effective-Mass Approximation for the Current-

Voltage Calculation of Silicon Nanowire Transistors 

 

 In this section, we explore the validity of the parabolic effective-mass (pEM) 

approximation [43] [44] [92] for the current-voltage (I-V) calculation of silicon nanowire 

transistors.  To do this, we first compute the energy dispersion relations of Si nanowires 

by our tight binding (TB) approach.  The I-V characteristics of n-type SNWTs are then 

evaluated by the FETToy model [52] [53] using both the tight binding E-k relations and 

parabolic energy bands.  By comparing the results for the two types of E-k relations, the 

validity of the parabolic effective-mass approximation is examined. 

 Figure 6.8 shows an example of the simulated nanowire structures in this section.  

The transport orientation of the wire is along the [ ]100  direction (see Fig. 6.8a), the shape 

of the cross-section is square, and the faces of the square are all along the equivalent 

<100> axes (see Fig. 6.8c).  Fig. 6.8b illustrates a unit cell of the nanowire crystal, which 

consists of four atomic layers along the x (transport) direction and has a length of 

a0=5.43Ǻ.  It should be noted that although Fig. 6.8 is only for a nanowire with a wire 

width D=1.36nm, nanowires with various wire widths (from 1.36nm to 6.79nm) are 

explored in this section. 

Figure 6.9 plots the IDS vs. VGS curves for a square SNWT with D=1.36nm in both 

(a) a semi-logarithmic scale and (b) a linear scale.  The dashed lines are for the results 

based on the tight binding E-k relations while the solid lines are for the parabolic 

effective-mass (pEM) results.  In the parabolic effective-mass approach, all six 

conduction-band valleys in bulk Si are considered, and the effective-masses used in the 

calculation (ml=0.891me and mt=0.201me) are extracted from the bulk E-k relation 

evaluated by our tight binding approach with the parameters obtained from [49].  (By 

doing this, the <~5% deviation in bulk Si effective-masses caused by the TB parameters 

[49] are prevented from affecting our comparison between TB and pEM.)  If we define a 

threshold voltage, VT, as 

IDS(VGS=VT, VDS=0.4V)=300nA,                                 (6.1) 

and an ON-current of SNWTs as 
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ION =IDS(VGS -VT=0.3V, VDS=0.4V),                     (6.2) 

we find that pEM significantly overestimates the threshold voltage by 

0.28VpEM TB
T TV V− =  and the ON-current by ( ) / 42%pEM TB TB

ON ON ONI I I− =  as compared with 

the tight binding results.  Fig. 6.10 compares pEM (solid) vs. tight binding (circles) for 

the I-V calculation of a thicker SNWT with D=6.79nm.  It is clear that pEM provides 

nearly identical I-V characteristics as tight binding except for a small overestimation of 

ON-current by ~5%.  The solid lines with circles in Fig. 6.11 show the wire width (D) 

dependence of the errors, EM TB
T TV V−  in (a) and ( ) /EM TB TB

ON ON ONI I I−  in (b), associated with 

pEM.  It is clear that pEM starts to overestimate threshold voltage by >0.03V when D 

scales below 3nm and ON-current by ≥10% when D is ≤5nm. 

 

 

 
(a) 

 

Fig. 6.8 (a) The atomic structure of a square nanowire (D=1.36nm) with a [ ]100  
transport direction.  (b) A unit cell of the square nanowire illustrated in (a).  (c) The 
schematic diagram of the cross-section of the square nanowire.  D demotes the edge 
length of the square cross-section and the four faces of the square are all along the 

equivalent <100> axes. 
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(a) 

 
(b) 

Fig. 6.9 The IDS vs. VGS curves for a square SNWT with D=1.36nm in both (a) a semi-
logarithmic scale and (b) a linear scale.  The oxide thickness is 1nm, the temperature is 
300K, and the drain bias is 0.4V.  The dashed lines are for the results based on the tight 
binding (TB) E-k relations while the solid lines for the parabolic effective-mass (pEM) 

results. 
 

 

 

D=1.36nm, VDS=0.4V 

D=1.36nm, VDS=0.4V 
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Fig. 6.10 The IDS vs. VGS curves for a square SNWT with D=6.79nm in both a semi-

logarithmic scale (left) and a linear scale (right).  The oxide thickness is 1nm, the 
temperature is 300K, and the drain bias is 0.4V.  The circles are for the results based on 
the tight binding (TB) E-k relations while the solid lines for the parabolic effective-mass 

(pEM) results. 
 

 

 To understand the above observations, we plot the D dependence of the wire 

conduction band-edges, EC, and the transport effective-mass, *
xm , at the Γ point in the 

wire conduction band (Fig. 6.12).  (Note that the square wires are the nominal structures 

we focus on in this section.  For comparison, we also show the results for circular wires 

with the same ([ ]100 ) wire orientation.  The results illustrate that the energy dispersion 

relations are nearly invariant when the cross-sectional shape changes from square to 

circular, indicating that the conclusions in this work also apply to wires with a circular 

cross-section.)  As we can see in Fig. 6.12a, when D>4nm (Area>16nm2), the EC 

obtained from the tight binding calculations (solid with squares) is well reproduced by 

pEM (dashed).  (In pEM, the wire conduction band-edge is determined by the lowest 

subband level of the four unprimed valleys).  At smaller wire widths, however, pEM 

overestimates EC due to the nonparabolicity [36] [95] of the bulk Si bands.  This 

overestimation of EC by pEM directly leads to the overvalued threshold voltages of the 

D=6.79nm, VDS=0.4V 
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simulated SNWTs.  The solid line with squares in Fig. 6.12b shows an increasing *
xm   

(extracted from the tight binding E-k relations) with a decreasing D, which is also a result 

of the nonparabolicity of the bulk Si E-k relations.  When D<3nm (Area<9nm2), *
xm  

extracted from tight binding is >40% larger than the corresponding bulk value used in 

pEM.  Since the electron thermal velocity is inversely proportional to the square root of 

the transport effective-mass, the pEM calculations, which adopt a smaller *
xm  than the 

tight binding approach, overestimate the carrier injection velocity and consequently the 

SNWT ON-currents.  In short, the nonparabolicity of the bulk Si bands plays an 

important role when quantum confinement is strong (small D).  The use of parabolic 

energy bands overestimates the wire conduction band-edge and underestimates the 

transport effective-mass, and consequently provides a higher SNWT threshold voltage 

and ON-current as compared with the tight binding approach. 

 Although we have shown that the parabolic effective-mass approach does not 

perform well at small wire widths, it is still interesting to know whether it is possible to 

modify the effective-mass approach to obtain a better agreement with the tight binding 

calculation, since the effective-mass approximation significantly reduces computation 

time as compared to atomistic treatments.  To do this, we first define a quantum 

confinement energy as the difference between the wire conduction band-edge, EC and 

that for bulk Si ( 1.13eVbulk
CE =  [49]).  Fig. 6.13a shows the quantum confinement energy 

computed by pEM ( pEM
QCE ) vs. that obtained from the tight binding calculation ( TB

QCE ).  It 

is evident that for small wire widths, the data points (circles) stand above the y=x curve, 

indicating that pEM overestimates the quantum confinement energy when it is large.  

Inspired by the expressions for the nonparabolicity of the bulk Si bands [36] [95], we 

propose the following quadratic equation to analytically describe the pEM
QCE  vs. TB

QCE  

relation, 

( )1TB TB pEM
QC QC QCE E Eα⋅ + ⋅ = ,                                       (6.3) 

where α  is treated as a fitting parameter and 10.27eVα −= is used for the solid line in Fig. 

6.13a for the best agreement with the extracted data.  Similarly, the TB
QCE  dependence of 
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the transport effective-mass *
xm  at the Γ point (Fig. 6.13b) can also be described by the 

following equation, 

( )TB
QCbulkx Emm ⋅+= β1** ,                                         (6.4) 

where * 0.201bulk t em m m= = is the transport effective-mass in the unprimed valleys in bulk 

Si and 11.5eVβ −= is chosen to achieve the best match between the extracted data points 

(circles) and the analytical expression (solid) up to 1eVTB
QCE = , which is sufficient for the 

I-V calculation of the simulated Si nanowire transistors. 

 After knowing Eqs. (6.3) and (6.4), the effective-mass approximation can be 

tuned for a better fit with tight binding in the following steps. 

Step 1) Calculate the quantum confinement energy, pEM
QCE by the parabolic 

effective-mass approach with the bulk effective-masses (i.e., *
ym and *

zm ). 

Step 2) Solve Eq. (6.3) for the updated quantum confinement energy, new
QCE , as 

1 1 4
2

pEM
QCnew

QC

E
E

α

α

− + + ⋅
= .                                       (6.5) 

Step 3) Evaluate the tuned transport effective-mass at the Γ point by Eq. (6.4), 

( )* * 1 new
x bulk QCm m Eβ= + ⋅ .                                        (6.6) 

Step 4) Use the computed new
QCE  and *

xm  for the I-V calculation of SNWTs. 

It should be noted that the above tuning process is only necessary for the four unprimed 

valleys because 1) at large wire widths, the quantum confinement energy is small and 

nonparabolicity is insignificant in both unprimed and primed valleys, so the parabolic 

effective-mass approach performs well, and 2) at small wire widths, the two primed 

valleys are well separated from the unprimed ones due to stronger quantum confinement 

(smaller effective-masses in the y and z directions) in these primed valleys, so the 

electron density and current contributed by the primed valleys are negligible (e.g., when 

0.15eVTB
QCE > , over 97% electrons are distributed in the unprimed valleys). 
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(a) 

 
(b) 

Fig. 6.11 The wire width (D) dependence of the errors, EM TB
T TV V− in (a) and 

( ) /EM TB TB
ON ON ONI I I−  in (b), associated with the effective-mass approximations.  The solid 

lines with circles are for the parabolic effective-mass (pEM) approximation while the 
dashed lines with diamonds are for the tuned effective-mass (tEM) approach. 
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(a) 

 
(b) 

Fig. 6.12 (a) The conduction band-edges, EC, for the simulated wires with different wire 
widths.  The solid line with squares is for the values for the square wires obtained from 

the tight binding (TB) E-k relations and the dashed line is for the corresponding parabolic 
effective-mass (pEM) results.  For comparison, the TB values for the circular wires with 
a [ ]100  wire orientation are also shown (circles).  (b) The wire width (D) dependence of 

the transport effective-mass, *
xm , at the Γ point in the wire conduction band (extracted 

from the tight binding energy bands by ( )* 2 2 2/ /x xm E k= ∂ ∂= , where =  is the Plank 
constant).  The solid line with squares is for the square wires while circles are for the 

circular wires.  For comparison, the bulk value of *
xm  for the unprimed valleys (used in 

pEM) is shown by the dash-dot line. 
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(a) 

 
(b) 

Fig. 6.13 (a) The quantum confinement energy computed by parabolic effective-mass 
( pEM

QCE ) vs. that obtained from the tight binding calculation ( TB
QCE ).  (b) The ratio of the 

transport effective-mass, *
xm to the bulk value, bulk

xm vs. TB
QCE .  In both plots, the circles are 

for the data points extracted from the tight binding and parabolic E-k relations (from left 
to right: D=6.79nm, 5.15nm, 3.53nm, 1.90nm, and 1.36nm), while the solid lines are for 

the analytical fit based on Eqs. (6.3) and (6.4). 

 

 

 The dashed lines with diamonds in Fig. 6.11 show the wire width (D) dependence 

of the errors, EM TB
T TV V− in (a) and ( ) /EM TB TB

ON ON ONI I I−  in (b), associated with the tuned 

effective-mass approximation.  For wire widths ranging from 1.36nm to 6.79nm, the 

From left to right: 
D = 6.79, 5.15, 
3.53, 1.90, 1.36nm

Eq. (6.3), α=0.27eV-1

From left to right: 
D = 6.79, 5.15, 
3.53, 1.90, 1.36nm 

Eq. (6.4), β=1.5eV-1
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tuned effective-mass approach provides an excellent match with the tight binding 

calculation – less than 10mV error for VT and less than 5% error for ION.  So far, we have 

shown that the effective-mass approximation can be modified by introducing two D-

independent parameters, α  andβ , to accurately reproduce the I-V results computed by 

tight binding.  It must be mentioned that the values of α  andβ used in this work were 

obtained for SNWTs with one particular channel orientation (i.e., [ ]100 ) and one specific 

cross-sectional shape (i.e., square with all faces along the equivalent <100> axes).  The 

important point is that for I-V calculation it is possible to simply tune the effective-mass 

approach to fit the tight binding model.  We expect that this conclusion may apply to 

other SNWTs with different transport directions and cross-sections while the values of 

the tuning parameters (α  andβ ) are subject to change. 

 In this section, by using our tight binding approach as a benchmark, we examined 

the validity of the parabolic effective-mass approximation [43] [44] [92] for the I-V 

calculation of n-type silicon nanowire transistors.  It was found that the simple parabolic 

effective-mass approach with bulk effective-masses significantly overestimates SNWT 

threshold voltages when the wire width (D) is <3nm, and SNWT ON-currents when 

D<5nm.  However, by introducing two analytical equations with two tuning parameters, 

the effective-mass approximation can well reproduce the tight binding I-V results over a 

wide range of wire widths – even at D=1.36nm.  In conclusion, bandstructure effects 

begin to manifest themselves in silicon nanowire transistors with small diameters, but 

with a simple tuning procedure, the parabolic effective-mass approximation may still be 

used to assess the performance limits of silicon nanowire transistors. 

 

6.5 Summary 

 

 In this chapter, based on a nearest-neighbor sp3d5s* tight binding approach [49] 

[50] [51], we developed a simulator that can calculate the energy dispersion relations for 

Si and Ge nanowires with arbitrary wire orientations and cross-sectional shapes.  The I-V 

characteristics of various Si and Ge nanowire FETs were computed by using the FETToy 
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model [52] [53] based on the tight binding E-k relations.  The results show that 1) [ ]110  

is the optimum channel orientation for both n-type and p-type Si/Ge nanowire FETs, 

which offers the highest ON-current and the fastest intrinsic device delay for the same 

OFF-current, and 2) the device performance of p-type Si/Ge nanowire FETs is improved 

as the wire diameter scales down, while for n-type Si/Ge nanowire FETs, the dependence 

of the device performance on wire diameter is sensitive to the material type and the wire 

orientation.  In addition, we also examined the validity of the widely used parabolic 

effective-mass approximation [43] [44] [92] for the I-V calculation of SNWTs.  It is 

shown that the parabolic effective-mass approach significantly overestimates SNWT 

threshold voltages and ON-currents at small wire widths.  By introducing a simple tuning 

procedure, however, the effective-mass approximation can well produce accurate I-V 

results over a wide range of wire widths (even when D=1.36nm), as calibrated with the 

tight binding approach.  
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7. SUMMARY AND OUTLOOK 

 
 This work addressed device physics, modeling and design issues of silicon 

nanowire transistors (SNWTs).  The main accomplishments of this thesis are: 

1) Chapter 2 discussed an analytical theory for ballistic nanowire FETs, which is 

derived by modifying a semi-numerical, ballistic FET model, ‘FETToy’, 

proposed by A. Rahman and coworkers [52] [53] for ballistic planar 

MOSFETs.  Based on this simple approach, the essential physics and 

peculiarities of 1D wire FETs were investigated.  This FETToy model also 

played an important role when evaluating the ballistic performance limits of 

SNWTs with the atomistic bandstructures (Chapter 6). 

2) In Chapter 3, we described a self-consistent, full three-dimensional (3D) 

quantum simulator of ballistic SNWTs based on the non-equilibrium Green’s 

function (NEGF) formalism [37] [38] and the effective mass (EM) 

approximation. [43] [44]  The coupled/uncoupled mode space approach [41] 

[45] [47] was introduced, which significantly reduced the computational 

expense while maintaining great accuracy as compared with the full 3D real 

space representation.  This makes our simulator a practical tool for the 

simulation and design of ballistic SNWTs with various cross-sections (e.g., 

triangular, rectangular and cylindrical). [4]  Within the NEGF framework 

shown in this chapter, scattering in SNWTs can be phenomenologically 

treated by a simple model, so called the ‘Büttiker probes’ [42] [57].  The 

details of this method are discussed in Appendix. 

3) Chapter 4 discussed the performance limits and scaling potential of ballistic 

SNWTs.  It addressed three different topics.  Sec. 4.1 showed a comparison 

between the upper performance limit of SNWTs with that of the planar 
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double-gate MOSFET. [4]  The results showed that SNWTs scale better than 

planar devices.  In Sec. 4.2, we proposed a general approach to compare 

planar vs. non-planar (nanowire) FETs with the consideration of both 

Electrostatic integrity (gate control) and Quantum confinement (so called the 

‘EQ approach’). [58]  The scaling capabilities of different structures (e.g., 

cylindrical wire FETs, double-gate planar FETs and tri-gate FETs) were 

compared using this approach.  Sec. 4.3 introduced a conceptual study of the 

channel material optimization for both planar MOSFETs and nanowire FETs 

based on the effective-mass approximation. [59]  The results implied that an 

optimum effective-mass can be defined for a given structure, which provides 

the highest ON-current for the same OFF-current. 

4) In Chapter 5, we presented a microscopic simulation of surface roughness 

scattering (SRS) in SNWTs by using the 3D quantum simulator developed in 

Chapter 3. [60]  The microscopic structure of the Si/SiO2 interface roughness 

was directly implemented based on the relevant auto-covariance function [61].  

The results showed that SRS in SNWTs becomes less serious when fewer 

propagating modes conduct, implying that SRS will be less important in 

small-diameter SNWTs than in planar MOSFETs with many transverse modes 

occupied. 

5) In Chapter 6, we performed atomistic simulations of Si and Ge nanowire 

transistors. [63] [64]  Based on a nearest-neighbor sp3d5s* tight binding 

approach [49] [50] [51], we developed a simulator that can calculate E-k 

relations for unrelaxed Si and Ge nanowires with arbitrary wire orientations 

and cross-sectional shapes.  The I-V characteristics of various Si and Ge 

nanowire FETs were computed by using the FETToy model [52] [53], 

introduced in Chapter 2, based on the tight binding E-k relations.  The impact 

of bandstructure effects on SNWT performance was investigated and the 

channel orientation optimization was done for both Si and Ge nanowire FETs.  

Finally, the validity of the parabolic effective-mass approximation [43] [44] 

[92] for I-V calculation of n-type SNWTs was examined. 
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This work can be extended as follows in the future. 

1) Electron-phonon interactions.  Understanding carrier transport in Si nanowires 

is of great importance for the assessment of the performance limits of SNWTs.  

In this thesis, we completed a microscopic treatment of surface roughness 

scattering in SNWTs with small diameters.  Furthermore, the electron-phonon 

interaction [98] is another important scattering mechanism that may limit the 

ultimate performance of SNWTs.  Chapter 6 in this thesis describes a 

simulator that can calculate the E-k relations for Si and Ge nanowires with 

arbitrary wire orientations and cross-sectional shapes.  This work offers a 

useful basis for the calculation of phonon scattering rate and phonon-limited 

carrier mobility using Fermi’s Golden Rule [36], assuming the phonon modes 

in Si nanowires are correctly obtained.  More work can also be done to solve a 

coupled phonon-electron/hole Boltzmann transport equation [36] to explore 

the effects of phonon scattering on SNWT device characteristics. 

2) Nanowire heterostructures.  Recently, different experimental groups reported 

coaxial or longitudinal nanowire heterostructures fabricated in a bottom-up 

approach [22] [23] [25].  These structures are expected to have potential 

applications in nanoelectronics and nano-optics.  Following the work in 

Chapter 6, more work can be done to extend our current tight binding 

simulator to calculate the energy dispersion relations for nanowire 

heterostructures, which will be important for exploring the essential physics 

and design issues of nanowire heterostructure devices.  In general, although 

we focused on the field-effect transistor application of Si (Ge) nanowires in 

this thesis, the simulation capabilities developed here may also be used or 

extended to explore novel applications of semiconductor nanowires. 
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APPENDIX 

A SIMPLE MODEL TO TREAT SCATTERING 
 

In Chapter 3, we developed a three-dimensional (3D), quantum mechanical 

simulator for ballistic silicon nanowire transistors (SNWTs) based on the non-equilibrium 

Green’s function (NEGF) approach [37] [38].  In this appendix, we add a dissipative 

transport model, so called the ‘Büttiker probes’ [42] [57], into this simulator.  The 

Büttiker probes model is a simple, phenomenological approach to treat scattering within 

the NEGF framework and it was previously adopted in MOSFET simulations [42].  The 

simulation results in this appendix will show that this simple model captures the essential 

effects of scattering on both internal device parameters (e.g., charge distribution and 

electrostatic potential) and current-voltage characteristics.  It should also be noted that the 

Büttiker probes model is only a phenomenological method, equivalent to the drift-

diffusion model used in the semi-classical context. [36]  So it is incapable of treating 

detailed scattering mechanisms in SNWTs. 

 
1) Theory: 

 

The simple treatment of scattering with the Büttiker probes has been adopted by 

Venugopal and coworkers [42] for the simulation of nanoscale MOSFETs.  Due to the 

similarity between the transport calculations of a MOSFET and a SNWT, here we will 

follow the basic concepts and formalism of the method described in [42] while making 

necessary modifications and corrections for the case of SNWT simulation. 

In the ballistic regime, as we know, electrons move through the device coherently, 

with their energies and phase information conserved.  When scattering is present, 

however, electrons’ momenta and energies could be altered and their phase information 
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may be lost.  Based on this observation, virtual probes (Büttiker probes) are attached to 

the device lattice (in the channel direction), which serve as reservoirs that absorb 

electrons from the active device, modulate their momenta and/or energies, and then re-

inject them back to the device.  The difference between the probes and the S/D contacts is 

that the probes can only change the electron momentum/energy and not the number of 

electrons within the active device [42].  

Figure A.1 shows the one-dimensional (1D) device lattice (in the channel 

direction) for a SNWT with the Büttiker probes attached.  Each probe is treated as a 

virtual 1D lattice (in the 'x direction) that is coupled to a node in the device lattice.  The 

coupling energy, i
m∆ , between this virtual lattice and the node it is attached to is called 

the Büttiker probe strength [42], which is determined by the ballisticity of the device.  

For instance, when i
m∆  is zero, there is no coupling between the device and the probes, so 

the electrons can travel through the device ballistically.  If this coupling energy is large, it 

means that the electrons in the active device region can easily scatter into the probes, 

which implies that the scatting in the device is strong.  As we will show later, the Büttiker 

probe strength can be analytically related to the electron mean-free-path [36], which 

allows us to calibrate the parameters in our simulation to mimic a low-field mobility that 

can be measured experimentally [42].  It should also be noted that since we treat each 

probe as a reservoir, a Fermi level ( iµ , 2,..., 1Xi N= − ) needs to be assigned to the probe, 

and the values of these probe Fermi levels have to be adjusted to achieve current 

continuity (i.e., the net current at each probe is zero).  The mathematical formalism used 

to treatment this physical structure is described in the following paragraphs.  (Since this 

is an appendix to Chapter 3, all the variables used here have the same definitions as those 

in Chapter 3.) 
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Fig. A.1 A generic plot of the 1D device lattice (solid line with dots, along the X  
direction) with the Büttiker probes attached.  Each probe is treated as a virtual 1D lattice 

(dashed line with dots, along the 'X  direction) coupled to a node in the device lattice.  
The coupling energy between this virtual lattice and the node it is attached to is i

m∆ , and 
that between two adjacent device lattice nodes is mt . The probe Fermi levels are labeled as 

iµ ( 2,3,..., 1Xi N= − ). 
 

 

 

As we show in Sec. 3.2, the retarded Green’s function for mode m is obtained as 

( ) ( ) ( ) ( ) 1

1 2
m m m m m

mm SG E ES h E E E
−

⎡ ⎤= − −Σ −Σ −Σ⎣ ⎦ .                   (3.31) 

If we discretize the matrices by the finite difference method (FDM) method, Sm is a 

X XN N× identity matrix and the device Hamiltonian hmm is expressed as 
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where the coupling energy between adjacent lattice nodes (in the x direction) is 

( )2 22m mmt a a= =  and mma  is defined in Eq. (3.28a).  In the ballistic limit, the scattering 

self-energy 0m
SΣ =  so the total self-energy matrix is 

,1

,

1 2

0 0
0 0

0 0

0 0

m

m NX

ik a
m

m m m m
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ik a
m

t e

t e
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where ,1mk ( , Xm Nk ) is determined by ( ) ( ),10 2 1 cosm
sub m mE E t k a= + −  

( ( ) ( ),1 2 1 cos
X

m
sub X m m NE E N a t k a⎡ ⎤= − + −⎣ ⎦ ).  After we attach the Büttiker probes to the 

device lattice (Fig. A.1), the device Hamiltonian hmm becomes 
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and the total self-energy matrix turns to 
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where ,m ik (i=1,2,…,NX) is determined by ( ) ( ),1 2 1 cosm
sub m m iE E i a t k a⎡ ⎤= − + −⎣ ⎦ , and i

m∆  

(i=2,3,…,NX -1) is the Büttiker probe strength.  For convenience, we prefer to keep the 

device Hamiltonian hmm in its original form, as in Eq. (A.1), so we move the terms 

containing i
m∆  in the diagonal elements of hmm to the total self-energy matrix mΣ .  Thus, 
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(A.5)  

Inserting Eqs. (A.1) and (A.5) into Eq. (3.31), the retarded Green’s function mG  can be 

evaluated.  

Knowing mG , the state spectral function due to injection from the S/D and all 

probes for mode m is obtained as [42], 

( ) ( ) ( ) ( )†m m m m
i iA E G E E G E= Γ ,                                 (A.6) 

where i runs over all the reservoirs (including the S/D) and m
iΓ  is an X XN N×  matrix 

defined as 

[ ] [ ] [ ]†
, ,, , ,m m m

i p i q ip q j p q p q δ δ⎡ ⎤Γ = Σ −Σ⎣ ⎦ , (p,q=1,2,…,NX).    (A.7) 

The local density of states (LDOS) due to injection from reservoir i is then obtained as 

[ ] [ ]1 ,m m
i iD p A p p

aπ
= , (i=1,2,…,NX, p=1,2,…,NX),          (A.8) 

and the 1D electron density (in m-1) for mode m can be calculated by 

( )1 ,m m
D i i

i
n D f E dEµ

+∞

−∞
=∑∫ ,                                 (A.9) 

where i is the reservoir index that runs over all the probes and the S/D, and iµ is the 

Fermi level for reservoir i (note that 1 Sµ µ=  and 
XN Dµ µ= ). 

The transmission coefficient between any two reservoirs i and r can be evaluated 

as 

( ) ( ) ( ) ( ) ( )†m m m m m
i r i rT E trace E G E E G E↔ ⎡ ⎤= Γ Γ⎣ ⎦ .               (A.10) 

The net current density (at energy E) at reservoir i including contributions from all 

reservoirs (labeled by r), modes (labeled by m) and valleys is 
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( ) ( ) ( ) ( ), ,m
i i r i r

m r

qE T E f E f Eη µ µ
π ↔ ⎡ ⎤= −⎣ ⎦∑∑=

,               (A.11) 

and the net current at reservoir i is 

( )i i
I E dEη

+∞

−∞
= ∫ .                                           (A.12) 

As mentioned in [42], while the S/D Fermi levels are determined by the applied 

voltages, the Fermi levels of the probes have to be adjusted to ensure current continuity, 

which implies that the net current at each probe must be zero, 

( ) 0i i
I E dEη

+∞

−∞
= =∫ , ( 2,3,..., 1Xi N= − ).                   (A.13) 

Inserting Eq. (A.11) into (A.13), we obtain 

( ) ( ) ( ), , 0m
i r i r

m r

q T E f E f E dEµ µ
π

+∞

↔−∞
⎡ ⎤− =⎣ ⎦∑∑∫=

, ( 2,3,..., 1Xi N= − ).  (A.14) 

Solving this nonlinear equation group (A.14) by Newton’s method [42], the Fermi levels 

( iµ , 2,3,..., 1Xi N= − ) of all the probes are evaluated.  It should be mentioned that if we 

implement the elastic Büttiker probes, which can only change the electron momentum 

and not the energy, to capture elastic scattering mechanisms in SNWTs (e.g., surface 

roughness scattering and ionized impurity scattering [36]), the net current for each probes 

has to be zero at any energy, so 

( ) ( ) ( ) ( ), , 0m
i i r i r

m r

qE T E f E f Eη µ µ
π ↔ ⎡ ⎤= − =⎣ ⎦∑∑=

, ( 2,3,..., 1Xi N= − ).  (A.15) 

It implies that the probe Fermi levels are both position and energy dependent.  In this 

case, the Fermi levels of probes at each energy can be computed by solving the linear 

equation group (A.15).  Knowing the probe Fermi levels (by solving either Eq. (A.14) or 

Eq. (A.15)), the electron density and terminal current can be calculated from Eqs. (A.9) 

and (A.12). 

Finally, we list the equations that relate the Büttiker probe strength, i
m∆ , to the 

classical low-field electron mobility 0µ .  Following the procedures in [42], for a single-

mode 1D conductor with a uniform potential, we can obtain 

2i
m

m

a
t λ
∆

= ,                                                    (A.16) 
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where λ  is the electron mean-free-path, which relates to the low-field electron mobility 

by the following equation for a 1D conductor (the λ ~ 0µ  relation for a 2D conductor is 

described in [99]), 
2

0 1/ 2

3/ 2 0

2 [ ( )]
( ) ( )

i
FB

i i
T F F

k T
q

µ ηλ
υ η η

−

−

⎛ ⎞ ℑ
= ⋅⎜ ⎟ ℑ ℑ⎝ ⎠

,                                (A.17) 

where *2 /T B xk T mυ π= is the uni-directional thermal velocity of non-degenerate 

electrons [36] [67].  The function, ( )n xℑ , is the Fermi-Dirac integral [36], and i
Fη  is 

defined as ( )[ ] /i m
F i sub i BE x k Tη µ= − , where ix  is the position of the ith reservoir (probe) 

of the device.  It should be noted that the mean-free-path λ defined in Eq. (A.17) is 

position-dependent and consequently the Büttiker probe strength, i
m∆ , is also position-

dependent.  As mentioned earlier, single-mode occupancy is assumed in our analysis.  If 

more than one mode is occupied, the mean-free-path should be treated as an average 

mean-free-path over all the modes and valleys.  (Please refer to Appendix B in [42] for 

details.) 

 
2) Results: 

 
Figure A.2 plots the LDOS together with the electron subbands for a dissipative 

cylindrical SNWT with a 10nm gate length and a 3nm Si body thickness.  We assume 

that both elastic (e.g., surface roughness scattering and ionized impurity scattering) and 

inelastic (e.g., electron-phonon interactions) scattering mechanisms are present in the 

device (i.e., Eq. (A.14) is used for current continuity), and the equivalent mobility is 

( )255cm / V s⋅  at the S/D extension regions and ( )2200cm / V s⋅  in the channel.  

Compared with the ballistic case (Fig. 3.5), strong oscillations in the LDOS, which is due 

to quantum interference, are washed out.  It is because scattering inside the SNWT 

randomizes the phase of the electrons and consequently destroys the quantum coherence 

in the device [37] [42].  Moreover, the slope of the electron subbands in the S/D 

extension regions manifests the S/D series resistances at the ON-state, which is caused by 
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the strong scattering (i.e., the S/D mobility is only ( )255cm / V s⋅ ) at the heavily doped 

S/D regions.  In Fig. A.3, we compare the IDS vs. VGS characteristics for this dissipative 

cylindrical SNWT (solid) with its ballistic limit (dashed).  It is evidently shown that 

scattering lowers both OFF and ON currents.  For the mobility values we use, the ON-

current of the dissipative SNWT approaches ~70% of the ballistic limit. 

 

 

 

Fig. A.2 The computed LDOS, in ( )1/ eV m⋅ , and electron subbands (dashed lines) of a 
dissipative cylindrical SNWT with a 10nm gate length and a 3nm Si body thickness (the 

details of the device geometry are described in the Fig. 3.3 caption).  (VGS=0.4V and 
VDS=0.4V).  The S/D mobility is ( )255cm / V s⋅  and the channel mobility ( )2200cm / V s⋅ . 
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Fig. A.3 The IDS vs. VGS curves for a cylindrical SNWT with a 10nm gate length and a 
3nm Si body thickness (the details of the device geometry are described in the Fig. 3.3 

caption) in logarithm (left) and linear (right) scales (VDS=0.4V).  The dashed lines are for 
the ballistic limit while the solid lines are for the case with scattering (i.e., the S/D 

mobility is ( )255cm / V s⋅  and the channel mobility is ( )2200cm / V s⋅ ). 
 

 

The above results clearly indicate that the simple quantum treatment of scattering 

with the Büttiker probes captures the effects of scattering on both internal characteristics 

and terminal currents for SNWTs.  The relation between the Büttiker probe strength, the 

only input parameter in this model, with the experimentally measurable low-field 

mobility enables this simple model to be used in engineering simulation and design.  It 

should also be noted, however, that this phenomenological model is only a macroscopic 

description of scattering, which is similar as the drift-diffusion model that is used in the 

semiclassical context. [36]  To quantum mechanically treat various scattering 

mechanisms in detail, a rigorous treatment of scattering within the NEGF formalism [37] 

is still needed. 

 

VDS=0.4V
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