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ABSTRACT

Rahman, Anisur. Ph.D., Purdue University, December, 2005. Exploring New
Channel Materials for Nanoscale CMOS Devices: A Simulation Approach. Major
Professor: Mark Lundstrom and Gerhard Klimeck.

The improved transport properties of new channel materials, such as Ge and

III-V semiconductors, along with new device designs, such as dual gate, tri gate

or FinFETs, are expected to enhance the performance of nanoscale CMOS devices.

Novel process techniques, such as ALD, high-κ dielectrics, and metal gates are now

being used to experimentally explore such devices. New materials in the channel

promise reduced series resistance and higher on-currents. The theoretical assessment

of such devices is a challenge because bandstructure, arbitrary wafer orientation,

quantum effects and electrostatics must all be treated. In the first part of this work, a

general theoretical approach for the quantum mechanical simulation of n-MOSFETs

within the Non Equilibrium Green’s Function (NEGF) formalism is introduced, and

its application is demonstrated by performing a scaling study for the end of the ITRS

Ge device. In the second part of this work, a systematic analysis of the bandstructure

effects in deeply scaled n- and p- MOSFETs with Si, Ge, GaAs and InAs channel

is performed. Here, a 20 orbital sp3d5s∗-SO tight-binding model and a top-of-the-

barrier quasi-2D ballistic transport model have revealed important trends in deeply

scaled new channel material devices.
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1. INTRODUCTION

In order to assess and compare the performances of nanoscale CMOS devices with

novel channel materials (e.g. strained Si, Ge, GaAs or InAs), a simulation approach is

undertaken in this work. In Sec. 1.1, a brief overview of the evolution of MOSFETs,

over a period of four decades, is presented. In Sec. 1.2, the recent experimental

demonstration of novel channel material CMOS devices is reviewed. In Sec. 1.3,

the issues and challenges associated with the simulation of nanoscale novel channel

materials are highlighted. Finally, in Sec. 1.4, the outline of this thesis is presented.

1.1 CMOS Scaling: From Long Channel to Nanometer Scale Devices

Since their first demonstration in 1960 [1], planar Si metal-oxide-semiconductor

field-effect-transistors (MOSFETs) have experienced a steady, exponential downsiz-

ing of their critical dimensions. Over a period of 45 years, the printed gate lengths

of the MOSFETs have been scaled down from 100µm to 35 nm [2], the later refers

to the gate lengths for the 65nm technology node devices in commercial micropro-

cessors which will be available by the end of 2005. Due to a steady improvement of

their performances through scaling, MOSFETs have become the leading integrated

circuit technology for high performance and low power logic applications. Over this

long period of development, the technology has faced numerous challenges, which

were always solved by vigorous research, ingenuous design and brilliant engineering.

An excellent review of CMOS material and structural changes during the past 40

years, and their future trends, can be found in [3].

The exponential scaling down of the feature sizes, and hence the exponential

increase of the transistor count in an integrated circuit, was first observed by Gordon

Moore in 1965 [4, 5]. His observation, which later became known as the Moore’s
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Law, states that the number of transistors per integrated circuit doubles every 24

months. Moore’s law has been serving as the guiding principle for the semiconductor

industry for over 30 years [6,7]. According to projections by International Technology

Roadmap for Semiconductors (ITRS), by the middle of next decade, the printed gate

length of the MOSFETs will be less than 10nm. Since no exponential can continue

forever, sustaining Moore’s Law is becoming challenging for the planar bulk CMOS

technology, where the key technical issue for scaling devices below 32nm node is the

off-state leakage current [3]. Demonstration of planar MOSFETs with physical gate

lengths as short as 5nm [8] and 15nm [9] can be found in the literature, however,

due to high off-state leakage, they are not a viable option for integrated circuits.

The origin of this scaling limit for the single-gate, bulk CMOS technology can be

traced back to the inherent poor electrostatic design of the planar device geometry,

and the poor transport properties of carriers in the silicon channels. Consequently,

an intense research effort, directed toward exploring new device designs and new

channel materials for the future logic technologies, has recently been undertaken.

Planar silicon-on-insulator (SOI) technology shows promise for scaling beyond the

planar bulk MOSFET limit. Devices with gate lengths as short as 6 nm and channel

thickness of 4.6 nm has been demonstrated recently [10]. Recent demonstration of

ultra-thin-body SOI MOSFETs with channel thickness less than 1nm, or only five

atomic layers, shows the maturity of this technology [11]. The electrostatic integrity

of the nanoscale CMOS devices improves considerably when additional gates are

included, such as for dual-gate [12, 13], tri-gate [14, 15] or FinFET devices. Due

to the inherent resistance of these non-planar devices to short-channel-effects, it is

widely believed that one of them will form the basic device architecture for future

generations of CMOS devices.

In order to sustain Moore’s law for over four decades, nearly all materials and

design aspects of the original MOSFET have been lost, except the use of Si-SiO2

material system as channel material and gate insulator. Aggressive scaling of gate

oxide has reduced its thickness to a present day value of about 1nm, and any further
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thinning is prohibitive due to oxide reliability issues and the exponential increase of

leakage current from direct tunneling. Sustaining Moore’s Law, however, depends

crucially on the gate insulator scaling and consequently, replacing SiO2 with high-κ

dielectric–metal gate stack is within sight [16]. Among all semiconductors, although

silicon has the poorest transport properties (mobilities and diffusion coefficients for

electron and holes), its success as channel material is due to the excellent interface

property of the Si-SiO2 system. As SiO2 will almost certainly be replaced by high-κ

gate dielectric in near future, the replacement of silicon as channel material by novel

materials with improved transport properties is being viewed as a promising option

to continue device scaling until the middle of next decade. Research activity in this

area has experienced a boom in recent years; with many new devices and material

systems now proposed. A benchmarking study of such new research devices, against

the existing Si technology, has recently been published in [17]. We will next review

the recent experimental advancements in the area of novel channel material CMOS

devices.

1.2 Novel Channel Material CMOS: Experimental Exploration

The experimental exploration of novel channel materials for CMOS devices is pri-

marily motivated by their excellent transport properties. Their high room-temperature

mobilities and saturation velocities are thought to be the key to the next genera-

tion ultra-fast, low power CMOS digital logic technology—an assumption we will

examine in details in chapters 3, 6 and 7 of this thesis.

For long time, strain has been known to improve the channel transport properties

of MOSFETs. Strained Si is the only new channel material which has recently

made its way into the commercial integrated circuits. Beginning with the 90 nm

technology node devices, released in 2003, leading IC industries have incorporated

strained silicon, in some form, to improve the channel transport properties [2, 18–

22]. Recently, substantial progress has also been made to incorporate strain in SOI
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structures using bond-and-etch-back technique [23,24]. Modulations in electron and

hole mobilities with the scaling of body thicknesses in strained SOI has been reported

in [25] and [26]. Also, devices fabricated on Si (110) wafer orientations has shown

improved mobility characteristics over (100) devices [27–29]. Recently, similar results

for (110) strained SOI MOSFETs has also been published [30].

Beyond silicon, germanium is an interesting candidate for nanoscale CMOS tech-

nology due to its excellent transport properties — two and four times bulk mobilities

for electrons and holes compared to silicon, respectively. Room temperature hole mo-

bility in a 7.5nm thick Ge quantum well has already been reported to exceed 2500

cm2/V-sec [31]. Recently, a great progress has been made to integrate high-κ gate

dielectric with Ge process and active research in this field is underway [32–35]. High

performance, n- and p- channel Ge MOSFETs has been reported in [36–41].

Robust and highly manufacturable new process technologies, such as atomic layer

deposition (ALD), hetero-epitaxy and metal gates, have opened the opportunity to

integrate III-V semiconductors with Si technology. With their exceptionally high

mobilities, III-V materials display promise for ultra-fast, very low power digital logic

technology. In [42–44], using ALD Al2O3 as the gate insulator, GaAs MOSFETs

with excellent performance was reported for the first time. Later, GaAs MOSFET

with oxidized InAlP gate insulator was reported in [45]. Other III-V materials, InAs

and InSb, also show great promise as novel channel material for logic technology

due to their exceptionally high carrier mobilities. Recently, for the first time, InSb

based Quantum Well FET was reported in [46]. Fischetti et al. showed in [47] that

indium based semiconductor can outperform Si and Ge MOSFETs in deeply scaled

MOSFETs.

1.3 Simulation Approach: Issues and Challenges

In addition to experimental exploration of nanoscale novel channel material MOS-

FETs, physics based simulation for such devices can offer valuable insight into their
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operation and can help their design optimization. Numerical simulation not only

proves valuable to guide experiments and to explain their results, it also helps to

identify the strengths and the weaknesses of different approaches in the emerging

field of nanoelectronics. The simulation approach has already proven useful in de-

termining the performance limits of the Si technology by comparing their experi-

mental performances with their ballistic performances [48]. A full 2-D simulation

tool, nanoMOS 2.5, developed at Purdue University, quantum mechanically models

the Si n-MOSFETs fabricated on (100) wafers.

Device modeling at nanoscale consists of self-consistently solving the Schrödinger

equation and the Poisson equation. For a given potential profile, Schrödinger equa-

tion quantum mechanically calculates the carrier densities and their transmission

probabilities, while the Poisson equation ensures that the charge profile is consis-

tent with the potential profile. The most widely invoked assumption to solve the

Schrödinger equation is known as the effective mass approach, where the slowly vary-

ing envelope of the electronic wave function is obtained by solving a Schrödinger-like

effective-mass equation (EME). Inside the tool nanoMOS 2.5, this effective mass

equation is solved within the Non-Equilibrium Green’s Function (NEGF) formalism.

A a coupled/decoupled mode-space approach was used, where, by expanding the

electronic wavefunction in mode-space, great efficiency was achieved for solving the

quantum transport problem [49–52]. Another full 2-D quantum mechanical tool,

QDAME, developed at IBM, solves the effective mass equation to treat the open-

boundary ballistic quantum transport problem by expanding the electronic wave-

function as a linear combination of wavefunctions which satisfy zero value and zero

slope boundary conditions [53]. Both nanoMOS and QDAME employ parabolic E-k

relationships for electronic bandstructure. Scaling study results for UTB nanoscale

Si (100) n-MOSFETs has already been published using both nanoMOS [54–56] and

using QDAME [57].

For Si n-MOSFETs fabricate on (100)-wafers, the effective mass approach has

been proved to be an enormously useful technique to treat quantum transport in
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an approximate manner. However, there are two limitations. First, for holes in the

valence bands, where the parabolic E-k bandstructure is not valid and the heavy,

light and spin-off valleys are strongly coupled, effective mass approach results in a

complicated ~k · ~p description of bandstructure, which is not suitable for quantum

simulation of hole transport. Second, even for electrons in the conduction band, if

the principal axes of the constant energy ellipsoids are not aligned with the device

axes (channel, thickness and width directions), the effective mass equation for the

electrons becomes enormously complicated. This becomes a serious issue, limiting

the application of effective mass equation to novel channel material devices, since for

germanium n-MOSFETs, or silicon n-MOSFETs on wafer orientations other than

(100), the device axes and the ellipsoid axes are no longer aligned. Consequently, the

usefulness of the mode-space approach vanishes for quantum mechanical treatment

of electronic transport in novel-channel material n-MOSFETs. QDAME employs a

technique to address this problem by discretizing effective mass equation along the

principal axis of the ellipsoid; however, this becomes a real-space approach therefore,

is numerically cumbersome [58, 59]. In order to use the efficient techniques, such as

mode-space approach and NEGF formalism, the first challenge for simulation of novel

channel material n-MOSFET is to develop a generalized effective mass approach

where the complicated Hamiltonian arising from the non-alignment of device and

ellipsoid axis can be simplified.

As already pointed out, effective-mass-approach is an approximation which disre-

gards the atomic scale fluctuation of the electronic characteristics and describes the

band edge electronic properties in an approximate manner. However, as size goes

down, the behavior of the electronic states in nanoscale CMOS devices become in-

creasingly sensitive to all sorts of microscopic phenomena: atomic-scale fluctuations,

local bond distortions, alloy effects, structure of the interfaces, quantum tunneling

and energy quantization. An improved modeling of such effects is not possible within

effective mass approach and a full band atomistic treatment is necessary to address

them. Semi-empirical tight-binding approach [60–62], a full band technique, proves
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extremely useful for atomistic treatment of nanoscale devices with any materials,

provided that the tight-binding parameters for the material is known in advance. It

correctly captures full-band effects, such as valley splitting in a nanostructure [63],

and also treats alloy effects on bandstructure [64].

Tight-binding modeling of nanostructures, using s, p and d type atomic orbital

basis, has already been successfully employed for the predictive simulation of 1-

D structures such as resonance tunneling diode (RTD) [65], and zero dimensional

system such as quantum dots [66]. In silicon technology, its application is limited

to calculation of MOS gate oxide tunneling current, an inherently 1-D problem [67–

71]. Nanoscale UTB MOSFETs, however, require a 2-D atomistic description of the

structure, along channel and along thickness, making them extremely challenging,

computationally. As a result, no attempt has yet been made to address the carrier

transport in a MOSFET using the tight-binding method. Since, it is computationally

prohibitive to do a full 2-D atomistic treatment of MOSFETs, the second challenge in

simulation of novel channel material devices is to develop the appropriate transport

model and make the necessary simplifying assumptions that allow the use of full

band atomistic tight-binding model to simulate such devices.

1.4 Outline of The Thesis

This thesis is divided into following chapters:

• Chapter 2 (page 11): This chapter generalizes the effective mass approach

to treat nanoscale n-MOSFET fabricated on arbitrarily oriented wafers. It is

shown that under certain simplifications, which are generally valid for UTB

nanoscale devices, an arbitrarily oriented constant energy ellipsoid can be

transformed into a regular ellipsoid which has its ellipsoidal axes aligned along

the device axes. The three effective masses along channel, width and thick-

ness, calculated from the transformed ellipsoid, can then be used in any quan-

tum simulation tool developed for Si n-MOSFETs on (100) wafers (such as
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nanoMOS) to treat quantum transport of electrons. The approach in this

chapter has been published as a full length journal paper in Journal of Applied

Physics [72].

• Chapter 3 (page 38): An application of the generalized effective mass approach,

introduced in Ch. 2, is demonstrated in this chapter. A design study for the

UTB dual-gate (DG) 10nm gate length germanium n-MOSFET is performed

using the specifications given for end of the ITRS 2001 device. All simulation

were performed by using the correct effective masses for Ge in nanoMOS 2.5.

Contrary to popular belief, that devices fabricated on Ge (111) wafers will show

best performance, it was observed that n-MOSFETs fabricated on (100) wafers

will offer the best performance. The reason for this is, the density-of-states for

electrons in Ge (111) is severely degraded, which in turn degrades the gate

capacitance. As a result, although the electron injection velocity for Ge(111)

devices is very high, fewer carriers in the channel reduces the current. NEGF

scattering simulation using a simple Büttiker-probe treatment shows that the

electron transport in the channel is near ballistic, but the performance will be

limited by the low mobility, highly doped source and drain regions. The results

of this chapter has been published in the Technical Digest of 2003 International

Electron Device Meeting [73].

• Chapter 4 (page 51): A top-of-the-barrier semiclassical ballistic transport

model, for arbitrary bandstructures, is introduced in this chapter. It was

demonstrated that for a given set of gate and drain control parameters, and

source Fermi level position, all extracted from the subthreshold region of device

operation, this model can reproduce nanoMOS 2.5 results for a Si (100) UTB

DG n-MOSFET. The treatment of floating source potential, a characteristic

phenomena in ballistic FETs, can be easily incorporated in this model. Also,

quantum capacitance effects due to finite density-of-states in a nanoscale MOS-

FET is autometically included in this model. This top-of-the-barrier ballistic
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transport model will be the key vehicle for the assessments of novel channel

material devices presented in subsequent chapters. The model in this chapter

has been published as a full length journal paper in IEEE Transactions on

Electron Devices [74].

• Chapter 5 (page 68): This chapter describes the semi-empirical tight-binding

model and its application to nanoelectronic devices. The historical develop-

ment and the assumptions involved are clearly described. Also the technique

to apply the model to nanostructures to calculated 2-D bandstructure is ex-

plained.

• Chapter 6 (page 77): In this chapter the application of tight-binding approach

to UTB DG MOSFETs is presented. First, the validity of using parabolic E-k

effective mass approach to Ge n-MOSFETs was investigated and was observed

that below a body thickness of 4nm, use of parabolic E-k can introduce serious

error in the performance assessment of n-MOSFETs. These results has been

published in the Technical Digest of 2004 International Electron Device Meet-

ing [75]. In the second half of this chapter, performances of UTB DG nanoscale

n- and p- MOSFETs with Si, Ge, GaAs and InAs were compared. It was ob-

served that there is often a tread-off between the high-injection velocity and

the gate capacitance degradation due to low density-of-states. As a result, for

highly scaled MOSFETs, GaAs and InAs channel devices fail to out-perform Si

and Ge channel devices and Ge channel becomes the clear winner. The results

presented in this part will appear in the Technical Digest of IEDM 2005 [76].

• Chapter 7 (page 103): Application of tight-binding model with self-consistent

electrostatics is presented in this chapter. Two type of devices, bulk strained

MOSFETs and heterostructure on insulator (HOI) devices, were explored. It

was demonstrated that the experimentally observed hole mobility vs. gate

field behavior in single-gate bulk strained p-MOSFETs can be explained in

terms of their ballistic performances. However, bandstructure alone cannot
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explain similar behavior in the n-MOSFETs. Simulation of charge profile in

HOI devices shows that the profile critically depends on the gate bias, and the

band discontinuity alone does not control the peak of hole density profile along

the thickness.

• Chapter 8 (page 119): Summary of the thesis is presented and future work

suggested.

• Appendix A (page 132): Mathematical details and derivations relevant to Ch.

2 are presented.

• Appendix B (page 139): Mathematical details and derivations relevant to Ch.

4 are presented.

• Appendix C (page 146): Mathematical details and derivations relevant to Ch.

5 are presented.
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2. A GENERALIZED EFFECTIVE MASS APPROACH

FOR N-MOSFETS

In this chapter, the general theory for quantum simulation of cubic semiconductor

n-type metal oxide semiconductor field effect transistors (MOSFETs) is presented

within the effective mass equation approach. The full three-dimensional transport

problem is described in terms of coupled transverse subband modes, which arise

due to quantum confinement along the body thickness direction. Couplings among

the subbands are generated for two reasons: due to spatial variations of the con-

finement potential along the transport direction, and due to non-alignment of the

device coordinate system with the principal axes of the constant energy conduction

band ellipsoids. The problem simplifies considerably if the electrostatic potential is

separable along transport and confinement directions, and further, if the potential

variations along the transport direction are slow enough to prevent dipolar coupling

(Zener tunneling) between subbands. In this limit, the transport problem can be

solved by employing two unitary operators to transform an arbitrarily oriented con-

stant energy ellipsoid into a regular ellipsoid with principal axes along the transport,

width and confinement directions of the device. The effective masses for several

technologically important wafer orientations for silicon (Si) and germanium (Ge) are

calculated in this chapter.

2.1 Introduction

Metal oxide semiconductor field effect transistors (MOSFETs) constitute the fun-

damental building block of present day complementary metal oxide semiconductor

(CMOS) technology. Current research in this field is largely geared towards improv-
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ing MOSFET performance and increasing device density through aggressive scaling

of their feature sizes [6, 7]. The importance of quantum mechanical size effects in

MOSFETs, where the inversion layers are just a few nanometers thick, was realized

during the early period of their development [77,78]. Moreover, as MOSFET channel

lengths approach few tens of nanometers, source-to-drain and gate tunneling in these

near-ballistic devices become important issues [79]. Numerical simulations provide

valuable insight into the physics of device operation at this scale, requiring an ap-

propriate treatment of the device bandstructure as well as a rigorous formulation of

quantum transport.

The effective mass equation (EME) provides an accurate, easy to implement

model Hamiltonian that does justice to the device bandstructure including quan-

tum confinement effects within the inversion layer, and describes the slowly varying

envelope part of the underlying Bloch wavefunction. The Non-Equilibrium Green’s

Function (NEGF) method provides a rigorous formulation of quantum transport in

nanoscale devices [80]. Together, the NEGF formalism and the EME have been used

to describe transport in nanoscale MOSFETs both in the ballistic limit [49, 81–83],

as well as including the effects of carrier scattering [51, 84]. In [49] and [85] the

coupled- and decoupled-mode-space approaches were introduced, and in [52] the

coupled-mode-space approach is used in order to assess the effects of channel ac-

cess geometry and series resistance in nanoscale n-MOSFETs. In the presence of

strong dephasing with band like transport, the NEGF equation reduces to the semi-

classical Boltzmann transport equation (BTE). The BTE has also been used, along

with related concepts such as density-of-states (DOS) and conduction band (CB)

effective masses, in order to explore the upper limit of nanoscale MOSFET perfor-

mance [48, 74, 86]. The two dimensional (2D) numerical simulator nanoMOS 2.5,

a freeware, has been developed to simulate the ballistic and scattering characteris-

tics of ultra-thin-body (UTB), double gate (DG) Si (100) n-MOSFETs using both

semiclassical (BTE) and fully quantum (NEGF) methods [50, 87].
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Silicon (100) wafers are almost universally used by the semiconductor industry

for CMOS integrated circuit fabrication. Simulation of n-MOSFETs is generally

performed for devices fabricated on (100) wafers, motivated by its technological im-

portance. The quantum simulation of Si (100) devices is substantially simplified by

the fact that the principal axes of the six fold degenerate conduction band ellip-

soids are aligned along the device coordinate axes, effectively decoupling the kinetic

energies along the device coordinate axes. In general, however, the principal axes

of the conduction band ellipsoids are not aligned with the device axes, so that the

associated kinetic energies become coupled and the effective mass equation becomes

non-trivial. Such a situation arises for transistors that employ germanium as a high-

mobility channel material [32, 36, 38], as well as for alternate wafer orientations of

silicon [27]. To extend the application of EME to analyze these novel n-MOSFETs

it is necessary to generalize the EME approach to arbitrary wafer orientations. In

the past, Stern et al. proposed a method which, in such non-trivial cases, decou-

ples the kinetic energy associated with the quantum confinement direction from that

associated with the motion in the transport plane [77, 88]. In this chapter we in-

troduce a technique that decouples the energy associated with all three device axes,

i.e., transport, width and confinement directions, for devices with unvarying cross

sections and slowly varying channel-directed potentials. This allows us to use all the

EME based simulation tools developed so far for modeling novel channel material

n-MOSFETs.

This chapter is organized as follows. In Sec. 2.2 we outline our general solution

procedure, describing the full three dimensional (3D) problem, and the conditions un-

der which it can be simplified. In Sec. 2.3 we discuss the conduction band structure

in cubic semiconductors and derive the effective-mass-tensor (EMT) in an arbitrary,

orthogonal device coordinate system. In Sec. 2.4 we present the technique to solve

the resulting EME for n-MOSFETs. This general technique shows that under cer-

tain conditions one can employ two unitary transformations that map any arbitrarily

oriented constant energy ellipsoid onto a regular ellipsoid having principal axes ori-
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ented along the device axes. In Sec. 2.5, the effective masses are calculated for

several technologically significant silicon and germanium wafer orientations. We fol-

low by presenting the discussions in Sec. 2.6, and finally, we summarize and conclude

this section in Sec. 2.7.

2.2 Summary of the Overall Solution Procedure

The complete problem involves the full 3D quantum transport and electrostatics

of the system. In page 18, we start by writing down the non-diagonal EMT in the

device coordinate system, and the corresponding dispersion relationship (2.12) for

the arbitrary oriented conduction-band ellipsoids. We then perform a basis transfor-

mation which recasts the general effective-mass equation in a fully equivalent form

in terms of a complete set of transverse subband eigenmodes. These transverse

modes are obtained by considering the confinement potential along the principal-

axis directions of the constant energy ellipsoids (2.19). The general 3D nature of

the problem is manifested in (2.34) (page 24) through coupling among these sub-

bands, so that the corresponding coupled-mode-space transport formulation is fully

equivalent to the original effective-mass (2.14), with no further assumptions. Some

of the coupling terms disappears if the confinement potential remains same as we

move along the transport direction, making the overall electrostatic potential sepa-

rable (2.35, 2.36); at this stage, however, there are still coupling among the different

subbands representing subband-to-subband Zener tunneling caused by the nonalign-

ment of the ellipsoidal principal axes with the device coordinate axes (2.39). These

couplings are not present when the device axes align with ellipsoidal axes, as in Si

(100) devices. The origin of these couplings can be traced back to the nonalignment

of the device and ellipsoidal axes, which complicates the description of kinetic en-

ergy in the device coordinate system through the non-diagonal effective-mass-tensor

(2.12). In effect the couplings arise because the channel potential itself is varying

along the confinement direction, effectively coupling the two coordinates. If now
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the transport potential varies slowly enough that the total variation in the channel

potential between the confinement planes along the ellipsoidal axis is much smaller

than the subband separation (2.40), the inter-subband coupling terms are further

eliminated, leading to a simplified decoupled-mode-space description in terms of iso-

lated ellipsoids with their principal axes oriented along the device axes (2.41), albeit

with modified effective masses. The problem is further simplified computationally

for ultra-thin-body MOSFETs with a large energy difference between the transverse

subbands, so that only the lowest few modes that are thermally populated need to

be considered.

2.3 Conduction-band Structure in cubic semiconductors

The conduction-band minima of cubic semiconductor materials appear either at

a single point (for direct band-gap materials such as GaAs or InAs) or at multiple

equivalent points (for indirect band-gap materials such as Si and Ge) within the

first Brillouin zone (BZ). The constant energy surfaces become non-parabolic and

warped for energies away from the band minima; close to the band edge, however,

the relevant electronic states for transport calculations can be described by simple

ellipsoidal surfaces. We can safely ignore the coupling with the valence band for

semiconductors with moderately large band gaps. Under these circumstances, the

constant energy surface for electron in the direct band-gap material is spherical,

centered on the Γ point and described as

E =
h̄2k2

2meff
, (2.1)

with a constant, isotropic effective mass, meff . For indirect semiconductor mate-

rials, the CB minima are located at multiple equivalent points: six points near X

along the ∆ (≡< 100 >) crystallographic directions for silicon, and eight equivalent

points at L along Λ (≡< 111 >) for germanium. In indirect semiconductors, the

constant energy surfaces are ellipsoids of revolution around ∆ and Λ axes, respec-

tively [89,90], requiring two effective masses, longitudinal ml and transverse mt, for



16

description. In general, the nonalignment of the ellipsoidal principal axes with the

device coordinate axes causes the effective mass to become a 3 × 3 tensor quan-

tity in the device coordinate system [91, 92]. In this section, we will systematically

derive this effective-mass-tensor in an arbitrary orthogonal coordinate system, and

in Sec. 2.4 we will simplify the resulting EME for quantum transport simulation

of n-MOSFETs. We formulate the generalized EME by defining three orthogonal

coordinate systems, presented schematically in Fig. 2.1. They are called the device

coordinate system (DCS), the crystal coordinate system (CCS), and the ellipsoid co-

ordinate system (ECS). Three unit vectors, k̂1, k̂2, and k̂3, span the DCS and form its

basis. We take k̂3 along the body thickness (i.e., quantum confinement of inversion

carriers), k̂1 along the source-to-drain (i.e., transport) direction, and k̂2(≡ k̂3 × k̂1)

along the device width direction. The second coordinate system, CCS, is spanned

by three unit vectors, k̂′1, k̂′2, and k̂′3, oriented along the tree orthogonal < 100 >

crystallographic directions of the underlying channel material. Finally, the basis for

the ECS consists of the unit vectors k̂||, k̂⊥1, and k̂⊥2, chosen along the principal axes

of each constant energy ellipsoid. In summary, the CCS is unique for all our simula-

tions, the DCS depends on the fabrication choice (that is, on the wafer orientation

and the source-to-drain direction in the chip design layout), and the ECS depends

on the specific channel material and is unique to each ellipsoid.

We now describe the key steps in determining the EMT for a general CB ellipsoid.

In the ECS the constant energy ellipsoid can be expressed as:

E =
h̄2k2

||
2ml

+
h̄2(k2

⊥1 + k2
⊥2)

2mt
. (2.2)

In (2.2), the k-space origin is translated to the CB minima, which serves as the

reference for the electronic energy. In compact vector notation, (2.2) can be written

as

E =
h̄2

2
~kT

E

[

M−1
E

]

~kE, (2.3)

where ~kE = (k||k⊥1k⊥2)
T consists of the components of an arbitrary wave vector in

the ECS, and the inverse EMT,
[

M−1
E

]

, is a 3×3 diagonal matrix with m−1
l , m−1

t , and



17

Fig. 2.1. Three orthogonal coordinate systems: Device coordinate
system (DCS), Crystal coordinate system (CCS), and Ellipse coor-
dinate system (ECS).

m−1
t along the diagonal. For a given channel material and for a given CB ellipsoid,

the directions of the unit basis vectors k̂||, k̂⊥1, and k̂⊥2 are known relative to the

CCS, thus allowing us to write the 3x3 rotation matrix <E←C , which transforms
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the components of an arbitrary vector ~kC ≡ (k′1k
′
2k
′
3)

T defined in the CCS, to its

components in the ECS,

~kE = <E←C
~kC . (2.4)

A similar rotation matrix <C←D transforms a wavevector ~kD ≡ (k1k2k3)
T in the

DCS to ~kC in the CCS as

~kC = <C←D
~kD. (2.5)

Combing 2.4 and 2.5 we obtain

~kE = <E←D
~kD, (2.6)

where the rotation matrix is defined as

<E←D = <E←C<C←D. (2.7)

Inserting 2.6 into 2.3 we obtain

E =
h̄2

2
~kT

D

[

M−1
D

]

~kD, (2.8)

where the inverse effective mass
[

M−1
D

]

in the DCS is

[

M−1
D

]

= <T
E←D

[

M−1
E

]

<E←D. (2.9)

In Sec. 2.5 we will evaluate <E←D for various wafer orientations and for both ∆

and Λ type CB valleys. From (2.9) we find that the general EMT,
[

M−1
D

]

, is a full

3x3 symmetric matrix whose elements
[

M−1
D

]

ij
are

1

mij

=
a1ia1j

ml

+
a2ia2j + a3ia3j

mt

, (2.10)

where aij = [<E←D]ij. Equation 8 can now be written in compact form as

E (k1, k2, k3) =
3
∑

i,j=1

h̄2kikj

2mij
. (2.11)

From (2.10) we find mij = mji and therefore the above expression can be rewritten

as

E (k1, k2, k3) =
3
∑

i=1

h̄2k2
i

2mii
+ 2

3
∑

i=1

∑

i<j≤3

h̄2kikj

2mij
. (2.12)
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Comparing with (2.1), we see that the expression for the constant energy ellipsoidal

surface in (2.12) contains additional cross terms kikj in kinetic energy. In Sec. 2.4

we will see that this makes the corresponding general EME non-trivial and there we

will outline our treatment of the problem.

2.4 The Generalized Effective-Mass Equation and the Solution

The bulk band structure for any semiconductor is calculated by solving Schrödinegr

equation using Bloch’s theorem for a periodic lattice. Although this technique yields

and accurate description of the E(~k) relationship for the electron over the entire

BZ, it is unnecessarily complicated for treating transport problems in the MOSFET

device structure. Since an accurate description of only the band-edge electronic

states is sufficient for transport simulation, the effective-mass approximation scheme

(also known as the envelop function approximation) becomes an attractive alter-

native. The effective-mass approximation uses an accurate description of the E(~k)

relationship over only a limited range of energy near the valence- or conduction-

band extrema. The ~k · ~p perturbation technique is employed in this regard, which

describes the band structure over a limited range of energy near the band edge with

sufficiently accuracy [93]. A Schrödinger like effective mass equation is obtained by

replacing certain component of the wave vector, kj, in the expression for E(k) with

their quantum-mechanical operators, −i∂/∂xj , and the electronic states are obtained

by solving this differential eigenvalues equation.

The EME scheme described above is universally used by the electronic device

community for quantum-mechanical simulation of MOSFETs. For silicon devices

fabricated on (100) wafers with the source-to-drain direction oriented along [010],

the EMT continues to be diagonal and, therefore, the cross terms in 2.12 drop out.

In this case, the EME can be solved without difficulty and the quantum-mechanical

effects are accurately included in the simulation. Since the work of Stern et al. [78],

the above-mentioned device orientation has been exclusively used for simulation.
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Fig. 2.2. The ultra-thin-body, double-gate device structure. The
device coordinate system consists of orthogonal axes X, Y and Z
along transport, width and thickness directions, respectively. The
wavevectors along the thickness, k3, and along the transport, k1, are
treated quantum mechanically while in the width direction, Y , plane
waves were assumed.

The quantum-mechanical simulation of MOSFETs fabricated on germanium (100)

wafers or silicon (111) or (110) wafers still remains a non-trivial problem, since

their EMT in the device coordinate system are full 3 × 3 matrices. In this section

we will introduce the general solution technique and will show that under certain

simplifying conditions we can decouple the energies in (2.12), thereby, eliminating

the limitations of EME. In Fig. 2.2 the UTB DG semiconductor-on-insulator (SOI)

MOSFET device structure is shown as the model device; however, the general theory

we are developing is valid for bulk MOSFETs as well. In this figure we have defined

X, Y , and Z, as the real-space Cartesian axes along the previously mentioned k̂1, k̂2,

and k̂3 unit vectors, respectively. Accordingly, we replace the k-subscripts in (2.12)

from {123} to {xyz}. For the MOSFET, X, Y , and Z represent the transport,

quantum confinement and width directions, respectively.

Our general strategy will be to first solve the quantum problem along the confine-

ment direction and then use the corresponding eigenvectors to construct a complete

basis set for the full three-dimensional quantum transport problem. Using the new

labels for the axes of the DCS, the general E(~k) in (2.12) becomes

E (kx, ky, kz) =
h̄2k2

x

2m11

+
h̄2k2

y

2m22

+
h̄2k2

z

2m33

+
h̄2kxky

m12

+
h̄2kykz

m23

+
h̄2kzkx

m31

. (2.13)
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By substituting kx → −i∂/∂x and kz → −i∂/∂z we now find the corresponding 2D

effective-mass equation,

[

− h̄2

2m11

∂2

∂x2
− i

h̄2ky

m12

∂

∂x
+
h̄2k2

y

2m22

+

{

− h̄2

2m33

∂2

∂z2
− ih̄2

(

ky

m23
− i

1

m31

∂

∂x

)

∂

∂z
+W (x, z)

}]

Ψky
(x, z)

= EΨky
(x, z) . (2.14)

The potential along the width direction is unvarying and therefore, W (x, z) is

not a function of y. ky is a constant arising from the commutation of −i∂/∂y and

the Hamiltonian in 2.14. The two independent degenerate solutions, e±ikyy, and of

the y-dependent part of 2.14 carry no net current along Y , despite the non-diagonal

character of the EMT. We now discuss the general mode-space formalism for solving

this problem in general, without postulating any separability for the potential energy

W (x, z).

2.4.1 The Quantum Confinement Problem

The confinement modes diagonalize the part of the Hamiltonian associated with

the confinement potential and serve as basis sets for evaluating the complete trans-

port equation. From (2.14) we separate the terms dealing with the quantum con-

finement problem at a given x,

[Hz +W (x, z)] ζi

(

−i ∂
∂x
, ky : x, z

)

= εi

(

−i ∂
∂x
, ky : x

)

ζi

(

−i ∂
∂x
, ky : x, z

)

,

(2.15)

where the confinement Hamiltonian is

Hz = − h̄2

2m33

∂2

∂z2
− ih̄2

(

ky

m23

− i
1

m31

∂

∂x

)

∂

∂z
. (2.16)

We now perform a canonical transformation by substituting

ζ

(

−i ∂
∂x
, ky : x, z

)

= e
−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
φi (x, z) , (2.17)
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in (2.15) and left multiplying the equation by e
i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
. The exponential

term in (2.17) is a unitary operator that basis transforms the wave function. The

algebra is considerably simplified by employing the following well-known operator

identity:

e−BAeB = A+ [A,B] +
1

2
[[A,B] , B] + .......... (2.18)

The above operation on the kinetic energy Hz causes the linear term in ∂/∂z to

drop out (the exponential term being just the translation operator in ∂/∂z space),

while the corresponding unitary operation on the potential W (x, z) transforms it into

W
(

x+ m33

m31
z, z

)

. For a given x, this expression implies that the quantum confine-

ment potential needs to be sampled along the principal axis of the constant energy

ellipse at fixed ky . At the end of this canonical transformation, the confinement

problem becomes
[

− h̄2

2m33

∂2

∂z2
+W

(

x+
m33

m31
z, z

)

]

φi (x, z) = εi

(

x +
m33

m31
z
)

φi (x, z) , (2.19)

which we have to solve in order to obtain the orthonormal eigenvectors, φi’s, hereafter

referred to as ”modes” Using the inverse canonical transformation, the confinement

problem can be rewritten as

[Hz +W (x, z)] e
−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
φi (x, z)

=

{

εi (x) − ε

(

−i ∂
∂x
, ky

)}

e
−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
φi (x, z) , (2.20)

where εi (x) is the i-th subband energy at x and

ε

(

−i ∂
∂x
, ky

)

=
h̄2

2

(

−m33

m2
31

∂2

∂x2
+
m33

m2
32

k2
y − 2i

m33

m31m23

ky
∂

∂x

)

, (2.21)

is the kinetic energy.

Equation (2.20) embodies two accomplishments when compared with (2.15).

Firstly, we have identified the transverse modes φi which together with the expo-

nential pre-factor selectively diagonalize the confinement part of the Hamiltonian;

secondly, we see that the eigenenergy term is separated into subband energy and

kinetic energy. Next we will exploit these two accomplishments.
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2.4.2 The Transport Problem

We now return to the original 2D EME in (2.14), by
[

− h̄2

2m11

∂2

∂x2
− i

h̄2ky

m12

∂

∂x
+
h̄2k2

y

2m22

+Hz +W (x, z)

]

Ψ

(

−i ∂
∂x
, ky : x, z

)

= EΨ

(

−i ∂
∂x
, ky : x, z

)

. (2.22)

At a given x, the eigenfunctions e
−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
φi (x, z) diagonalize the confine-

ment Hamiltonian in (2.20) and form a complete set. This allows us to expand the

wavefunction Ψ in (2.22) in this complete basis

Ψ

(

−i ∂
∂x
, ky : x, z

)

=
∑

m

e
−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
φm (x, z)χm (x, ky) , (2.23)

where χm (x, ky) are the corresponding expansion coefficients. We substitute (2.23)

in (2.22) and left multiply it by φ∗n (x, z) e
i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
, which amounts to doing

a unitary transformation for the transport Hamiltonian. Using the operator identity

(2.18) and the confinement eigenvalues from (2.20), equation (2.22) boils down to

∑

m

φ∗n (x, z)
[

Htrans + εm

(

x +
m33

m31
z
)]

φm (x, ky)

= E
∑

m

φ∗n (x, z)φm (x, z)χm (x, ky) , (2.24)

where the Hamiltonian for this transport problem is now

Htrans = − h̄2

2m′1

∂2

∂x2
− i

h̄2ky

m′12

∂

∂x
+
h̄2k2

y

2m′2
. (2.25)

In (2.24) the new effective masses are obtained by regrouping terms as

1

m′1
=

(

1

m11
− m33

m2
31

)

(2.26)

1

m′2
=

(

1

m22
− m33

m2
23

)

(2.27)

1

m′12
=

(

1

m12

− m33

m23m31

)

(2.28)

Equation (2.24) can be simplified further using another canonical transformation,

χm(x, ky) = e
−i

m′

1

m′

12

kyx
ψm(x), (2.29)
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which on substituting in (2.24) and left multiplying with e
i

m′

1

m′

12

kyx
eliminates the

linear terms in ∂/∂x. We find

∑

m

φ∗m(x, z)

[

− h̄2

2m′1

∂2

∂x2
+
h̄2k2

y

2m′′2
+ εm

(

x +
m33

m31

z
)

]

φm(x, z)ψm(x)

= E
∑

m

φ∗n(x, z)φm(x, z)ψm(x), (2.30)

where we have again made use of (2.18) and defined the mass

1

m′′2
=

(

1

m′2
− m′1
m′212

.

)

(2.31)

Equation (2.30) is now integrated over z. Employing the orthogonality condition

∫

φ∗n(x, z)φm(x, z)dz = δn,m,

we find

∑

m

∫

dz

{

φ∗n(x, z)

[

− h̄2

2m′1

∂2

∂x2
+ εm

(

x +
m33

m31
z
)

]

phim(x, z)

}

ψm(x)

=

(

E − h̄2k2
y

2m′′2

)

ψn(x). (2.32)

The potential term in (2.32) can be expanded by using the Taylor series as,

∫

φ∗n(x, z)εm

(

x +
m33

m31
z
)

φm(x, z)dz =
∫

φ∗n

[

εm(x) +
m33

m31
z
∂εm(x)

∂x
+ · · ·

]

φmdz

= εm(x)δnm +
m33

m31

∂εm(x)

∂x

∫

zφ∗nφmdz + · · ·

= εm(x)δnm +
m33

m31

∂εm(x)

∂x
µnm + · · ·

= εm(x)δnm +Wnm(x) (2.33)

while the kinetic-energy operator can be simplified using integration by parts, yield-

ing our general coupled-mode-space equation in full 3D transport problem.
[

− h̄2

2m′1

∂2ψn(x)

∂x2
+ εn(x)ψn(x)

]

+
∑

m

Wnm(x)ψm(x)

+
h̄2

2m′1

∑

m

{

ψm(x)
∫

dz

[

φm(x, z)
∂2φ∗n(x, z)

∂x2

]

+ 2
∫

dz
∂φ∗n(x, z)

∂x

∂[φm(x, z)ψm(x)]

∂x

}

=

(

E − h̄2k2
y

2m′′2

)

ψn(x). (2.34)
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Equation (2.34) serves as the generalization of a similar one derived from the

restricted case of silicon (100) MOSFETs in [49]; however, in that treatment the

summation terms involving coupling Wnm(x) among the subbands, arising due to

the nonalignment of device axes with ellipsoid axes, were absent. These terms repre-

sent Zener tunneling between the subbands. Ignoring higher-order corrections, they

are proportional to the inter-subband dipole µnm and the local field generated by

the variation in the subband eigenvalues along the transport direction, ∂εm(x)
∂x

. Con-

tributions to Wnm(x) arise both from the cross terms in the potential energy, as in

a channel with varying cross section, as well as from the cross terms in the kinetic

energy due to the nonaligned device and ellipsoidal axes. While the latter terms

never arise for silicon (100) devices, the effect of the former cross terms has been

included in the coupled-mode-space approach of [52] to analyze the effects of channel

access geometry in nanoscale silicon n-MOSFETs.

2.4.3 Simplifications in UTB Devices

In an UTB SOI MOSFET with uniform channel thickness (Fig. 2.2), the electro-

static potential is separable along the confinement and transport (channel) directions,

W (x, z) = U(z) + V (x). (2.35)

The channel potential V (x) simply shifts the confining potential U(z), but does not

alter the shape of the models as we move from one point to next along the transport

direction. This implies
φj (x, z)

∂x
=
∂2φj (x, z)

∂x2
= 0. (2.36)

The x dependence of φj (x, z) is eliminated since it selectively diagonalizes the con-

finement Hamiltonian which now depends only on U(z) and therefore x independent.

In this special case (2.34) simplifies considerably and becomes

[

− h̄2

2m′1

∂2ψn (x)

∂x2
+ εn (x)ψn (x)

]

+
∑

m

Wnm (x)ψm (x) =

(

E − h̄2k2
y

2m′′2

)

ψn (x) .

(2.37)
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Additionally, (2.37) allows us to write

εn

(

x +
m33

m31
z
)

= εn + V
(

x +
m33

m31
z
)

. (2.38)

εn is the n-th subband energy arising from diagonalizing the x-independent confine-

ment potential U(z), and is unvarying along x. The only role of the channel potential

V (x) in this special separable case is to shift the bottom of the subbands:

[

− h̄2

2m′1

∂2

∂x2
+ V (x)

]

ψn(x) +
∑

m6=n

Vnm(x)ψm(x) =

(

E − εn − h̄2k2
y

2m′′2

)

ψn(x). (2.39)

In (2.39), the coupling between models is still present and represents the Zener

tunneling between subbands due to the cross terms in the kinetic energy, arising

from the arbitrary orientation of the ellipsoids. The tunneling is negligible if

|Vnm(x)| << |εn(x) − εm(x)| ,

which amounts to
∣

∣

∣

∣

∣

m33

m31

∂V (x)

∂x
µnm

∣

∣

∣

∣

∣

<< |εn − εm| . (2.40)

It can be shown, in general, that
∣

∣

∣

m33

m31

∣

∣

∣ < 1 and |µnm| < tb, so that ignoring the Zener

tunneling amounts to

tb

∣

∣

∣

∣

∣

∂V (x)

∂x

∣

∣

∣

∣

∣

<< |εn − εm| ,

where tb is the body thickness. This inequality can be restated as follows: if at any

point along the channel, the channel-directed potential drop between the confining

planes and sampled along the ellipsoidal principal-axis direction is much smaller

than the corresponding inter-subband separation, the coupling between modes can

be safely ignored. Indeed, the coupling arose precisely because the channel potential

varies along the ellipsoid’s principal axis, which determines the confinement potential

generating the transverse subbands (2.19). For Si (100) the coupling does not exist

since there is no drop in the channel-directed potential along the direction of the

ellipsoidal axis.

A simple estimate tells us the conditions under which this Zener tunneling is

negligible. The smallest inter-subband separation is given roughly by (32−12) h̄2π2

2m33t2
b

.



27

The channel potential drop along the ellipsoid between the confinement planes de-

pends on the local field. For a linear channel-directed potential profile, this drop is

given by V tb
L

, where V is the applied bias and L is the channel length. Near the top

of the barrier, the field is smaller and the drop is given roughly by
V t2

b

2L2 . For a 10nm

channel length with a 0.6V applied bias and for m33 = 0.1, the drop is the chan-

nel potential along the confinement direction is negligible compared to the subband

separation, provided the body thickness is smaller than about 5nm (for the average

potential, and 10nm for the top of the barrier potential).

In the absence of inter-subband Zener coupling, the corresponding decoupled-

mode-space equation finally becomes

− h̄2

2m′1

∂2ψn(x)

∂x2
+ V (x)ψn(x) =

(

E − εn − h̄2k2
y

2m′′2

)

ψn(x). (2.41)

In this section we have demonstrated an exact mathematical transform that con-

siderably simplifies the quantum-mechanical treatment of electronic transport in a

nanoscale n-MOSFET with arbitrarily oriented transport, width, and thickness direc-

tions w.r.t. the CB ellipsoidal. The conditions under which this simplified equation

is valid are:

1. an unvarying device cross section that allows us to separate the confinement

and transport potentials and

2. a channel-directed potential that varies slowly enough that there is no Zener

tunneling between transverse subbands.

A simplified mapping operation is performed by two unitary operations in (2.17),

(2.29) that map each conduction-band ellipsoid into an equivalent regular ellipsoid

whose principal axes are oriented along the device coordinate axes X, Y , and Z with

corresponding effective masses m′1, m
′′
2, and m33, respectively. For separable poten-

tials with coincident device and ellipsoidal axes (i.e., no cross terms in the kinetic en-

ergy), the normal mode φm(z) selectively diagonalizes the confinement Hamiltonian

−∂2/∂z2+U(z). Non coincident device and ellipsoidal directions introduce additional
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cross terms in the Hamiltonian which are diagonalized by e
−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
φm(z).

Finally, in the general case of an arbitrary potential W (x, z), the transverse modes

φm(x, z) depend on both x and z. In Sec. 2.5, we present several applications of the

transformation developed here.

2.5 Application to Ultra-thin-body Si and Ge MOSFETs

We now demonstrate the usefulness of our generalized treatment by applying it

to several technologically important materials and wafer orientations. Until recently,

nearly all quantum simulations of MOSFETs were performed for silicon (100) wafers

with transport along < 100 >. We will discuss several non-trivial cases here–effective

masses for UTB silicon and germanium MOSFETs fabricated on (100), (111), and

(110) wafers.

2.5.1 Transformation Matrices for the DCS

First, we will evaluate the transformation matrix <C←D for various wafer orien-

tations.

(100) Wafers

This is the most common wafer orientation used for the fabrication and simulation

of nanoscale silicon MOSFETs. In these devices the inversion layer electron are

confined along the [001] direction which is the Z axis for the DCS. The transport

and width directions (X and Y axes) are along [100] and [010], respectively, so that

the basis vectors are k̂1 = (100), k̂2 = (010), and k̂3 = (001). Since the columns of
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the transformation matrix <C←D are components of k̂1, k̂2, and k̂3, the matrix itself

becomes and identity matrix,

<(001)
C←D =















1 0 0

0 1 0

0 0 1















. (2.42)

(111) Wafers

For MOSFETs fabricated on (111) wafers, the gate electric field confines the

inversion layer carriers along the [111] crystallographic orientation. We choose the

transport direction along [2̄11] and the width direction along [01̄1]. These crystal-

lographic orientations represent the Z, X and Y axes for the device. The basis

vectors for the DCS are k̂1 =
(

− 2√
6

1√
6

1√
6

)

, k̂2 =
(

0 − 1√
2

1√
2

)

, and k̂3 =
(

1√
3

1√
3

1√
3

)

,

respectively. The rotation matrix <C←D becomes

<(111)
C←D =















− 2√
6

0 1√
3

1√
6

− 1√
2

1√
3

1√
6

1√
2

1√
3















. (2.43)

(110) Wafers

In this case the inversion layer electrons are confined along the [110] crystallo-

graphic orientation, which is the Z axis. We choose the transport direction, X, along

[001] and the width direction, Y , along [11̄0], so that the corresponding unit vectors

are k̂1 = (001), k̂2 =
(

1
2
− 1

2
0
)

, and k̂3 =
(

1
2

1
2
0
)

, and the rotation matrix <C←D:

<(110)
C←D =















0 1√
2

1√
2

0 − 1√
2

1√
2

1 0 0















. (2.44)
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2.5.2 Transformation matrices for the ECS

There are two types of valleys in indirect band-gap semiconductors–the sixfold

degenerate ∆ valleys and the eightfold degenerate Λ valleys. These are classified

according the orientation of the major axes of the constant energy ellipsoids along

the < 100 > or < 111 > directions. In bulk silicon the ∆ valleys are energetically

lower than the Λ valleys; consequently, the conduction-band electron populate the ∆

valleys, while the Λ valleys can be ignored for transport simulations. The opposite

is true for bulk germanium, where the Λ valleys are energetically lower than their

∆ counterparts, and therefore, the states near the CB edge are of the former type.

Interesting phenomena can be observed when quantum confinement is present, since

there, in addition to the energy of the bulk band edge, inversion layer thickness and

the confinement direction effective mass determine which valley forms the energeti-

cally lowest subband. In this subsection, we will evaluate the transformation matrix,

<E←C , for these valleys.

∆-Valleys

Figure 2.3 shows the three doubly degenerate constant energy ∆ valley conduction-

band ellipsoids. The basis vectors for the ellipsoid coordinate system are unique for

each ellipsoid, with k̂|| along the major axis, and k̂⊥1 and k̂⊥2 along two orthogonal

minor axes. For ellipsoid 1, for example, k̂|| = (100), k̂⊥1 = (010), and k̂⊥2 = (001).

For each ellipsoid there is a unique transformation matrix <E←C , the rows of which

are the components of k̂||, k̂⊥1, and k̂⊥2. For ellipsoid 1, <E←C becomes

<∆1

E←C =















1 0 0

0 1 0

0 0 1















. (2.45)
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Fig. 2.3. Conduction band constant energy ellipsoids along ∆. Each
of the three ellipsoids is doubly degenerate. In silicon, such valleys
form the conduction band minima.

Similar expressions can be obtained for ellipsoids 2 and 3:

<∆2

E←C =















0 1 0

0 0 1

1 0 0















. (2.46)

and

<∆3

E←C =















0 0 1

1 0 0

0 1 0















. (2.47)

Λ-Valleys

Figure 2.4a shows the eight-half Λ-valley ellipsoids with centers at the equivalent

L points at the surface of the first Brillouin zone. Since the diagonally opposite L
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Fig. 2.4. Conduction band constant energy ellipsoids around the L
points in the first BZ. (a) The major axis of the eight half ellipsoids
are along Λ. (b) Since the centers of the diagonally opposite half
ellipsoids are one wavevector apart, they can be combined into four
equivalent full ellipsoids. In bulk Ge they form the conduction band
edge.

points are one reciprocal-lattice vector apart, they can be combined into four full

ellipsoids, as shown in Fig. 2.4b. The major axes of ellipsoids 1-4 are along [111],

[111̄], [1̄11], and [1̄11̄], respectively. The rotation matrix <Λ1

E←C for ellipsoid 1 can be

written from the components of the basis vectors k̂||, k̂⊥1, and k̂⊥2 in the CCS, and

is

<Λ1

E←C =















1√
3

1√
3

1√
3

− 1√
2

1√
2

0

− 1√
6

− 1√
6

2√
6















. (2.48)

Similar matrices for ellipsoids 2-4 can be readily calculated, and are

<Λ2

E←C =















1√
3

1√
3

− 1√
3

− 1√
2

1√
2

0

1√
6

1√
6

2√
6















. (2.49)
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<Λ3

E←C =












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










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and

<Λ4

E←C =















− 1√
3

1√
3

1√
3

1√
2

1√
2

0

1√
6

− 1√
6
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6















. (2.51)

2.5.3 Evaluating Effective Masses

Using the results presented above, we can now calculate the effective masses for

both ∆ and Λ valleys in the conduction band, and for different wafer orientations.

In Table 2.1, the results are given in terms of bulk ml and mt. The following steps

were used to obtain the results:

1. for the given wafer orientation, choose the appropriate <C←D from (2.42–2.44).

2. for the given valley type (∆ or Λ) and for each of the conduction-band ellipsoids,

choose the appropriate <E←C from (2.45–2.47) and (2.48–2.51).

3. From (2.7), evaluate <E←D, and then using (2.10) find the effective mass tensor,
[

M−1
D

]

, in the device coordinate system.

4. The confinement effective mass, mZ (= m33), is directly obtained from
[

M−1
D

]

.

The transport effective mass, mX (= m′1), is calculated from (2.26). Finally,

the effective mass along the width direction, mY (= m′′2), is calculated from

(2.31).

Table 2.2 shows the ml and mt values for the ∆ and Λ valleys of bulk silicon and

bulk germanium. The effective masses of the lowest valleys for each materials, i.e., ∆

valleys for silicon and Λ valleys for germanium, were obtained from cyclotron exper-

iments [89, 90, 94, 95], while those for the upper valleys are obtained from empirical
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pseudopotential calculations [96,97]. Using the effective masses in Table 2.2 and the

expressions for mX , mY , and mZ in Table 2.1, the effective masses for the ∆ valleys

and Λ valleys in silicon and germanium can be calculated for the corresponding wafer

orientation.

2.6 Discussion

In this chapter we introduced a generalized effective mass equation framework for

the quantum-mechanical simulation of cubic semiconductor n-MOSFETs. It is well

known that when one or more principal axes of the conduction-band constant energy

ellipsoid do not coincide with the device coordinate axes, X, Y , and Z, the solution

of the effective-mass equation is non-trivial. Our treatment simplifies if the electro-

static potential is separable, valid if the cross section is unvarying along the transport

direction. Further simplifications occur for thin-body MOSFETs, where the cross

terms in the kinetic energy arising due to the arbitrarily oriented conduction-band

ellipsoids do not couple the various subbands. The unitary operation in (2.17) decou-

ples the energy along the confinement direction, Z, from the energy associated with

the carrier’s motion in the transport plane. A physical picture of the result of this

operation is schematically present in Fig. 2.5, where we see that this transforms the

arbitrarily oriented ellipsoid (top) in such a way, that the resultant ellipsoid (middle)

becomes symmetric across the X − Y plane, and therefore, one principal axis of the

transformed ellipsoid becomes aligned with the Z axis. Consequently, in (2.20) we

see that the X−Y plane energy is decoupled from the quantum confinement problem.

By substituting −i∂/∂x → kx in (2.21), we find the constant energy contours for

the electrons in the X − Y plane as ellipses. In general, their principal axes are not

aligned with X and Y , and the Hamiltonian in (2.24) remains complicated due to the

presence of the first derivative. The second unitary operation in (2.29) transforms

these ellipses in such a way that the transformed constant energy elliptical contours

have their principal axis aligned along the transport direction. This is also schemat-
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(Wafer)

/[Transport]/ Valley mX mY mZ Deg.

[Width]

mt mt ml 2

∆ ml mt
mt

2

(001)/[100]/[010]
mt ml 2

Λ mt
2ml +mt

ml + 2mt

ml + 2mt

3

3mlmt

2ml +mt

4

2ml +mt

3
mt

3mlmt

2ml +mt

2

∆ 2

3
mt

2ml +mt

ml +mt

ml +mt

2

3mlmt

2ml +mt
4

(111)/[2̄11]/[01̄1] mt mt ml 1

Λ
8ml +mt

9
mt

9mlmt

8ml +mt

1

mt

3

8ml +mt

2ml +mt

2ml +mt

3
2

∆

mt
ml +mt

2

2mlmt

ml +mt

4

(110)/[001]/[01̄0]
ml mt mt 2

Λ

ml + 2mt

3
mt

3mlmt

ml + 2mt

2

3mlmt

2ml +mt

2ml +mt

3
mt 2

Table 2.1
Transport, width and confinement effective masses and subband de-
generacies for three different technologically important semiconduc-
tor wafer orientations.
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Table 2.2
Transverse and longitudinal effective masses for the ∆- and Λ-type
valleys in silicon and germanium.

Material Valley ml mt

Silicon
∆ 0.91 0.19

Λ 1.7 0.12

Germanium
∆ 0.95 0.2

Λ 1.64 0.08

Fig. 2.5. The effects of unitary transformations of (2.17) and (2.29).
The first operator transforms the arbitrarily oriented CB ellipsoid
into an equivalent one, which is symmetric across kx −ky plane. The
second unitary operation transforms it into the regular ellipsoid with
its principal axes along X, Y and Z. The density-of-states effective
mass and group velocity of each k-state is conserved.

ically presented in Fig. 2.5, where we see that the bottom ellipsoid has its principal

axes along the device axes. In summary, since the top and the bottom ellipsoids in

Fig. 2.5 are exactly equivalent, the well-defined effective masses, mX , mY , and mZ ,

determined from the bottom ellipsoid describe the effective masses of the original

ellipsoid. It can be observed from Table 2.1 that for each row mXmYmZ = mlm
2
t ,

which ensures that the volume of the transformed ellipsoid is the same as that of the

original one, and therefore, the density of states is conserved. Additionally, these

unitary operations change only the phase velocity of the states and thus the group
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velocity of the carriers, determined from the gradient of the E(~k), is also conserved.

Conservation of the density of states and carrier group velocity ensures that the

results obtained by performing quantum simulation of a MOSFET using mX , mY ,

and mZ gives the same result as by treating the nondiagonlal effective mass tensor,
[

M−1
D

]

. The density of states effective mass per valley can be readily obtained from

Table 2.1, using the expression, md =
√
mXmY .

2.7 Summary and Conclusion

The simple technique for mapping arbitrarily oriented conduction-and constant

energy ellipsoids into regular ellipsoids, where the principal axes are aligned along the

device axes, allows us to perform quantum transport simulation in ultra thin body

n-MOSFETs with any channel materials and arbitrary wafer orientations. The effec-

tive masses presented in Table 2.1 can be readily used in any quantum-mechanical

simulator to determine I-V and C-V characteristics.
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3. ASSESSMENT OF GERMANIUM N-MOSFETS BY

NEGF SIMULATION

In this chapter, quantum simulations of ultra-thin-body (UTB), double-gate (DG),

end of the ITRS-2001 roadmap germanium n-MOSFETs are performed using the

Non-Equilibrium Green’s Function (NEGF) formalism within the generalized effec-

tive mass equation framework presented in Ch. 2. Ballistic simulations show that Ge

(111) n-MOSFETs suffer from high source-to-drain tunneling in the off-state, and low

semiconductor capacitance in the on-state. However, devices fabricated on Ge (100)

wafers perform better compared to their silicon counterparts. Design optimization

studies show that a stiff tolerance for body thickness variations and a super-steep

source-drain doping gradient are necessary to optimize the device performance. Fi-

nally, it was observed from quantum scattering simulations that the source-drain

series resistance limits the otherwise near-ballistic intrinsic device operation.

3.1 Introduction

Germanium is an interesting candidate for ultimate CMOS because of its excel-

lent transport properties. Compared to bulk silicon, bulk germanium has two times

and four times higher mobilities for electrons and holes, respectively. Several ex-

perimental groups have recently reported devices based on germanium [32, 36, 37].

The quantum simulation of germanium MOSFETs is a challenge because for arbi-

trary surface orientation and transport direction, the effective mass tensor becomes

a 3 × 3 non-diagonal tensor and the effective mass equation becomes complicated.

This problem was partially addressed in [77], which treated quantum confinement,

not transport. In this chapter, we use the general theoretical approach, introduced
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Fig. 3.1. The ultra-thin-body, double-gate device structure. The
device coordinate system consists of orthogonal axes k1, k2 and k3,
along transport, width and thickness directions, respectively. In this
work, confinement along k3 and transport along k1 are treated quan-
tum mechanically. The width direction, k2, is considered to be much
longer, so plane waves were assumed. An equivalent gate insulator
thickness (EOT) of 0.6 nm [32] and channel thickness of 2.5nm were
assumed in this work.

in Chapter 2, for the quantum mechanical simulation of n-MOSFETs within the

Non Equilibrium Green’s Function (NEGF) formalism [72], and demonstrate its

application by performing a scaling study for the end of the ITRS germanium MOS-

FETs [6, 7]. We show that ultra-thin-body germanium MOSFETs fabricated on

the (111) wafers are not scalable due to source-to-drain tunneling problems in the

off-state and low semiconductor capacitance in the on-state. Devices fabricated on

germanium (100) wafers, however, perform better than their silicon counterparts.

We perform both ballistic and scattering NEGF simulations of such devices to de-

termine the ultimate and realistic performance limits, and to identify key design and

fabrication issues. In this work, we have treated only the eight conduction-band

half ellipsoids around the equivalent L points in the first Brillouin zone. The higher

energy valleys, such as those along the delta directions, may have important effects

in charge transport and subband occupation, which we will explore in Sec. 6.2 of

chapter 6 (page 79).
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Fig. 3.2. Three orthogonal coordinate systems, device, crystal and
ellipse, are shown. The effective mass tensor is diagonal only in the
ellipse coordinate system, and becomes a full matrix in the device
coordinates. The resulting effective mass equation becomes compli-
cated. The technique presented in Ch. 2 diagonalizes the effective
mass tensor in the device coordinate system, thereby decoupling en-
ergies along k1, k2 and k3 [72].

3.2 Approach

The effective mass tensor is diagonal when the device coordinate axes (Fig. 3.1)

are along the major and minor axes of each of the constant-energy ellipsoids. This

condition is satisfied for n-MOSFETs fabricated on silicon (001) wafers, but not for

devices on germanium (001) or silicon (111) wafers. The general scenario is presented

in Fig. 3.2, where we see three different coordinate systems: device, crystal and

ellipse. To solved this problem within the EME approximation, we:

1. identify the rotation matrix for the coordinate transformation between the

ellipse and device coordinate systems,

2. use it to get the EMT and the EME in the device coordinate system, and

3. use two unitary transformations to decouple the energies in the EME along the

device coordinate axes [72].
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Fig. 3.3. Sketch showing the doping profile along the device and
the key length parameters. The source and drain contacts are at A
and F , respectively. The region between A and B (E and F ) is the
source (drain) and is doped at Nsd ( 1020cm−3). Between B and E,
the doping falls off with a Gaussian profile in both directions. LT

is a measure of the channel length. Between C and D, the length
LG (printed gate length) is under the direct electrostatic control of
the gate electrodes. The region between B and C (D and E) is the
source/drain under-lap and improves short-channel effects.

As demonstrated in Ch. 2, this method maps the arbitrarily oriented constant-

energy ellipsoid in to a regular ellipsoid with the principal axes aligned along the

device coordinate system, and thus allows use of all the techniques developed so

far for silicon (001) n-MOSFET simulation. We made necessary changes in the

2D quantum simulation nanoMOS 2.5 [50] and performed ballistic and scattering

simulations using the NEGF formalism.

To ensure electrostatic integrity, we choose the UTB double gate (DG) MOSFET

as our model device (Fig. 3.1), but similar results are expected for other device

geometries. The device dimensions and the optimized parameters for the nominal

device are given in Table 3.1 (page 49), and in Fig. 3.3 the doping profile and the

key device lengths are shown. The source/drain (S/D) under-lap shown here plays

an important role in device operation by suppressing source-to-drain tunneling and
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Fig. 3.4. Quantum ballistic (NEGF) ID − VG simulation at VD =
VDD, for different channel materials and surface orientations. The
first indices specify wafer orientation and the second is the transport
direction. (001) oriented Ge and Si have almost identical transport
effective masses, 0.16 m0 and 0.19 m0, respectively, and hence they
have identical sub-threshold slope. However, because of a very low
transport effective mass (0.08 m0), for Ge (111) tunneling current is
dominant in the off-state, which degrades the sub-threshold slope.
The off-currents are adjusted to the ITRS limit, 10 µA/µm.

improving short-channel effects. Effects of the source-drain doping gradient and the

gate under-lap are explored in this work in order to optimize the device design.

3.3 Results

The ballistic performance of germanium (001)/[100] and germanium (111)/[11̄0]

devices are first compared. Here the first and second sets of indices specify the wafer

orientation (quantum confinement) and the transport direction, respectively. The

ID −VG plot (Fig. 3.4) at high drain bias shows degraded sub-threshold slope due to

strong source-to-drain tunneling in the Ge (111) devices. The output characteristics

(Fig. 3.5) show that the on-current for Ge (111) devices suffer. This happens because

the low density-of-states (DOS) in their conduction band lowers the semiconductor



43

Fig. 3.5. Output characteristics for the devices in Fig. 3.4 at
VG = VDD. The on-current degradation for the Ge (111) device is
due to very low density-of-states (mDOS = 0.08m0 and valley degen-
eracy one). Maximum ballistic on-current is delivered by Ge (001),
which has mDOS = 0.3m0 per valley, and a valley degeneracy of four.
Performance of Si (001) lies in between.

capacitance, which lowers the overall gate capacitance. The silicon (001) device

performs in between the germanium limits. These figures show that best performance

can be obtained from germanium (001)/[100] devices.

The optimization procedure for choosing the device dimensions is summarized in

Fig. 3.6. Using the approach of [56], we calculated the ballistic on-current for the

nominal device with different S/D under-laps. For each under-lap, the off-current for

the worst case device was adjusted to 10µA/µm by varying the gate work function,

Φm, which is also plotted. The worst case device is assumed to have 5% thicker

body and 10% shorter gate length due to process variation. Results for two different

channel doping gradients, G = 1 and G = 2 nm/dec, are shown. Both gradients

deliver almost the same maximum on-current, but, G = 1 nm/decade gives a shorter

device and thereby less series resistance. In this figure, for each LT , the IOFF

for the corresponding worst case device was adjusted to 10µA/µm by varying Φm.

Therefore, when the Φm for the optimum LT was used to simulate the nominal device,
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Fig. 3.6. Device design optimization technique. Left axis: The quan-
tum ballistic ION vs. LT is plotted for a nominal case Ge (001)/[100]
device. The total channel length is the sum of gate length, LG, and
under-lap, Lul, on both sides of the gate. Two different doping gra-
dients, 1 nm/dec and 2 nm/dec are considered. Both offer almost
the same optimum ION , but the optimum LT for the steeper doping
gradient is shorter. Therefore, the optimum device is chosen to have
1nm/dec S/D doping gradient and 3 nm under-lap. Right axis: Gate
work function needed to adjust IOFF to 10 µA/µm for the worst case
device.

it is naturally ensured that the worst case device operates within the ITRS specified

limit for IOff . The optimum values for device parameters are given in Table 3.1, and

the intrinsic performance metrics for the ballistic nominal device are summarized in

Table 3.2.

The quantum ballistic I-V characteristics are shown in Figs. 3.7 and 3.8. The

off-current is lower than the ITRS specification (Fig. 3.7) since the Φm used here

assures that if the body thickness increases 5% and gate length decreases 10% due

to process variation, the IOFF still remains below the ITRS limit. Figure 3.9 plots

IOFF as a function of gate length, LG, with channel thickness, tbody, as a parameter.

Here the ballistic IOFF from NEGF simulation is plotted as a function of printed

gate length, at three different channel thicknesses. All other simulation parameters
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Fig. 3.7. Ballistic NEGF ID−VG characteristics at high and low drain
bias for the nominal device; the gate length is LG = 9nm and the
body thickness is tbody = 2.5nm. The under-lap, doping gradient and
gate work-function were chosen from the device optimization tech-
nique shown in Fig. 3.6. The off-current is lower than the ITRS limit
since the work function was adjusted to obtain IOFF = 10µA/µm for
the worst case device.

are the same as in Table 3.1. Variation in IOFF can be observed due to changes

in both LG and tbody , but, the effect of the latter is more serious. The plots are

equivalent to the VT roll-off plot for bulk MOSFETs. They represent the effects of

process variations in fabricating such devices. Here the worst case device operates

exactly at the ITRS limit for IOFF and for the nominal device it remains within

the limit for LG as short as 6nm. Also, the thinner body results in higher VT and

therefore, the on-current is degraded.

Figure 3.10 shows results with scattering for the Ge (100) n-MOSFET. A doping

dependent Caughy-Thomas mobility model was used to calculate the local mobility

for the doping profile shown in Fig. 3.3. A simple phenomenological model based on

the Büttiker-probe treatment was used for scattering simulation within the NEGF

formalism. This model has been successful for silicon MOSFETs [51]. Since the

channel of this LG = 9nmMOSFET is near ballistic, increasing the channel mobility
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Fig. 3.8. Output characteristics from quantum ballistic (NEGF) sim-
ulation for the nominal device.

does not improve the performance significantly; however, the mobility in the highly

doped S/D regions has an important effect on performance enhancement.

3.4 Discussion

Figures 3.4 and 3.5 present the general characteristics of bandstructure effects

in ballistic nanoscale MOSFETs. Low effective mass along the channel direction is

necessary for the channel material in order to obtain high injection velocity at the

source end of the channel. However, high density-of-states (DOS) is also needed to

induce sufficient charge at the top of the source-channel barrier. For the channel

materials with low DOS effective mass, such as germanium (111) wafers, a greater

fraction of applied gate voltage is consumed to shift the potential at the top of

the barrier; therefore, less voltage is available to drop across the gate insulator.

As a result, the gate cannot efficiently induce charge and the current suffers. The

degradation of ION in low DOS channel materials has been discussed in detains by

Solomon and Laux [98].
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Fig. 3.9. Effects of process variation. It can be seen that in UTB
MOSFETs, the off-current (or equivalently threshold voltage) is very
sensitive to the body thickness variation.

The S/D under-lap plays an important role in device scaling in two ways. First,

the source-channel barrier becomes thicker with under-lap and this suppresses tun-

neling. Second, the source and drain regions are moved farther apart, which improve

short-channel effects. However, since the potential in this region has to be modulated

by the fringing field of the gate, the modulation is not as efficient as the channel

region directly under the gate; therefore, we can see in Fig. 3.6 that after attaining

its peak value, ION decreases with under-lap.

In UTB devices, threshold voltage, VT , is a strong function of the body thick-

ness. In order to fabricate operational devices with a body thickness of 4nm or

less, the process variation of thickness has to be within a single atomic layer. Thin

body devices also suffer from the series resistance in the S/D regions. Scattering

simulation has shown that the channel in the nanoscale device is near ballistic, and

the degradation of carrier mobility in the S/D regions causes degradation of ION .

The higher mobility in germanium is attractive in this regard, but, currently the

key challenge of fabricate germanium n-MOSFETs is that the S/D regions cannot
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Fig. 3.10. Quantum scattering simulation for the nominal device.
On-current vs. source/drain mobility is plotted for two different
channel mobilities. The key observation is, increasing channel mobil-
ity by more than 300% does not enhance the ION accordingly, since,
for this LG = 9nm MOSFET, the channel is near ballistic. The
current is limited by the series resistance in the highly doped, low
mobility S/D regions.

be doped a sufficiently high density due to low solid-solubility for the n-type im-

purities. Technological advancement is necessary to overcome this challenge before

germanium CMOS can be viable.

3.5 Summary and Conclusion

Ballistic NEGF Simulations show that UTB DG Germanium n-MOSFETs fab-

ricated on (111) wafers suffer from high source-to-drain tunneling which makes it

difficult to turn off the device. The on-current suffers due to a very low density-of-

states effective mass. Germanium (001)/[100] MOSFETs deliver high on-currents as

a result of their high density of states and performs better than their silicon coun-

terparts. One key device design parameter is the body thickness, and IOFF is very

sensitive to body thickness variations. Successful fabrication of such devices depends
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Table 3.1
Device parameters for the optimally designed device. The worst case
device has 10% shorter channel length and one atomic monolayer
(one quarter of the lattice constant) thicker body, and hence exhibits
degraded short-channel behavior.

Parameter Value

tins [nm] 0.6 (EOT)

tbody [nm] 2.5

LG [nm] 9

LT [nm] 15

Nb [cm−3] 0

Nsd [cm−3] 2X1020

Lsd [nm] 7.5

G [nm/dec] 1

Φm [eV] 3.8

Vdd [V] 0.4

on technological advancement that will limit the process variation in body thickness

to within one atomic layer. Quantum scattering simulations for germanium MOS-

FETs show that higher mobility in the highly doped S/D regions is desirable and is

important to achieve target on-currents.
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Table 3.2
Performance projection for a ballistic Ge n-MOSFET.

Nominal

ITRS Target Ge (001)/ < 100 >

device

ION [µA/µm] 1500 2750

IOFF [µA/µm] 10 1

VDD/ION [Ω − µm] 267 145

DIBL [mV/V] – 60

S [mV/dec] 75 75



51

4. A TOP OF THE BARRIER BALLISTIC MODEL

Numerical simulations are used to guide the development of a simple analytical the-

ory for ballistic field-effect transistors. When two-dimensional (2-D) electrostatic

effects are small (and when the insulator capacitance is much less than the semicon-

ductor (quantum) capacitance), the model reduces to Natoris theory of the ballistic

MOSFET. The model also treats 2-D electrostatics and the quantum capacitance

limit where the semiconductor quantum capacitance is much less than the insulator

capacitance. This new model provides insights into the performance of MOSFETs

near the scaling limit and a unified framework for assessing and comparing a variety

of novel transistors.

4.1 Introduction

MOSFET channel lengths continue to shrink rapidly toward the sub-10 nm di-

mensions called for by the International Technology Roadmap for Semiconductors

[6, 7, 99]. Coupled with the use of high-mobility channel materials [32, 36, 100–104],

nanoscale channel lengths open up the possibility of near-ballistic MOSFET oper-

ation. For these reasons, it is important to understand ballistic operationboth in

conventional MOSFETs and in unconventional transistors. Our objectives in this

paper are to present a simple analytical theory for ballistic transistors and to ex-

plore its application to MOSFETS and to unconventional field-effect transistors.

The operation of MOSFETs in the ballistic regime has recently been explored by

simple, analytical models [105], [106], [107] as well as by detailed numerical simula-

tions [50,54,55,82,108,109]. In Section 4.2, we review our understanding of the device

physics of ballistic MOSFETs as developed in previous publications [79,110,111]. In

Section 4.3, we present a simple, analytical model, and in Section 4.4, we show that
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Fig. 4.1. Structure of the model device, a double-gate MOSFET.
A body thickness of 1.5 nm and an oxide thickness of 1.5 nm were
assumed. Both the source and drain regions were doped at 1020/cm3.
The gate workfunction was set to 4.25 eV which produced an off-
current of 1.6 nA/µm.

it agrees with two-dimensional (2-D) numerical simulations of ballistic MOSFETs.

Finally, in Section 4.5, we discuss why the model developed here does not describe

devices like Schottky barrier FETs before concluding in Section 4.6.

4.2 Device Physics of Ballistic MOSFETs

Numerical simulations provide detailed information on the operation of nanoscale

devices. Two transport models have proven to be especially useful in our work. The

first is a numerical solution of the ballistic Boltzmann equation, and the second

is the non-equilibrium Green’s function (NEGF) formalism for quantum transport.

Fig. 4.1 shows a model 10-nm MOSFET, and Fig. 4.2 shows the computed ballistic

distribution function within the device under on-state conditions. The results show

that two distinct carrier populations exist: one due to source injection and another

due to drain injection (scattering would mix these two populations). Deep within

the channel, the drain-injected population retains a near-equilibrium shape, but the

source-injected population is strongly distorted. Fig. 4.3 is an NEGF simulation of
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Fig. 4.2. The ballistic distribution function within the model device
under on-state conditions as computed by solving the ballistic BTE
(From [111])

the energy-resolved electron density under on-state conditions. Although quantum

interference effects are seen as well as tunneling of carriers beneath the source-channel

barrier, NEGF simulations of the terminal I-V characteristics of well-designed MOS-

FETs agree rather well with semi-classical simulations-even at the 10-nm scale (when

the strong effects of quantum confinement are included in both simulations). Both

the quantum and classical simulations show rich, complex phenomena within the

device, but it turns out that a simple description of the current versus voltage char-

acteristics is possible. Fig. 4.4 shows the computed self-consistent potentials within

the model nanoscale MOSFET under low and high drain bias with gate voltage as a

parameter (what is plotted is actually the bottom of the first subband versus posi-

tion). At low gate voltages, the energy barrier between the source and drain is high,

and the device is off. A high drain bias lowers the energy in the drain, and when a

high gate voltage lowers the potential energy barrier, electrons flow from source to

drain. This picture of the MOSFET is essentially that of the bipolar transistor; tran-
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Fig. 4.3. The energy-resolved (a) density-of-states vs. position and
(b) electron density vs. positions with the model device as computed
using the ballistic NEGF formalism.

sistor action occurs by modulating the height of an energy barrier. It is more common

to thin of MOSFETs in terms of the gate modulating the charge in the channel, but

the charge in the channel is controlled by the height of the barrier. MOSFETs are

bipolar transistors operate by similar principles (both below and above threshold);

in the bipolar transistor, the height of the energy barrier is controlled directly by

the base-emitter voltage, whereas in the MOSFET, it is controlled indirectly by the

voltage on the gate. As will be discussed in Section 4.5, not all transistors operate

by this charge (or barrier height) modulation principle.

Fig. 4.4. The computed energy band diagrams under: (a) low drain
bias and (b) high drain bias. The parameter is the gate voltage.
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Fig. 4.5. Computed behavior at the top of the source to channel
barrier. (a) The electron charge, Qn(0) at the top of the barrier vs.
VDS, (b) The average electron velocity at the top of the barrier vs.
VDS.

Current is the product of charge and velocity, which we plot separately in Fig.

4.5. In this figure, the gate voltage is high, and we plot the two quantities as a

function of VDS, fig. 4.5(a) shows that the charge at the top of the barrier is nearly

independent of VDS for a well-designed MOSFET, and for operation above threshold,

it is given by MOS electrostatics as

Qn(0) ≈ Cox (VGS − VT ) (4.1)

We will show in a later section that the initial dip in Qn(0) and the subsequent

rise can be explained. Fig. 4.5(b) shows that the average electron velocity at the

top of the barrier increases with VDS and then saturates. The saturated velocity at

the top of the barrier is simply the velocity of the thermal equilibrium hemi-Fermi-

Dirac distribution shown in fig. 4.2. Note that above threshold, the electron gas is

degenerate, and the magnitude of this injection velocity depends on the gate voltage.

It is interesting to note that velocity saturation occurs in a ballistic MOSFET, but

it occurs at the top of the barrier where the field is zero rather than at the drain end

where the field is high.
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Fig. 4.6. Filling of the k-states at the top of the barrier by two Fermi
levels EF1 and EF2.

Because the top of the barrier has special significance, it is the starting point for

our analytical model. For a ballistic transistor, the states at the top of the barrier

are filled from either the source or the drain. For a quantum transport model, the

local density of states fillable by the source and drain can be evaluated directly

from the spectral function. In a semi-classical model, the local density of states is

determined by the E(~k) relation for the semiconductor shifted by the self-consistent

potential at the top of the barrier. Fig. 4.6 shows how the states at the top of

the barrier are filled for a simple bandstructure. The positive velocity states are

populated according to the Fermi level of the source and the negative velocity states

by the Fermi level of the drain. Our key task is in developing an analytical model

will be to devise a simple approach to determine the self-consistent potential at the

top of the barrier. Finally, we mention ones subtle point. A careful examination

of fig. 4.4b indicates that the conduction band in the source region actually floats

down by about 10mV as the gate voltage increases. This unfamiliar behavior is

a consequence of transport at the ballistic limit. The source Fermi level is fixed

at 0eV and represents the Fermi level of the equilibrium source reservoir/contact.

Under low gate bias, most of the positive velocity electrons injected from the contact
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reflect from the energy barrier so that both positive and negative velocity states in

the source extension are filled. When the gate voltage is high, however, the barrier

decreases, and the fewer of the injected electrons reflect from the barrier so that it

is mainly positive-velocity states in the source that are occupied. To achieve space-

charge neutrality in the highly doped source extension, the conduction band must

float down so that more electrons are injected from the source contact. When strong

scattering is present inside the source extension, electrons occupy both positive and

negative velocity states, and this effect is absent. For a more complete discussion of

boundary conditions fro ballistic MOSFETs, see [112].

In the following section, we introduce a simple analytical model, and in section

4.4, we show that it accurately describes the physics of ballistic nanoscale MOSFETs.

4.3 Model

A simple 2D model for the ballistic MOSFET is shown in Fig. 4.7. It consists of

three capacitors, which represent the effect of the three terminals on the potential

at the top of the barrier. As also indicated by the shaded region in Fig. 4.7, mobile

charge can be placed at the top of the barrier. The mobile charge is determined

by the local density of states at the top of the barrier, the location of the source

and drain Fermi levels EF1 and EF2, and by the self-consistent potential at the top

of the barrier Uscf . Because there is a relation between the local potential and the

charge, this effect can be described by a nonlinear quantum capacitance [113]. In

equilibrium

CQ ≡ d(qN)

d(−Uscf/q)
= q2

∫ +∞

−∞
D(E)

(

−∂f(E − EF )

∂E

)

dE, (4.2)

which, since (−∂f/∂E) is sharply peaked about the Fermi energy, is q2 times the

density of states near the Fermi energy. Solomon et al. have pointed out in [98] that

Natori’s analytical ballistic model [105] does not include this non-geometric, quantum

(or degeneracy) capacitance. Neglecting the quantum capacitance is justified for

thick gate insulators (i.e., when CG << CQ); however, it fails to describe gate
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Fig. 4.7. The 2D circuit model for ballistic transistors. The potential
at the top of the barrier, Uscf , is controlled by the gate, drain, and
source potentials through the three capacitors shown. The mobile
charge at the top of the barrier is determined by Uscf and by the
location of the two Fermi levels. The nonlinear semiconductor (or
quantum) capacitance is not shown explicitly but is implicit in the
treatment of band filling.

electrostatics when the insulator capacitance is large compared with the quantum

capacitance (i.e., when CG ≥ CQ), which occurs when the electrical thickness is

small or when the quantum capacitance is small, as in a one-dimensional conductor.

Our model does not treat the quantum capacitance explicitly; however, it is included

naturally through the treatment of self-consistent gate electrostatics.

When the terminal biases are zero, the equilibrium electron density at the top of

the barrier is

N0 =
∫ +∞

−∞
D(E)f(E − EF )dE (4.3)

where D(E) is the local density of states at the top of the barrier, and f(E − EF )

is the equilibrium Fermi function. The function D(E) is nonzero for positive values

of its argument only, which represents the minimum of the density of states and is

specified as E = 0 in equilibrium. When a bias is applied to the gate and drain

terminals (the source terminal is always grounded in the work), two things happen:
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1. the self-consistent potential at the top of the barrier becomes Uscf , and

2. the states at the top of the barrier are now populated by two different Fermi

levels.

The positive velocity states are filled by the source, according to

N1 =
1

2

∫ +∞

−∞
D(E − Uscf)f(E − EF1)dE, (4.4)

and the negative velocity states are filled by the drain according to

N2 =
1

2

∫ +∞

−∞
D(E − Uscf)f(E − EF2)dE, (4.5)

where EF1 = EF , and EF2 = EF − qVDS. A change of variables can be used to

re-express these equations as

N1 =
1

2

∫ +∞

−∞
D(E)f1(E)dE, (4.6)

N2 =
1

2

∫ +∞

−∞
D(E)f2(E)dE, (4.7)

where

f1(E) ≡ f(E + Uscf − EF1), (4.8)

and

f2(E) ≡ f(E + Uscf − EF2). (4.9)

Given an arbitrary density of states D(E) and the location of the source and

drain Fermi levels, we can evaluate the electron density at the top of the barrier

N = N1 +N2 if the self-consistent potential Uscf is known.

Finding the self-consistent potential involves solving the two-dimensional Poisson

equation as represented by the three capacitors in Fig. 4.7 with the bias induced

charge ∆N = (N1 + N2) − N0 at their common terminal. We obtain the solution

by superposition. First, ignoring the presence of the mobile charge in the channel,

we calculate the Laplace potential at the top of the barrier due to terminal biases,

which is

UL = −q(αGVG + αDVD + αSVS). (4.10)
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In this equation, the three αs describe how the gate, drain and source control the

Laplace solution and are given by

αG =
CG

CΣ
; αD =

CD

CΣ
; αS =

CS

CΣ
, (4.11)

where CΣ is the parallel combination of the three capacitors in Fig. 4.7.

For a so-called, well-tempered MOSFET, the gate controls the potential, and

αG ≈ 1 and αS, αD ≈ 0. The second part of the solution consists of grounding the

three terminals and computing the potential due to the mobile charge, at the top of

the barrier ∆N , from

UP =
q2

CΣ

∆N. (4.12)

Physically, a positive bias applied to the drain and gate terminals pushes down

the potential energy at the top of the barrier as described by UL, but because of

the charge, the potential floats up, as described by UP . The complete solution is

obtained by adding the two contributions to obtain

Uscf = UL + UP = −q(αGVG + αDVD + αSVS) + UC∆N, (4.13)

where

UC =
q2

CΣ

, (4.14)

is the charging energy.

Equations (4.6), (4.7), (4.13), and (4.14) represent the coupled nonlinear equa-

tions for the two unknowns N and Uscf . These equations can be solved iteratively to

find the carrier density and self-consistent potential at the top of the barrier. Finally,

the drain current is evaluated from

ID =
∫ +∞

−∞
J(E)[f1(E) − f2(E)]dE, (4.15)

where J(E) is the ”current-density-of-states” defined in the Appendix B.1.

In summary, the procedure for computing ID(VG, VDS) consists of the following

steps.
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1. Specify the semiconductor carrier and current-density-of-states, D(E) and J(E)

either analytically or by a numerical table.

2. Specify VG, VD, VS and EF .

3. Iteratively solve (4.6), (4.7), (4.13) and (4.14) for Uscf and N .

4. Evaluate the current from (4.15) for the assumed VG and VDS.

We have defined the model in terms of two density of states-one for the carrier density

D(E) and one for the current density J(E) -which can be determined directly from

the semiconductor bandstructure. In general, the integrals in 4.6, 4.7, and 4.15, must

be done numerically, but for simple bandstructures, they can be done analytically.

In the Appendix B, we evaluate these expressions for 2D carriers in a simple band

and discuss how to use more general bandstructures.

4.4 Application to Ballistic MOSFETs

To illustrate the use of the model, we apply it to the double gate MOSFET

presented in Fig. 4.1 and compare the results to 2-D numerical simulations with

nanoMOS 2.0 [50]. Although the expressions for the α’s given in (4.11) are exact,

they are difficult to evaluate in practice because they depend on the 2D structure

of the device. We will, therefore, treat them as fitting parameters and present a

step-by-step procedure for determining the three parameters EF , αG, and αD. The

result show that this simple, three-parameter model does a good job of fitting the

simulated I-V characteristics over the full range of operation.

4.4.1 Parameters for the Analytical Model

The first step is to set the Fermi level EF = EF1 for the correct threshold voltage,

which is equivalent to setting the correct gate work function. Alternatively, setting

the Fermi level is equivalent to setting the correct equilibrium carrier density at the
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top of the barrier as given by (4.3). For a well-designed MOSFET at low gate and

drain bias, αD, UL, and ∆N are all small so Uscf ≈ 0, and (4.3) for N0 depends on a

single parameter EF . In practice, we adjust the Fermi level in the analytical model

so that the current matches that of the simulator for VG = 0 and VDS = 50mV .

Next, after setting EF1, we adjust the gate control parameter αG until the an-

alytical model gives the same low VDS sub-threshold swing as does the simulation.

We do this for VG << VT and for VDS = 50mV . The induced charge at the top

of the barrier ∆N is very small so that the gate controls the position of the top of

the barrier Uscf through UL. For complete gate control (αG = 1), the sub-threshold

swing is ideal, i.e., S = 60 mV/dec at room temperature. For our model device, we

obtained αG = 0.87.

Finally, having specified EF1 and αG, the drain control parameter αD was ob-

tained by horizontal shift of the log(ID) versus VG characteristics in the sub-threshold

regime (i.e., by matching the drain-induced barrier lowering (DIBL) of the simple

model to the detailed numerical model). This parameter describes the additional

change of the potential at the top of the barrier due to the drain bias. For our model

device, we found αD = 0.033. Figures 4.8a and b compare the I-V characteristics

from the analytical to those obtained by numerical simulation. From the log(IDS)

versus VG plot of Fig. 4.8a, we see that the sub-threshold characteristics match very

well both for low and high VDS. From the linear plot in the same figure, we also see

that at low VDS and high VG, the characteristics match very well. However, when

both VDS and VG are high, the match is poor, and the analytical model underesti-

mates IDS. This mismatch is also clear in the output characteristics presented in

Fig. 4.8b, where we can see that for VG above threshold, the drain current from the

analytical model saturates at a lower value than numerical simulation. The reason

for this mismatch under high VG and VDS and a way to treat it are discussed next.
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Fig. 4.8. Comparison of the analytical model to numerical simula-
tions for the ballistic MOSFET of Fig. 4.1. (a) The transfer char-
acteristics under both low and high drain biases. (b) The output
characteristics. In both cases, the solid lines are from the analytical
modes and the points are from nanoMOS simulations.

4.4.2 Treatment of the Floating Source Potential

The discrepancy between the analytical and numerical models under high gate

and drain biases is related to the floating source potential, which was discussed

briefly in Sec. 4.2. This phenomenon, which is important only in ballistic devices,

is correctly implemented in the numerical simulator but has yet to be considered in

our analytical model.

As discussed in Section 4.2 (and, at greater length, in [112]), for ballistic trans-

port, a floating source potential is necessary to maintain charge neutrality in the

highly doped source and the drain region under high bias conditions. As the gate

voltage increases, fewer electrons are reflected from the barrier; the source potential

must drop, so that enough additional electrons are injected to restore space-charge

neutrality in the source. When the source potential decreases, so does Uscf at the

top of the barrier. The result is that this floating source effect increases the carrier

density at the top of the barrier, which explains the discrepancy observed in Fig. 4.8

under high gate and drain biases.



64

Fig. 4.9. Comparison of the analytical model to numerical simula-
tions for the ballistic MOSFET of Fig. 4.1. In this case, the floating
source potential was accounted for. In addition to good agreement
at low gate and drain biases and as low gate and high drain biases,
this plot show that the agreement at high gate and drain biases is
also good.

With regard to the simulation procedure, the floating source potential means that

the source Fermi level (EF1 − EC) cannot be fixed at the beginning to produce a

given VT since it both gate and drain bias dependent. As discussed in the Appendix

B.1, one can readily extend the procedure so that the Fermi level is iteratively

adjusted to maintain space charge neutrality in the source under all bias conditions.

Fig. 4.9 compares the ID − VDS plots from the ballistic numerical simulation to

the analytical model with the floating source treated, as discussed in the Appendix

B.1. Figure 4.9 shows that when the floating source effect is included, the analytical

model reproduces the full, numerical simulation quite well. The agreement is very

good under high VG and VDS (where ignoring the floating source potential produced

serious errors) but not quite as good under high VG and low VDS, where the model

without floating source correction worked better.
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4.4.3 Charge and Velocity at the Top of the Barrier

Finally, we examine the charge density

Q(0) = −q[N1(VG, VDS) +N2(VG, VDS)], (4.16)

and the carrier velocity

< υ(0) >≡ ID(VG, VDS)

Q(VG, VDS)
, (4.17)

at the top of the barrier. Recall that the nanoMOS simulation of Fig. 4.5 shows

that these quantities had a simple behavior at the top of the barrier. In Figs. 4.10a

and b, we plot these two quantities from the analytical model. Figure 4.10a shows,

in agreement with Fig. 4.5a, that the charge at the top of the barrier is nearly

independent of the drain bias. The initial dip and subsequent rise are also seen,

although not as pronounced as in the full, numerical mode. (The simpler model,

which ignores the floating sources, actually does better in this regime.) the initial rise

and subsequent saturation of the velocity at the top of the barrier is well-described

by the simple model. These results show that Natori’s assumption (and our own in

Fig. 4.10. Charge and injection velocity behavior at the top of the
source to channel barrier as obtained from the analytical model. (a)
The electron charge, Qn(0) at the top of the barrier vs. VDS, (b) The
average electron velocity at the top of the barrier vs. VDS.
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subsequent publications), where Qn(0) is independent of drain bias, is a good one

for typical MOSFETs.

In practice, the model developed in this paper may be useful to compare the

measured characteristics of nanoscale MOSFETs to their ballistic limits. From the

measured electrical characteristics, the techniques presented in this section can be

used to extract the parameters needed for the model. Another use for the model

might be to compare the upper limit performance of devices that use novel channel

materials to that of the conventional silicon MOSFET. (The model has been formu-

lated to allow the use of numerically tabulated bandstructures) Finally, we note that

the ballistic model is not entirely academic. Comparisons with experiments suggest

that present-day MOSFETs operate at roughly 50% of the ballistic limit [48,114] and

much of the research on new channel materials is motivated by a desire to approach

the ballistic limit.

4.5 Discussion

The simple model we have developed does a rather good but not perfect job

of reproduction more detained numerical simulations. The discrepancy under high

gate and drain bias was resolved by forcing the potential at the top of the barrier

Uscf to follow the floating source potential, but the high-gate, low-drain bias region

is better described when Uscf is not allowed to follow the floating source potential.

The reason for this behavior can be understood from Fig. 4.4. Under high gate and

drain bias, the potential energy maximum is pushed up against the source; therefore,

it seems reasonable that Uscf follows the floating potential in the source. Under low

drain bias, it is not pushed as close to the source, and therefore, Uscf is not as

tightly coupled to the source potential. Whether this physics can be captured in an

analytically simple way is still under investigation.
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4.6 Summary and Conclusion

In this chapter, we have developed a simple analytical model for ballistic nan-

otransistors that operate by modulating the charge in the device (as opposed to

modulating the current at the contact). For conditions typical of silicon MOSFETs

and when 2D effects are small, this surface potential model reduces to Natori’s

theory of ballistic MOSFET. When the insulator capacitance exceeds the quantum

capacitance, however, some interesting new effects arise. This analytical model cap-

tures the essential physics of MOSFET-like ballistic nanotransistors and provides a

convenient way to assess and compare transistors at the ballistic limit.
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5. TIGHT-BINDING APPROACH TO SIMULATE

NANOSCLAE MOSFETS

In this chapter we are going to relax one of the most widely employed assumptions

in the simulation of nanoscale CMOS devices—the use of effective-mass bandstruc-

ture model with parabolic E-k relationship. Effective mass approach greatly reduces

the computational effort required to calculate device electrical characteristics. This

approach, however, comes under serious scrutiny when applied to the nanoelectronic

devices. We will first list the key limitations of effective-mass approach when em-

ployed at nanoscale.

In deeply scaled devices, the quantum size effect along the thickness direction

forms the discrete subbands with energies far from the bulk band edges. Since

effective masses are calculated from the band curvatures near the bulk band edges,

they do not provide a good description of these subband energies and their dispersions

[115]. Subband dispersions, being formed at higher energies relative to the bulk band

edges, often display anisotropy. An inherent limitation of the effective mass approach

is its inability to treat such anisotropic dispersions. Valence bandstructure, especially

the dispersion for heavy-hole band, cannot even be described by a simple parabolic

dispersion due its anisotropic nature. Here one needs to use at least a six band ~k · ~p
Hamiltonian to describe dispersions near bulk band edge, which is not accurate at

higher energies where the subbands are formed. All these show the limitations of

effective-mass approach in treating nanoelectronic devices.

Since, a correct description of the band structure is crucial for accurately calcu-

lating the subband energies and their dispersions at nanoscale, in this chapter we

will introduce a semi-empirical atomistic tight-binding approach, a powerful tool to

incorporate accurate full bandstructure in nanoelectronic devices, for this purpose.
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This chapter is organized as follows. In Sec. 5.1 we present a very brief overview

of tight-binding approach. In Sec. 5.2 we will highlight the semi-empirical nature

of the approach, list the approximations and assumptions involved, and discuss on

the choice of a basis set. In Sec. 5.3, we present tight-binding Hamiltonian in a

sp3d5s∗-SO basis set and will show how to treat strained material. The application

of the model to finite dimensional materials is presented in Sec. 5.5, and finally, the

chapter is summarized in 5.6.

5.1 Introduction

In recent years, the semi-empirical atomistic tight-binding approach has received

considerable attention, mainly because it offers an intuitively simple accurate de-

scription of the bandstructure in terms of chemical bonds, and its applicability to

simulated nanostructures. Historically, the model was known as linear combination

of atom(like) orbitals or LCAO and, Slater et al. first proposed it as a semi-empirical

approach by treating the Hamiltonian matrix elements as disposable constants [60].

The Slater-Koster suggestion to treat the TB approach as an interpolation scheme

was extensively used in a wide range of material systems–from transition metals to

elemental and compound semiconductors. We will next highlight the approximations

involved in tight-binding approach.

5.2 Semi-empirical Tight-binding Model

5.2.1 Assumptions Leading to A Semi-empirical Model

The mathematical details for the steps involved in deriving the tight-binding

Hamiltonian is described in details in Appendix C.1 on page 146. Here, we will

present the underlying assumptions and approximations involved.

Tight-binding or LCAO method begins with the assumption of an one-electron

Schrödinger equation for the crystal, where the Hamiltonian is the sum of kinetic
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energy and the potential energy operators. The potential energy operator itself is

again a sum of spherically symmetrical nuclear potential at each atomic location in

the crystal. We then expand the electronic wavefunction as a linear combination of

a finite number of Bloch sums and attempt to write a secular equation in this Bloch

sum basis. Use of Bloch sums as the basis for expanding the electronic wavefunc-

tion is necessary since in an infinite periodic potential, the solution of one-electron

Schrödinger equation must obey Bloch’s theorem, and Bloch sums always satisfy this

condition.

Now we will see how these Bloch sums are constructed. In principal, a set of true

atomic orbitals, such as those with s, p, d type symmetries, can be assigned at each

location of the infinite periodic crystal and for each orbital in the set, Bloch sum

can be performed. However, this immediately leads to problem. Two different true

atomic orbitals sitting on different atomic sites are non-orthogonal to each other,

and as a result, two Bloch sums that corresponds to these two orbitals are also

non-orthogonal to each other. To avoid this non-orthogonality problem, instead of

using true atomic orbitals, we use the Löwdin orbitals corresponding to them. These

Löwdin orbitals are the symmetrically orthogonalized form of the original true atomic

orbitals, constructed by subtracting all the overlaps with other orbitals on all other

atomic locations in the crystal. As a result, Löwdin orbitals, whether located on

different atomic sites or on same atomic site, are always orthogonal to each other

and so are their Bloch sums [116]. Additionally, it can also be shown that Löwdin

orbitals retain the symmetry of the original orbitals from which they are constructed,

therefore, a Löwdin orbital constructed from a true atomic px orbital continues to

possess all symmetry properties of the px orbital. For this property, from now we

will call them as atom-like orbitals. The only disadvantage of employing the Löwdin

orbital is, they are constructed by combining atomic orbitals located on different

atomic sites, therefore, are more delocalized in space compared to the true atomic

orbitals. However, since we will use the tight-binding method as a semi-empirical

approach, we will not really attempt to calculate matrix elements corresponding to
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these atom-like orbital, rather use them as fitting parameters. Thus the Bloch sums

corresponding to these atom-like orbitals can be constructed and used as the basis

for expanding the one electron wavefunction.

We then expand the crystal Hamiltonian in the Bloch sum basis and attempt to

write the secular equation, the roots of which at a given ~k will give the bandstruc-

ture. The problem now is, the expression for Hamiltonian matrix elements between

two Bloch functions is the sum of many terms, each of them is has the form of

an spherical atomic potential sandwiched between two atomic orbitals with every

possible combinations of their locations. Three major types of combinations can be

identified:

1. On-site Both orbitals and the potential are located on the same atom.

2. Two-center Two orbitals located on different atoms and the potential is on

one of these two atoms.

3. Three-center Each of the two orbitals and the potential are located at differ-

ent atoms.

In addition to these three types of integrals, there is also intra-site overlaps, where

two orbitals are located on same atom but the potential is on a different atom. Such

integral is added to the on-site integral and becomes the diagonal, k-independent

on-site energy. We now make an assumption that the three-center integrals are

much smaller compared to the on-site and two-center integrals and therefore, will

be ignored. This assumption is known as the two-center integral assumption, which

leads to an important consequence, as shown in [60], that the orbital overlaps can

be decomposed into a fewer two-center overlap energies with σ, π, or δ type bonding

symmetries.

Two center integral assumption greatly reduces the number of integrals in the

Hamiltonian matrix element, but still there are interactions present between orbitals

located all over the crystal. To reduce the size of Hamiltonian, we now invoke
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the tight-binding assumption, where we limit the maximum relative distance be-

tween atoms on which the orbitals are located. Most often, interactions between

orbitals located on the nearest-neighboring atoms are only retained, leading to a

nearest-neighbor tight-binding model, but occasionally, treatments of second even

third neighbor interactions can be found in the published literature.

Finally, a semi-empirical assumption is employed, according to which we do not

calculate the Hamiltonian matrix elements from the Löwdin orbitals and the spher-

ical atomic potentials, rather we use a set of fitting parameters for the two-center

integrals and the on-site energies, which finally leads to the correct band gap, posi-

tion of band extrema, and band edge curvatures.

A few words on cubic semiconductor crystal structure is helpful to understand

the structure of their tight-binding Hamiltonians. Semiconductors are tetrahedrally

coordinated cubic materials. In general, they display zinc blende crystal structure,

which consists of two inter-penetrating face-centered-cubic (FCC) lattices; each FCC

may be considered as a sub-lattice. The two sub-latices are displaced by one quarter

of a body diagonal and each consists entirely of one species of atoms. If the two sub-

lattices are identical, we have a diamond structure. The two sublattices are called

anionic and cationic, respectively. The nearest-neighbor atoms for an anion are four

cations, and vice versa. The second-nearest neighbors of an anion are twelve anion.

Similarly, other distant neighbors can be accounted for.

5.2.2 Choice of Basis

For cubic semiconductors, the minimal tight-binding basis is sp3, and in the

simplest case, interactions between the nearest-neighbor atoms are only treated.

Such model satisfactorily describes the valence-band energy dispersion, as shown

in [117], but fails to reproduce the indirect gaps of semiconductors at X and L

correctly. The reason for this is pointed out in [118], where we see that at X and L
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points, the electronic states contains substantial contributions from d-type orbitals,

which are not included in the minimal basis set.

In [61], Vogl et al. attempts to mimic the influence of the excited d orbitals by

adding an excited s orbital, namely s∗, to the minimal sp3 basis. The resulting model

is called sp3s∗, which offers the correct positions of the lowest conduction minima at

X and L. The limitations of the model are, the transverse masses for these indirect

valleys and, the higher conduction bands show poor agreement with the experiment.

The sp3s∗ model has limited use for the calculation of optical properties involving

points at the surface of the Brillouin zone, and is not suitable for use in simulation

of semiconductor devices. This basis set, sp3s∗, with nearest neighbor interactions

treated only, is indeed inherently incapable to describe correct transverse effective

mass [119]. In order to correctly describe the effective masses of the indirect bands

we have to either go beyond the nearest-neighbor interaction in sp3s∗ basis [119,120],

or have to enlarge it by including higher d orbitals, resulting in a sp3d5s∗ model [62].

It is difficult to treat strained materials when interactions between distant neighbors

considered, the only remaining choice is to include the d orbitals to the nearest-

neighbor sp3d5s∗ basis.

In [62], a nearest-neighbor sp3d5s∗ tight-binding model is introduced. By includ-

ing five d orbitals, the size of the atomic basis set has now grown to ten orbitals

per atom per spin. With the inclusion of five d orbitals, the Bloch functions at the

X and L points are considerably improved. In [62], the density-of-states, effective

masses, and the deformation potentials are correctly reproduced. Finally, in [121],

the usefulness of nearest-neighbor sp3d5s∗ tight-binding model is further extended

by including treatment of local strain in nanoscale devices such as quantum well or

heterostructure.

The tight-binding Hamiltonian can be written with or without treating spin-orbit

(SO) coupling. When SO coupling is treated, the Hamiltonian size doubles. SO cou-

pling introduces coupling elements between opposite spin orbitals on the same atomic

site. Therefore, it does not include any matrix elements in the overlap energy bloc
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of the Hamiltonian. The diagonal on-site energy blocs receives off-diagonal elements

when SO coupling is treated. An excellent overview of the general treatment of SO

coupling in cubic semiconoductors is presented by Dresselhaus in [122]. Treating SO

coupling within the tight-binding context is elaborated in Appendix C.3 (page 160).

SO coupling affects valence band only and when it is not accounted for, the heavy

hole, light hole and split-off hole bands become degenerate at Γ point of the Brillouin

zone. SO coupling removes the degeneracy of the split-off band. Such splitting off is

large for Ge and GaAs, however, is small for Si valence bands.

5.3 The 3-D Tight-binding Hamiltonian in spds∗ Basis

The tigh-binding Hamiltonian in a sp3d5s∗ basis and without spin-orbit coupling

can be written as,

H =







[Haa] [Hac]

[Hca] [Hcc]





 . (5.1)

In {s, p, d, s∗} bais, each of the blocs are 10×10 matrices. In absence of SO coupling,

the diagonal blocs, [Haa] and [Hcc], contain only the diagonal elements, which are

the on-site orbial energies for anion and cation respectively. The off-diagonal overlap

energy blocs, [Hac] or [Hca], however, are full matrices. The structures of the matrices

are discussed in details in Appendix C.1 on page 146.

5.4 The Treatment of Strain

Boykin et al. presented a highly accurate parametric model to treat local strain

in semi-empirical tight-binding formalism in [121]. In this model, modifications of

the Hamiltonian matrix elements due to the displacements of the atoms from their

equilibrium unstrained positions, is described. Strain not only affects the overlap

matrix elements of the orbitals, but also changes the on-site energies of the orbitals.

Treating the modulation of overlap matrix elements is rather straightforward.

In strained materials, the relative positions of the neighboring atoms are different
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from their equilibrium values where both the bond-angle and bond-length between

nearest neighbors has changed. For a relaxed crystal, the directional cosines for the

anion-to-cation bond orientation are equal and

l =
1√
3
, m =

1√
3
, n =

1√
3
.

For a strained material they are no longer equal and must be calculated from the

deformed crystal structure. These new directional cosines automatically incorporate

the modification of overlap matrix elements due to change in bond angle. The

modification of the Slater-Koster two-center-integrals due to change in bond length

is treated according to

V ′iajcα =

(

d0

d

)η

Viajcα. (5.2)

In (5.2), d and d0 represent the strained and unstrained bond lengths and, α ∈
{σ, π, δ} is the bond type. Primed and unprimed matrix elements, V ′iajcα and Viajcα,

denote the strained and unstrained values, respectively. The parameter, η, is differ-

ent for different types of bondings and the value is within the range of 1 to 4 [121].

Equation 5.2 is the generalization of Harrison’s scaling law, which has similar ex-

pression but with η = 2 [123].

Treating the modulation in on-site energy due to strain is not straightforward.

In [121], the expression for diagonal parameter shift is derived, and the diagonal

parameter for strained material becomes

E ′i,α = Ei,α +
∑

j∈N,N−i

∑

β



C(j,β),(i,α)

V 2
(j,β),(i,α) − V ′2(j,β),(i,α)

Ej,β + Ei,α



 . (5.3)

Equation (5.3) describes the relationship between the strained (primed) and un-

strained (unprimed) on-site energies. The strained on-site energy for a given orbital,

α, at the lattice point, i, now depends on its unstrained value, Ei,α, the unstrained

on-site energies, Ej,β, of all orbitals, β, of all of its nearest-neighbors, j, and the

unstrained and strained overlap matrix elements, V(j,β),(i,α) and V ′(j,β),(i,α), with all

the neighboring orbitals.
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5.5 Application to Finite Dimensional Systems

In Sec. 5.3, the tight-binding Hamiltonian for bulk material is presented. Here we

will briefly review its application to the ultra-thin-body devices. In Refs. [120, 124],

some numerical details of writing the tight-binding Hamiltonian in finite dimensional

system is shown. In [124], Støvneng and Lipavský presented a inverse Fourier trans-

form method to decompose the interaction matrices between the different atomic

layers along the growth direction. For the (001) wafers, the UTB structure can

be constructed by alternaively stacking anion and cation type atomic layers. The

Hamiltonian for this becomes,

HTF (kx, ky) =





























[Haa] [Vac]

[Vac]
† [Hcc] [Uac]

†

[Uac] [Haa] [Vac]
. . .

. . .
. . .

. . .

. . .
. . .

. . .





























, (5.4)

where the overlap blocs, [Vac] and [Uac], are functions of the in-plane wavevector

~k||.The detailed structure of the matrix is discussed in Appendix C.4 on page 164.

5.6 Summary

In this research, we have used a nearest-neighbor sp3d5s∗ tight-binding model,

with spin-orbit (SO) coupling, for treating nanoscale CMOS devices with strained/unstrained

Si, Ge, GaAs and InAs as novel channel material. The applications of this model

are presented in Ch. 6 and Ch. 7.
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6. APPLICATION OF TIGHT-BINDING APPROACH TO

UTB DG MOSFETS

In Ch. 5, a semi-empirical tight-binding approach was introduced and its potential to

offer an improved understanding of the nanoscale device operation was discussed. In

this chapter we present specific applications of a 20 orbital sp3d5s∗-SO tight-binding

approach to UTB DG nanoscale CMOS devices. We assume ballistic transport and

use the top-of-the-barrier transport model introduced in Ch. 4.

This chapter is organized as follows. First, the calculation of the bandstructure

in UTB MOSFETs is briefly described in Sec. 6.1. Then in Sec. 6.2, we discuss the

validity of using the parabolic E
(

~k
)

relationship in UTB DG Ge n-MOSFETs and

will show that below 4 nm body thicknesses, the use of parabolic E
(

~k
)

may introduce

serious error. Also in this section, the effects of relative orientation of uniaxial strain

and quantum confinement axes in UTB Si p-MOSFETs is discussed [75]. Finally, in

Sec. 6.3, we explore novel channel materials for nanoscale MOSFETs by comparing

the ballistic performances of UTB DG Si, Ge, GaAs and InAs MOSFETs. Here we

will see that very high injection velocities of III-V materials does not always ensure

high on-current, since such high velocity also degrades density-of-states which, in

turn, lowers the gate capacitance [76].

6.1 Overall Simulation Approach: Tight-binding without Band Bending

This chapter presents results for UTB DG devices where the body is thin enough

to ignore the electrostatic potential variation along the body thickness direction. We

call this non-self-consistent application of tight-binding model. In Fig. 6.1 the band-

structure is schematically presented. For the ultra-thin-body, we first calculate the
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Fig. 6.1. Tight-binding simulation approach without treating self-
consistent electrostatics. For an UTB MOSFET, the band bending
along the thickness direction due to electrostatic potential is negli-
gible. As a result, a constant potential can be assumed to calculate
the 2-D bandstructure.

bandstructure over the entire 2-D Brillouin zone assuming zero externally applied

electrostatic potential for all atomic layers. The gate electrostatics is then included

by solving the Poisson equation at the top-of-the-barrier, as described in Ch. 4. The

self-consistent potential at this point along the channel raises or lowers the band-

structure, but does not affect the band bending inside the body, hence bandstructure

is not changed.

In Fig. 6.2 the band profile in UTB device along thickness is schematically

presented. For body thickness less than 3–4nm, the subbands are formed high enough

and the negligible band bending does not affect the bandstructure.
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Fig. 6.2. The band profile in an UTB DG MOSFET. For thin bod-
ies, the top and bottom gate insulators offer the carrier confinement
in the channel. Electrostatic potential has negligible effect on band-
structure.

6.2 Application: On the Validity of Parabolic E(~k) in Nanoscale Ge n-

FETs and Effects of Strain Orientation in Si p-FETs

New device geometries, ultra-thin bodies, new channel materials, and the use

of strain engineering are being explored to address the device design challenges of

the ITRS [6, 7]. Strained channels have been shown to be effective for improving

the transport properties of bulk silicon MOSFETs [18–22]. New channel materials

and device structures, such as pure germanium channels, ultra-thin-bodies (UTB),

dual-gate, tri-gate, and FinFET structures, are also being studied. Assessing perfor-

mances of such devices by physics-based quantitative simulation is a challenge as the

use of the traditional effective mass (EM) approach becomes questionable. Although

carrier transport depends on both bandstructure (effective mass) and scattering, in

this work we neglect scattering because our objective is to understand the role that

bandstructure plays. It is important to understand how atomistic effects, quanti-

zation, and strain influence the extremely scaled ballistic novel devices, and this

section presents and atomistic approach to address the questions. The results show

that bandstructure effects play an important role in nanoscale MOSFETs.
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Fig. 6.3. The UTB DG MOSFET structure fabricated on (100) wafer
and the underlying atomic arrangement. The body is organized as
atomic layers (right). The TB modeling of cubic semiconductors
as two inter penetrating FCC lattice classifies the atoms according
to their positions-lattice atom (black) and basis atom (white). For
elemental semiconductors, both types are the same atom.

6.2.1 Approach

Figure 6.3 sketches the UTB-DG device structure and the underlying atomic

arrangement. The translational symmetry of the crystal is broken along the channel

thickness direction and therefore, the bulk TB Hamiltonian is discretized along this

direction (Appendix C.4 on page 164). The channel is organized as Nz layers of

atoms, each atom is modeled using 10 orbitals per atom per spin – totaling 20 orbitals

per atom [125]. These atom-like localized orbitals have s, p, and d type symmetries,

respectively, and the model is known as sp3d5s∗. Each layer contributes a 20 × 20

block in the block tri-diagonal thin film Hamiltonian. The resulting 20Nz × 20Nz

Hamiltonian is solved by sparse matrix technique to find the bandstructure. This

atomistic approach allows device simulation with acceptable computational burden.

A zero boundary condition for the wavefunction is used at the top and bottom

semiconductor-oxide interface. The dangling bonds at these interfaces are pacified

using a hydrogen termination model of the sp3 hybridized interface atoms. This
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Fig. 6.4. The semi-numerical ballistic model for arbitrary bandstruc-
tures. (a) The states at the top-of-the-barrier are classified in two
groups according to the direction of their velocity–towards drain or
towards source. The velocity is calculated from tabulated 2D band-
structure, and the carrier groups are in equilibrium with the source
or drain Fermi level, respectively. (b) The equivalent circuit for mod-
eling 2D electrostatics such as DIBL and output conductance.

technique, introduced in [126] and elaborated in Appendix C.5 on page 169 of this

thesis, successfully removes all the interface states from the bands gap.

Figure 6.4 summarizes the top-of-the-barrier ballistic transport model used in

here to assess the ballistic performance of the nanoscale devices. This model is a

generalization of the analytical model introduced in Chapter 4 [74]. The states at

the top of the barrier are divided into two groups according to their group velocities

and two fluxes of carriers are found, source injected and drain injected. For each

gate and drain bias, the Poisson’s equation is solved at the top of the source-channel

barrier to get a self-consistent potential. The equivalent circuit model to treat 2D

electrostatics is also shown.

The bulk conduction band (CB) of germanium, near and away from conduction

band edge, is shown in Fig. 6.5. The near CB edge constant energy surface is shown

in Fig. 6.5a, where it can be observed that the lowest valleys of Ge conduction band

are L type-ellipsoids of revolution around eight equivalent Λ ≡ [111] directions. Half

of teach ellipsoid is within the first Brillouin zone. In addition to this, in the Ge

CB there are spherical Γ valley and six silicon like X valleys along ∆, all within 250

meV from the L-valley edge. In Fig 6.5b, 300 meV above the CB edge, all valleys
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Fig. 6.5. Tight binding simulations of the constant energy sur-
faces of bulk Ge: (a) near CB edge, ∆EC=100meV and (b) away
∆EC=300meV.

Fig. 6.6. Tight binding (solid) density-of-states of a 16 nm (113
atomic layers) thick Ge (100) channel compared with the results from
EM approach (L-valley). At this thick body limit, Ge bandstructure
near the band edge is well described by parabolic E − k. Inset:
Conduction subband E(~k). Here, the L valley subbands form the
lowest ladder of subbands at the band edge (as in bulk Ge).

are visible. Due to close proximity of these band edges and the difference in their

curvatures (effective mass) along the quantum confinement directions, the valley en-

ergies re-order when quantization forms subbands in ultra-thin-body devices. Thus,
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Fig. 6.7. Ballistic ID −VG for tight-binding and effective mass band-
structures of Fig. 6.6 at VD = VDD = 0.4V. Transport along [100] is
considered. Neither threshold voltage shift, nor density-of-states is
an issue at this body thickness and the two curves practically lie on
top of each other.

below a certain body thickness, X-valleys become lower than L valleys [127]. This

dramatically changes the transport properties of the thin channel devices.

6.2.2 Results and Discussions

Using the tight-binding bandstructure and ballistic transport models described

above, the performance of unstrained germanium n-MOSFETs are first compared

with the effective-mass (parabolic E-k) results. Then the effect of strain orientation

with respect to channel thickness direction is explored in an UTB strained silicon

p-MOSFET.

Unstrained Ge n-MOSFETs

Figures 6.6 and 6.7 explore bandstructure and ballistic characteristics of a (100) Ge

film in the thick body limit, 113 atomic layers (approximately 16nm). In Fig. 6.6,

as a result of the finite body thickness, the CB conduction band splits into subbands

with the L valleys forming the lowest subband ladder (inset). The L-point in the

2D Brillouin one is actually the projection of the 3D L-point on the kx − ky plane.
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Fig. 6.8. The 2D density of states and subband E − ~k from TB
and EM calculations for a 4nm (30 atomic layers) body. The non-
parabolicity in L valley subbands is apparent here, manifested as a
disagreement in the band edge position between the two approaches.
The lowest subbands are still from L type valleys but the projection
of two of the X valleys at Γ forms nearby subbands.

Similarly, at the Γ point, both the 3D Γ point and the projection of the ∆ line along

kz on the kx−ky plane are located. As a result, the subbands at Γ can be either from

bulk Γ valleys or from the X valleys with major axis along kz. The 2D density-of-

states (DOS) plot shows that the tight-binding and effective mass (always treating

only lowest L valleys) approaches agree well in predicting both the DOS at band

edge and the lowest subband energies. At this thick body limit, Ge bandstructure is

approximately described by the EM approach in an energy range of 120 meV above

the band edge. For energies below 1.62eV, both the position of the band edge and

the 2-D DOS agree. Although, the TB DOS includes the effects of higher subbands

from higher valleys at Γ and X, the ballistic ID −VG at VD = VDD in Fig. 6.7 shows

that they don’s participate in transport, and the I-Vs from effective mass and tight-

binding are essentially identical. At this body thickness limit conduction subbands

are closely separated in energy and six subbands were used in these I-V calculation.

In Figs. 6.8 and 6.9, similar characteristics were investigated for a 4nm (30 atomic

layers) body. In Fig. 6.8, the effects of non-parabolicity in L valleys, which still form
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Fig. 6.9. The ballistic ID − VG for a 4nm Ge (100) MOSFET at
VD = VDD=0.4V. For this moderately thin body, the shift of VT

becomes the prime issue. The VT from the EM approach is higher
and the corresponding ION is underestimated by about 25%.

the lowest subband ladder, are visible. At this body thickness, the effective mass

and tight-binding subband energies do not agree, which is manifested in the ID −VG

at VD = VDD plots (Fig. 6.9) as a threshold voltage, VT , shift. The result is a 25%

underestimation of ION from the effective mass approach. The key limitation for the

effective mass approach at this body thickness range is the non-parabolicity of the L

valleys. The 2D DOS, calculated from these two approaches agree at their respective

subband band edges, therefore, if VT is adjusted by correct amount, their I-Vs will

coincide.

The case of extreme scaling of body thickness is presented in Fig. 6.10. Here,

for a 2nm (12 atomic layers) thick body, the scenario changes completely from the

previous cases. The inset E − k from tight-binding approach reveals that the two

X type conduction band valleys, with major axes along [001] forms the 2-fold de-

generate lowest subband at Γ. This is similar to the unprimed subband ladder in Si

(100) wafers. Additionally, due to strong non-parabolicity in L valleys, their four-

fold degenerate subbands remain close to the lowest X2 valley subbands, and the

lowest subband practically become 6-fold degenerate. The effective mass approach
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Fig. 6.10. Bandstructure and 2D DOS for a 2nm (12 atomic layer)
Ge (100) body. L valleys are strongly affected by non-parabolicity.
The lowest subband at Γ stems from the two longitudinal X valleys
along Z. The fourfold degenerate L subbands are very close to the
X subband edge-all six subbands effectively participate in transport.
The EM approach does not capture such effects.

Fig. 6.11. The ballistic ID−VG for a 2nm Ge n-MOSFET compared at
VD =0.4V. The large mismatch of the EM subband energies from the
TB results is compensated by adjusting the gate work function, and
both have the same VT (inset). Compared to TB, the EM approach
overestimates ION by about 15%.

is unable to treat the L-valley non-parabolicity and predicts very high subbands
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from them. A large band edge disagreement (0.57 V) between these two approaches

is visible, as well as a disagreement between the values of 2D DOS at the respec-

tive band edges. The huge band edge disagreement between the effective mass and

tight-binding approaches necessitates VT adjustment, otherwise comparison of their

ballistic characteristics is meaningless. In Fig. 6.11, the ID − VGs are compared

after adjusting the gate work function to account for this VT difference, and the

characteristics show a 15% overestimation of ION is predicted by the effective mass

approach.

Strained Si p-MOSFETs

Strain alters the position of the atoms in a crystal and in a tight-binding model,

both the overlap energies between orbitals sitting on neighboring atoms and the on-

site orbital energies are altered because of this. The relevant theory to treat strain in

semi-empirical tight-binding approach, and its application to III-V semiconductors

are presented in [121] and [66]. In this work we have used the same formalism to

treat strain in ultra-thin-body Si p-MOSFETs.

It has already been observed experimentally that relative orientation of compres-

sive strain with respective to the gate electric field has a profound effect on the hole

transport properties in planar Si MOSFETs, especially at high gate bias [18–22]. It

has been pointed out in [21] that hole mobility enhancement in substrate induced

biaxially strained Si MOSFETs is present only at low gate field and disappears com-

pletely at high gate bias. However, if process induced compressive strain is applied

uniaxially along channel direction, then the hole mobility enhancement, over un-

strained devices, continues to be present both at high and low gate biases. The

main difference between these two kind of strained devices is – in the first case,

compressive strain axis and the gate field are aligned, while in the second case they

are normal to each other. Gate field causes quantum confinement of carriers along

the thickness direction and in these two device geometries, relative orientations of

strain and quantum confinement are different. Since both strain and quantum con-
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Fig. 6.12. Two strained Si p-MOSFET geometries compared in this
work-SiGe substrate and SiGe source/drain devices. For the SiGe
substrate device, compressive strain is along quantum confinement
direction of inversion layer holes, while in the SiGe S/D device it is
along transport.

finement substantially change the bandstructure, their combined effect on valence

bandstructure must be treated to explain such mobility behavior in Si p-MOSFETs.

Figure 6.12 sketches the two different strained p-MOSFET geometries compared

in this work. They mimic the two strained devices described above. In both cases,

relaxed SiGe induces strain in the pseudomorphic Si channel. Lattice mismatch

between SiGe and Si causes biaxial tensile strain (ε > 0) in Si channel, parallel to

the SiGe-Si interface, and compressive strain (ε < 0) normal to the interface. The

holes are quantum mechanically confined along thickness direction, Z, and we find

that in these two geometries, the relative orientation of the uniaxial compressive

strain and confinement direction are different.

The combined effect of strain and quantum confinement on the Si valence sub-

bands is presented in Fig. 6.13. In bulk Si, quantum confinement is absent and

biaxial tensile strain removes the degeneracy of heavy hole (HH)-light hole (LH)

band at Γ. As a result, the LH band with better transport properties rise in energy

and is primarily populated by holes. In Fig. 6.13 we observe that such strain ad-
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Fig. 6.13. TB simulations of strain effects in quantized valence sub-
bands of Si. Thickness of Si-(001) channel is 24 atomic layers ( 3.5
nm). Strain inducing SiGe regions contain 25% Ge. Left: In SiGe
substrate device, top hole subband in Si is HH type (small curva-
ture). Right: Top hole subbands of Si in SiGe S/D device is LH
type (large curvature). In presence of strong quantum confinement,
a clear bandstructure advantage of SiGe S/D device is visible.

vantage is nullified by quantum effects in silicon-on-SiGe devices (left), and the top

subband again becomes HH like, resulting in poor transport properties. However,

for the strained Si channel in SiGe-S/D devices (right), the top subband remains LH

like (large curvature) even at strong quantum confinement. In Fig. 6.14, the ballis-

tic I-V of such devices reflects this bandstructure advantage, and we find the SiGe

S/D devices offers 25% more ION compared to its counterpart. In order to perform

a valid comparison, the same IOFF is obtained in both devices by adjusting their

respective gate work-functions (inset). The results clearly highlight the importance

of bandstructure effects in ballistic p-MOSFETs.

6.2.3 Summary and Conclusion

In this subsection, the key bandstructure related issues in the operation of ballistic

nanoscale CMOS have been investigated. We have gone beyond the effective mass
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Fig. 6.14. Ballistic ID − VG for strained Si p-MOSFETs: SiGe-
substrate vs. SiGe-S/D devices. A bandstructure advantages in the
SiGe S/D device is clearly visible-a 25% higher ION than its coun-
terpart at the ballistic limit.

approach (parabolic E− k) by using an atomistic model, the sp3d5s∗ semi-empirical

tight-binding model with spin-orbit coupling. The electronic subband structure,

2-D DOS, and ballistic device operation of UTB-DG Ge (100) n-MOSFETs have

been studied using these two approaches with 16, 4, and 2 nm body thickness,

respectively. The results show that below 4nm body thickness, the tight-binding

approach captures non-parabolicity and multi-band transport phenomenon in Ge

correctly. These effects are, however, missed by the effective mass approach. For

the extremely thin bodies ( 2nm), the lowest subbands in Ge are of a very different

nature than the results from the results of parabolic E − k approach; therefore, the

scattering dominated transport properties are going to be completely different from

those in bulk materials. Finally, a study of the effects of strain vs. quantization

orientations in p-MOSFETs show that when strong quantization is present, there is

a clear bandstructure advantage in UTB devices where uniaxial compressive strain

is applied along the transport direction, compared to the device under biaxial strain.
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6.3 Application: Comparing Si, Ge, GaAs and InAs as Nanoscale CMOS

Channel Materials

Novel materials such as pure Ge or III-V semiconductors (e.g. GaAs or InAs)

has raised considerable interest for their possible use in nanoscale CMOS devices as

alternative channel material. Their improved transport properties, along with the

use of new device designs are expected to enhance the performance of end of ITRS

CMOS devices. Novel process techniques, such as ALD, high-κ dielectrics, and metal

gates are now being used explore III-V MOSFETs [43]. New materials in the channel

promise reduced series resistance and higher on-currents. The theoretical assessment

of such devices, however, is a challenge because bandstructure, quantum effects and

electrostatics must all be treated. In this subsection, a systematic analysis of the

bandstructure effects in deeply scaled n- and p- MOSFETs with Si, Ge, GaAs and

InAs channel is performed. A sp3d5s∗-SO tight-binding (TB) model and a top-of-

the-barrier ballistic transport model have revealed important trends in deeply scaled

novel channel material devices.

Fig. 6.15. UTB DG MOSFET as model device and the underly-
ing atomic structure. A 20 orbital sp3d5s∗-SO TB model is used to
calculate the 2D subband dispersions for Si, Ge, GaAs and InAs.
Bandstructure is calculated assuming translation symmetry along
transport and width directions; however, along thickness direction
the body is resolved atomistically.
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Fig. 6.16. Formation of 2D Brillouin zone. The shaded square in right
is the 2D BZ. The bandstructure is calculated over LΓX triangle and
using symmetry, the entire 2D BZ is filled [67].

6.3.1 Approach

The model device, an ultra-thin-body (UTB), symmetrical, dual gate (DG) MOS-

FET, is shown in Fig. 6.15. Here the shaded and open spheres represent atoms from

two (anion or cation) inter-penetrating FCC lattices of the diamond or zinc-blend

crystals, respectively. Two dimensional bandstructures for the channel materials

were calculated using a 20 orbital sp3d5s∗-SO semi-empirical tight-binding model.

The tight-binding input parameters are the orbital on-site energies and the overlap

energies of nearest neighbors. The parameter sets for each material, Si, Ge, GaAs,

and InAs, is optimized to give accurate bandgaps and effective masses simultaneously

for the conduction (CB) and valence bands (VB) [121, 125].

While calculating 2-D bandstructure, crystalline translational symmetry is as-

sumed along transport, [100], and width, [010], directions. Due to ultra-thin-body

nature of the device, along the thickness direction, [001], periodicity is broken and

the body is treated as discrete atomic layers. As elaborated in Appendix C.4 in

page 164, the tight-binding Hamiltonian of a NZ mono atomic layers (AL) thick

body is represented by a 20NZ × 20NZ hermitian matrix for each k point in the 2D

Brillouin zone (BZ) (Fig. 6.16). The size of this sparse matrix may be huge, from

which few eigenvalues near the bandgap are obtained using a sparse matrix tech-

nique. Hard-wall boundary condition for wavefunction is assumed at the top and
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Fig. 6.17. The semi-numerical quasi-2D top-of-the-barrier ballistic
transport model.

bottom interfaces, which results in discrete subbands due to energy quantization

along thickness direction.

Figure 6.16 describes the formation and shape of 2-D Brillouin zone in the k-

space. We know that reciprocal lattice for real space FCC lattice has BCC type

symmetry. In order to obtain the 3-D BZ we need to draw the Wigner-Seitz cell for

this BCC reciprocal lattice. Since diamond or zinc-blend crystal structure consists of

two inter-penetrating real space FCC lattices, formation of their 3-D BZ follows the

same process, and in Fig. 6.16 shape of such zones in k-space is shown (left). Now to

find 2-D BZ in presence of quantum confinement of 3D crystal along [001], we first,

project the reciprocal BCC lattice on (001) plane, and then draw the Wigner-Seitz

cell on this 2-D plane.

We thus obtain the shaded square on right side, which is the 2-D BZ for all

cubic semiconductors. Here, The L point is the projection of 3D L point on kx − ky

plane. The ∆ line along kz is projected at the center, Γ point. As a result, the X2

conduction band valleys form the unprimed subbands at 2D Γ point. Due to zone

folding, the 2D BZ is smaller in area than the octagonal shape (dotted) obtained by

slicing 3D BZ at kz = 0. The bandstructure is calculated over LΓX triangle and

symmetry is used to fill the entire 2D BZ.

Abrupt termination of crystal symmetry at top and bottom semiconductor-

insulator interfaces leaves unsatisfied dangling bonds. These bonds generates lo-
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Fig. 6.18. UTB (19 AL, ≈ 2.75nm) (001) Si (top) and Ge (bottom)
VB and CB subband dispersions.

calized interface states causing charge trapping. These interface states are removed

using a technique similar to hydrogen passivation of Si-SiO2 interfaces [126].

The 2-D bandstructure thus obtained were used to calculate the ballistic I-V using

the semi-numerical, top-of-the-barrier transport model shown in Fig. 6.17 [74]. This

model treats ballistic transport semiclassically by filling the k-states at top of the

source-channel barrier. Carriers are grouped in two fluxes, FS and FD, which are

in equilibrium with source and drain Fermi levels, EFS and EFD, respectively. FS

and FD are calculated by populating the positive and negative velocity states in 2D

k-space according to EFS and EFD and weighting them with velocity at each point.

The model can treat arbitrary bandstructures. Their difference is the net current.

Self-consistent potential at beginning of channel obtained by solving Poisson equation

and the 2D electrostatics treated using the circuit model shown right.
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Fig. 6.19. UTB (19 atomic monolayers, ≈ 2.9nm) (001) subband

E − ~k for III-V materials. Top: GaAs, Bottom: InAs.

6.3.2 Results and Discussion

The ITRS 2004 specifications for the 2016 MOSFET are: physical gate length,

LG = 9nm, equivalent oxide thickness (EOT) tOX = 0.5nm, off-current, IOFF =

0.5µA/µm and supply voltage, VDD = 0.8V (0.6V used here considering series resis-

tance drop). Using the full 2D ballistic simulator nanoMOS 2.5, a LG = 9nm UTB

DG silicon device is first simulated and the optimum body thickness of 3nm ( 19

AL) is determined. From the full 2D Si I-Vs, the circuit model parameter are then

extracted and used in the quasi-2D model of Fig. 6.17 to treat the 2D electrostatics.

The 2-D conduction and valence subband dispersions for 19 atomic layer thick

Si and Ge bodies are presented in Fig. 6.18. Here, strong quantum confinement

increases their effective bandgaps (energy difference between lowest conduction sub-

band edge and highest valence subband edge) to 1.3 and 1.04eV, respectively. For Si

conduction band, the 2-fold degenerate X2 valleys form the unprimed ladder at Γ.
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Fig. 6.20. Ballistic ID − VD at VG = VDD =0.6V for 19 AL DG
p- and n-MOSFETs; calculated using the 2D TB bandstructures for
various channel materials (Figs. 6.18, 6.19). The reason for the poor
performance of III-V MOSFETs is their very low CB DOS, which
the degrades their gate capacitance CG and lowers Qtop.

In Ge conduction band, the lowest subbands are the projected 4-fold degenerate L

valleys. In addition to these L valleys, 2-fold degenerate X2 valleys at Γ are only 75

meV higher and therefore, Ge conduction band at this body thickness range is effec-

tively 6-fold degenerate. High density-of-states in Ge conduction band is attractive

since it increases the semiconductor capacitance.

Similar dispersions for 19 AL GaAs and InAs are presented in Fig. 6.19. Here,

quantum confinement increases the effective bandgaps for GaAs (top) and InAs

(bottom) to 1.72 and 0.78eV, respectively. Conduction subband for both are from

singly degenerate Γ valleys. Additionally, for GaAs the 4-fold degenerate higher L

valleys are just 200 meV away. Although, the small transport m∗ in III-V materials is

desirable for high υinj, their low DOS m∗ has the adverse effect of degraded quantum

capacitance effect in deeply scaled MOSFETs.

Figure 6.20 compares the ballistic ID − VD for p-and n-MOSFETs at |VG| =

0.6V using the 2-D tight-binding bandstructures for various channel materials in

Figs. 6.18 and 6.19. The EOT is 0.5nm and for all devices, and IOFF is adjusted to

0.5 µA/µ m by varying gate work functions. For both n- and p- devices Ge offers

maximum ballistic ION . While GaAs and InAs n-channels offers very high room
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Fig. 6.21. Injection velocity, υinj, vs. VG plots for UTB (19 AL) n-
and p- MOSFETs at VD = VDD = 0.6V. Holes have nearly same υinj,
but electron υinj vary widely.

Fig. 6.22. Carrier density, Qtop, vs. VG plots for UTB (19 AL) n-
and p- MOSFETs at VD = VDD =0.6V.

temperature mobility, neither of them offer improved ballistic performance over Si

or Ge. The explanation is offered in next paragraph using the injection velocity,

υinj, and carrier density, Qtop, vs. VG plots in Figs. 6.21 and 6.22. Because p- type

devices behave nearly the same for all materials, we will focus on the n- devices.

First recall that current is the product of Qtop and υinj. In Fig. 6.21, at low

VG the carriers are non-degenerate and υinj is flat. At high VG, υinj increases due

to degenerate carrier statistics. Electron υinj is very high for III-V materials due to
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Fig. 6.23. CB subband E − ~k’s for 100 AL bodies on (001) wafers.
The lowest subband edges coincide with the bulk band edges since
the quantum confinement is negligible.

low CB m∗. In this figure, InAs displays a very high υinj, as expected, however, its

Qtop in Fig. 6.22 is drastically reduced. This happens because the very small CB

DOS lowers the overall gate capacitance CG. Similarly, Qtop for GaAs displays some

reduction due to the low DOS; however, additional degradation of υinj at high VG,

due to carrier filling higher slow velocity L valley subbands, is the main reason for

its overall poor ballistic performance. GaAs υinj starts to fall from VG 0.4V due to

carriers populating higher energy, yet low velocity L valleys. Similarly, Si υinj starts

to flatten due to populating higher X4 valleys. Finally, although Ge has the smallest

υinj, it is the overall winner because of very high Qtop.

The importance of maintaining high density-of-states for deeply scaled EOT

(0.5nm) is apparent in Fig. 6.22. Valence band DOS are nearly same for all mate-

rials, so are Q-V for holes. However, CB DOS can vary widely and the associated

CG (≡ slope of Q-V plots) also varies over a wide range. For III-V n-channels, CB

DOS are very small and as a result, they display strongly degraded CG. Higher L
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Fig. 6.24. ID −VD at VG = 0.6V for thick body (100 AL) (001)/[100]
DG n-MOSFETs for two different EOTs, (a) 1nm and (b) 0.5nm. For
thicker oxide (a), the degradation of CG in III-V devices is minimal
and they offer the highest ION . For thin EOT (b), CG for III-V
degrade and the Ge channel offers maximum ION .

valleys in GaAs begin to populate at VG 0.4V and CG increases due to this increase

in DOS. Finally, Ge, although have lowest υinj, offers maximum ballistic ION due to

high CG.

In chapter 4, the concept of semiconductor capacitance, CS, (also known as

quantum capacitance, CQ) was introduced. This capacitance is a function of the

density-of-states of the carriers in a device. Since this capacitance appears in series

with the gate insulator capacitance, COX , the overall gate capacitance, CG, which

is the series combination of COX and CS, is always smaller than COX . In order to

further explore the relationship between COX, CS, and ballistic ION , we simulate n-

MOSFETs with different combinations of COX and CS. Smaller COX can be obtained

by increasing the EOT. In order to increase CS, we use thicker bodies, where due

to negligible quantum confinement effects the subbands are closely spaced in energy

and therefore, higher CS results. The calculated 2-D conduction subband E-k’s for

100 AL thick Si, Ge, GaAs and InAs bodies are presented in Fig. 6.23. Body

thicknesses in nm are 13.7 (Si), 14.3 (Ge and GaAs) and, 15.3 (InAs). Quantum

confinement effects are minimal here, therefore, subbands are closely spaced in energy

and multiple subbands can be populated at high VG. Thus, degradation of CG due
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Fig. 6.25. Injection velocity, υinj, vs. VG characteristics at VD =
0.6V for thick body (100 AL) DG n-MOSFETs with two EOTs, (a)
1nm and (b) 0.5nm. III-V channel materials are clear winner due to
their low CB m∗ along transport. In (a) such enhancement in υinj

offsets the degradation of CG and in Fig. 6.24(a) III-V materials
offer maximum ION . In (b), however, enhanced υinj cannot offset
degradation of CG and Ge offers maximum ION . In (a) and (b), at
low VG, υinj is for non degenerate carriers, which increases at high
VG due to degenerate carriers following Fermi-Dirac distribution. In
(b), υinj for GaAs drops at high VG due to occupation of higher L
subbands.

to smaller DOS becomes less severe. Si band edge is 6-fold degenerate X type and

Ge band edge is 4-fold degenerate L type. For both III-Vs they are singly degenerate

Γ type.

The ballistic I-V calculations for these thick body devices were computed for two

different EOTs, 1.0nm and 0.5 nm. In contrast to the I-V results for the 3nm (19 AL)

bodies (Fig. 6.20), now Fig. 6.24a shows that among 14nm thick devices, ballistic

ION for III-V devices (GaAs and InAs) exceeds Si and Ge performances. However,

in Fig. 6.24b, when a thinner EOT (0.5nm) was used for the same thick body, III-V

devices fall back, and Ge device offered maximum ION . For fair comparison, IOFF =

0.5 µ A/ µ m obtained in all devices by tuning gate work function. Thick Si always

compares worst due to carriers occupying the low velocity 4-fold degenerate primed

(X4) subband ladder. For thick bodies, due to multiple subband occupation, the
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Fig. 6.26. Carrier density Qtop vs. VG at VD = 0.6V for thick body
(100 AL) DG n-MOSFETs with two EOTs, (a) 1nm and (b) 0.5
nm. Current, ID, is the product of Qtop and υinj, and here, Qtop is
presented. Although threshold voltage, VT , is adjusted for all devices
to obtain same IOFF , CG is different for different channel materials
with same EOT. CG is the series combination of COX and CS, where
CS depends on DOS at band edge. Low CB DOS in III-V materials
always results in lower CS and so have degraded CG. Doubling COX

does not double Qtop due to series CS.

semiconductor capacitance, CS, is higher than that of thin bodies. This CS is in

series with COX, therefore, although COX for 6.24b is double of that in 6.24a, ION

is less than twice. These results show that maintaining a high value of the ratio

CS/COX is crucial to maximize ION .

Figures 6.25 and 6.26 present the υinj and Qtop vs. VG plots for 100 AL devices.

For 1nm EOT, the degradation of Qtop in III-V devices is offset by the enhancement

of υinj. For 0.5nm EOT, however, the degradation of Qtop is too severe and the

III-V material currents do not increase as expected. These results can be explained

as follows: the semiconductor capacitance, CS (also known as quantum capacitance,

CQ) is a function of the 2D DOS. The 2D DOS depends on number of subbands

occupied, number of valleys participating, and the DOS of each such subband. The

gate capacitance CG, which determines Qtop, is the series combination of insulator

capacitance, COX (function of EOT), and CS. When COX << CS (thick EOT and

thick body) effects of CS are minimal on CG, therefore, υinj determines the ballistic
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ION . However, if COX ≥ CS (thin EOT and thin body), the degradation of CG due

to CS is severe and consequently ION suffers. Finally, thick body Si always compares

poorly because of carriers populating the X4 valleys, two of which have very low υinj.

6.3.3 Summary and Conclusion

Bandstructure plays a crucial role in the ballistic performance of novel channel

material MOSFETs. The 2D DOS and υinj are the most important quantities de-

termined by bandstructure. A low DOS degrades CS, which lowers CG and hence,

reduces Qtop for the same gate overdrive. The degradation due to DOS becomes

more severe as EOT becomes thinner. Such degradation is often associated with an

enhancement in υinj, however, only when both the body and EOT are thick enough,

can an enhanced υinj offsets the reduction of CG and increases ballistic ION . As a

result, III-V devices offer maximum ballistic ION for a thick body and thick EOT.

For deeply scaled DG FETs, however, a Ge channel is found to be the best choice

in the ballistic limit.
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7. APPLICATION OF TIGHT-BINDING APPROACH

WITH SELF-CONSISTENT ELECTROSTATICS

In chapter 6, band bending along the thickness direction due to electrostatic potential

was ignored while treating the ultra-thin-body (UTB) dual-gate (DG) MOSFETs.

Such band bending is negligible when the body thickness is scaled below 3-4 nm,

and can be safely ignored. For thicker bodies, however, ignoring band bending may

introduce serious error, especially, when strong electric field limits the spatial extent

of the wavefunction within a small part of the device. Treatment of electrostatic po-

tential is necessary to treat gate electrostatics in planar, single-gate, bulk MOSFETs.

Additionally, band bending due to applied electrostatic potential plays an important

role in the operation of heterostructure-on-insulator (HOI) devices [128, 129]. HOI

devices rely on the band discontinuity of various material regions to preferentially

populate the high mobility regions and therefore, improving ION . For HOI devices

operating at high gate bias, band bending may override band discontinuity and so

accurate treatment of band bending is important.

The objective of this chapter is to use a self-consistent tight-binding approach,

where Poisson’s equation is iteratively solved with the bandstructure calculation.

we will see that this approach explains some experimentally observed phenomena in

deeply scaled CMOS devices, and offers an improved understanding of their oper-

ation. In Sec. 7.1, the method to incorporate self-consistent electrostatics within

the tight-binding formalism is described. We next apply this method to treat two

different experimental device structures: single-gate, planar CMOS devices and HOI

p-devices. In Sec. 7.2, the experimentally observed mobility vs. gate field behavior

in uniaxially and biaxially strained bulk Si p-MOSFETs is explained in terms of their
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ballistic behavior. Then in Sec. 7.3, the charge profile inside HOI p-type devices is

explored and their C-V characteristics calculated.

7.1 Overall Simulation Approach: Self-consistent Electrostatics

Treatment of self-consistent electrostatics demands heavy computational burden

since, 2-D bandstructure in the transport-width plane now depends on the elec-

trostatic potential at every atomic layer. The process is schematically presented

in Fig. 7.1. Unlike UTB bandstructure calculation, where bandstructure needs to

be calculated only once, bandstructures now must be calculated until it converges

with the 1-D Poisson equation along thickness direction. In Fig. 7.2, the domain

for atomistic bandstructure calculation and that for Poisson equation are shown.

The Poisson domain is much larger compared to tight-binding domain. Using entire

Poisson domain for tight-binding calculation is computationally prohibitib and also

unnecessary, since at reasonable gate bias, band bending due to external electrostatic

potential limits the spatial extent of the wavefunction and tight-binding domain does

not need to include the region where the wavefunction practically vanishes.

The approach is as follows. For a given gate bias, we first assume an electro-

static potential profile for the 1-D Poisson equation. From this we then interpolate

the potential within the tight-binding domain and get the potential energy at each

atomic layer. Adding the potential at each atomic layer to its on-site energy, we

then calculate the 2-D bandstructure over the entire kx−ky plane. Each point in the

k-space is then filled with carriers, according to either source or drain Fermi levels,

grouped according to velocity component along channel, and the charge is multiplied

by the modulus square of the tight-binding wavefunction to get the spatial charge

profile. Sum of all charge profiles over the entire 2-D Brillouin zon gives the charge

profile along thickness. This charge is then used as an input to Poisson equation,

which calculates the correction needed in the potential profile. The corrected poten-

tial profile is then used again to calculate bandstructure, and the steps are repeated
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Fig. 7.1. Bandsturctures must be calculated many times before it is
self-consistent with the external electrostatic potential.

Fig. 7.2. The Poisson equation domain and the tight-binding band-
structure calculation domain.

until the charge profile becomes self-consistent with the potential profile. After self-

consistence is achieved, we calculate the ballistic current from the self-consistent

bandstructure and move to next gate and drain bias.
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7.2 Application: Mobility vs. Ballisticity in Strained Bulk single-gate

COMS Devices

7.2.1 Background

Improvement of transport properties of carriers in CMOS devices, by the use of

strained materials, has been known for long time. It is experimentally observed that

correct type of strain enhances both electron and holes mobility.

Over three decades, use of biaxial strain remained the prime technique to incor-

porate strain in the channel of the device. Biaxialy strained Si is achieved by growing

silicon layers epitaxially on relaxed Si1-xGex substrate. On the plane of epitaxial

growth, silicon layers achieve the same in-plane lattice constant as Si1-xGex, which

is determined by the linear interpolation of those from Si and Ge as,

aSiGe = (1 − x) aSi + xaGe.

Lattice mismatch between relaxed Si and Ge is about 4%, therefore, as x is changed

from 0 to 1, the strain in the epitaxially grown silicon layer changes linearly from

0 to 4%. The grown Si layer is under biaxial tensile strain since for [001] growth

direction, silicon crystal along both [100] and [010] are under tension. Due to this

biaxial strain, the lattice constant along [001] becomes less that that of relaxed

Si and the strained silicon thus grown is called pseudomorphically grown silicon.

Since the SiGe substrate acts as strain inducing region, biaxial strain is often called

substrate-induced strain. Due to matured growth techniqe, this has been the most

common way of introducing strain in the MOSFET channel. As the thickness of the

pseudomorphic layer increases, it stores more and more elastic energy, and beyond a

critical thickness (depending on x in substrate), stacking fault or dislocation appear,

which relaxes the strain and the grown layer ceases to be a single crystal. A MOSFET

with biaxial strain in channel is shown in the middle of Fig. 7.3.

Strain can also be induced in the channel during device processing and packaging.

In the bottom of Fig. 7.3, we find the demonstration of process-induced strain. Here,
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Fig. 7.3. MOSFETs with unstrained and strained channel. Top:
unstrained, middle: biaxially tensile strain, bottom: uniaxialy com-
pressive strain

SiGe is grown in the source and drain regions by selective epitaxy. This SiGe in source

and drain, with aSiGe > aSi, tries to expand and therefore, causes compression

along the channel direction. Unlike the biaxial case, the strain in channel is now

compressive and acts uniaxialy, along the channel. We next will show that mobility

behavior of different types strains are also very different.

In Fig. 7.4, the hole mobility vs. gate effective field characteristics for devices

with substrate induced and process induced strain are presented and compared with

the unstrained behavior. The biaxial strain results by Rim et al. show that [130,131],

hole mobility is enhanced over relaxed (unstrained) universal mobility at low gate

field only. As gate field increases, such improvement diminishes and finally totally
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Fig. 7.4. Experimentally observed hole mobility vs. effective field
characteristics for strained and unstrained p-MOSFETs

lost at high field. The uniaxialy strained device, however, consistently offers im-

proved hole mobility over the entire gate field range. Using self-consistent tight-

binding approach, where strain is treated atomistically within sp3d5s∗-SO formal-

ism, we will next show that such behavior is directly related to the bandstructure

modulation of silicon under combined effecs of strain and quantum confinement—a

phenomena also directly related to their ballistic characteristics.

7.2.2 Approach

When applied gate bias depletes and eventually inverts the channel, it creates a

potential well along the thickness direction in which carriers are quantum mechani-

cally confined. Their energy is quantized along this direction and discrete subbands

are formed. The degree of quantum mechanical confinement depends on the gate

bias—higher is the bias, stronger is the confinement. The direction of confinement is

always along the thickness, which is true for both the strained devices presented in

Fig. 7.3. The relative orientation of the compressive strain direction, with respect to

quantum confinement direction, is however different in the two strained devices. For

the substrate induced biaxialy strained device, quantum confinement axis is aligned
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Fig. 7.5. Ballistic Q-V (left) and I-V (right) plot for three differ-
ent p-MOSFETs. Green: unstrained, blue: biaxialy strained, red:
uniaxialy strained.

along the compressive strain axis, while for the process-induced strained device, they

are perpendicular to each other. Since in each device strain is a fixed in direction and

magnitude and quantum confinement is what changing with gate bias, we explore

this orientation dependence by simulating these two device structures for the gate

bias range, VG =0- -1.5V, at VD =-1.5V. The result is presented in next section.

7.2.3 Results and Discussion

First, we use the self-consistent tight-binding approach, described in Sec. 7.1,

to calculate the Q-V characteristics for the strained and unstrained devices in Fig.

7.3 at high drain bias, VD =1.5V. This result is presented in Fig. 7.5 (left). Here

we observe that, above threshold voltage, VT , all devices, strained and unstrained,

have almost same charge at the beginning of the channel. This happens because

in p-MOSFETs, the amount of charge is controlled by gate electrostatics, not the

bandstructure. Recall the results in Fig. 6.22 on page 97, where similar results were

observed. However, the ID-VG plots on right of Fig. 7.5, show strong dependence of

currents on the strain. As it is for the experimental case, the current is calculated

along [100] for both unstrained and biaxialy strained p-MOSFET, but it is calculated
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Fig. 7.6. Ballistic current ratio showing performance enhancement
for the two strained p-MOSFET with respect to the unstrained de-
vice. The left and right plots show bandstructure at low and high
gate field

along [110] for uniaxialy strained device. The reason for such difference in currents

is in their bandstructures, the curvature of which determines the group velocity of

the carriers, and hence current.

We now compare the I-V results in Fig. 7.5 in the same way mobility were

compared in Fig. 7.4. First the gate bias is changed to effective gate field, using the

well known empirical formula,

Eeff =
q

εSi

(Ndep + p/3) .

Then the ratio of the ballistic currents, IStrained/INoStrain, is plotted against effective

field, Eeff , in Fig. 7.6. This ratio shows a unique characteristics, and it is equivalent

to the experimental results presented in Fig. 7.4. Here we observe that, at low gate

bias the biaxialy strained device offers enhanced performance over unstrained device,

but as the gate field increases, the currents goes down and finally all strain advan-

tage in ballistic current is diminished at high gate field. Uniaxially strained device,

however, consistently offers enhanced ballistic performance over the entire range of

gate field. The explanation for this behavior can be found in the bandstructure plots
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Fig. 7.7. Left: n-MOSFET under uniaxial tensile strain. Right: bal-
listic current ration of strained and unstrained current ratio is almost
unity. Thus ballistic simulation of strained n-MOSFETs cannot ex-
plain why strain improves electron mobility.

on the same figure. On the left, at low gate bias and therefore, negligible quantum

confinement, we find that strain has lifted the heavy and light hole band degener-

acy in both biaxially and uniaxialy strained devices. Here, the low effective mass,

high velocity, light-hole band forms the top subband, thereby improving strained

mobility. On the right plot, where bandstructure at high gate field is presented, the

scenario is very different. Here we observe that, quantum confinement has nullified

all strain advantage in the biaxially strained device, where the top subband for this

device is now heavy-hole like (with a dip in the middle). This explains why the

performance enhancement for biaxially strained device diminished at high gate field.

Bandstructure for uniaxially strained device at high field, however, is unaffected

by quantum confinement, and the top subband is still light-hole like and thereby

enhanced performance is retained.

After successfully explaining the mobility vs. effective field behavior in strained

p-MOSFETs, we repeat the same simulation for n-MOSFETs. Experimentally, in

n-MOSFETs, mobility enhancement is also observed for both biaxial and uniaxial
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tensile strain. In Fig. 7.7, we see that bandstructure effects cannot explain such

effect in n-FETs since there is no enhancement of ballistic ION under strain. Orig-

inally, Takagi et al., proposed that strain lifts the degeneracy between the X2 and

X4 conduction band valleys, which causes improvement of electron mobility [132].

Later, Fischetti et al. [133], has shown by detailed simulation that bandstructure

alone cannot explain the mobility enhancement in n-MOSFETs under strain. Strain

induced lifting of degeneracy of the X2 and X4 valleys has marginal effect since, in

the channel of an n-MOSFETs, as a result of quantum confinement, this degeneracy

has already been sufficiently lifted during formation of unprimed and primed ladder.

Our results on strained n-MOSFETs are consistent with the conclusion in [133], and

we see no-effect of strain on conduction band, which can explain electron mobility

enhancement.

7.2.4 Summary and Conclusion

In this section, a 20 orbital sp3d5s∗-SO strained tight-binding model is solved

self-consistently with Poisson equation to incorporate self-consistent electrostatics

in planar single gate strained CMOS devices. The results show that experimentally

observed mobility vs. gate field behavior in strained p-MOSFETs can be explained

by the unique bandstructure modulation under strain and quantum confinement.

However, for bulk n-MOSFETs, the origin of mobility enhancement is still an open

question and ballistic behavior, therefore, bandstructure effects, alone cannot explain

.

7.3 Application: C-V Characteristics and Hole Density Profile in Strained

HOI p-MOSFETs

In this section we will demonstrate the application of self-consistent tight-binding

approach by simulating the gate bias dependence of the hole density profile and the

C-V characteristics of a p-type heterostructure-on-insulator (HOI) device structure.



113

Fig. 7.8. Left: Fabricated HOI structure Prof. Hoyt’s group, MIT.
Center: The model device for simulation. Top and bottom Si layers
are under biaxial tension while the central SiGe layer is under biaxial
compression. Right: The conduction and valence band profile along
thinkness.

It has already been experimentally demonstratrated that such devices can offer im-

proved transport properties for both holes and electrons [128, 129].

The HOI structure shown in Fig. 7.8 operates by exploiting the band disconti-

nuity between strained Si and SiGe layer to preferentially populate the carriers in

high-mobility strained regions. We will primarily focus on the gate electrostatics of

p-type HOI devices here. The structure is pseudomorphically grown along thickness

direction and the lattice constant in the plane normal to the growth direction is same

for all three layers: Si, SiGe and Si. The whole structure sits on a thick bottom oxide

layer, below which bottom gate is located. All three layers are strained, top layer

was originally grown on a relaxed Si1-yGey layer with y =0.24 and hence is under

biaxially tensile strain. The Ge content, y, fixes the in-plane lattice constant for all

three layers. The Ge content of the central Si1-zGez layer is z =0.5, and since z > y,

this central layer is under biaxialy compressive strain. Finally, the bottom Si layer

is identical to the top Si layer, except its thickness may be different.

As the Ge content in SiGe changes from 0% to 100%, the band gap of SiGe also

changes from that of Si to that of Ge. For any intermidiate value of Ge mole fraction,
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the band gap is in-between of that of Si and Ge. Strain modulate the bandgaps of

both Si and SiGe in a comlicated way. Band discontinuity between Si and SiGe

appears mostly in the valence band and in Fig. 7.8 we find a quantum well for holes

in the central SiGe layer.

7.3.1 Approach

We have simualted a HOI structure where both top and bottom Si layers are 30

atomic layers (≈4nm) thick, and the central SiGe layer is 21 atomic layers (≈3nm)

thick. For the central SiGe layer, since z =0.5, there are equal numbers of Si and

Ge atoms. For this layer we considered an ordered structure consisting of alterna-

tively stacked Si type and Ge type atomic layers. The tight-binding Hamiltonaian is

written in sp3d5s∗-SO basis including all three layers and is a 1620×1620 matrix for

each {kx − ky} point in the first 2-D Brillouin zone. The Si-SiGe hetero-interfaces

are treated in a symmetric way to ensure Hermicity of the Hamiltonian. The top

and bottom insulators layers are 2 and 10 nm, respectively, with bottom gate al-

ways considered grounded. For a given bias at the top gate, Poisson equation is

solved self-consistently with the bandstructure calculation and the charge profile

calculated. The Poisson simulation domain consists of both insulators as well as the

hetero-channel body, however, bandstructure is calculated only in the body, with zero

boundary condition for the wavefunction at the top and bottom insulator interfaces.

7.3.2 Results and Discussion

In Fig. 7.9, valence band profile and hole density profile for the HOI structure

is presented for the gate bias range, VG = 0 to -0.4V. The Q-V characteristics on

left shows that the device is operating in the subthreshold region. The applied bias

drops within both top and bottom insulators, as well as, in the body itself. The

hole density profile in the bottom-right plot of Fig. 7.9 shows that the holes are

preferentially occupying the central SiGe region, where, due to band discontinuity
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Fig. 7.9. VG varied from 0 to -0.4V. Left: The device is in subthresh-
old. Top: The potential drops both in top and bottom insulator, as
well as in the body. Bottom: Holes occupy only the central SiGe
region

a quantum well is present for holes. It is also observed that, not only holes stay

in the central region, but also for any incremental bias, the additional holes also

accumulate in this central region.

In Fig. 7.10, valence band profile and hole density profile for the HOI structure is

presented for the gate bias range, VG = -0.5 to -0.9V. Here the carrier concentration

vs. gate bias plot on left shows that the device has come out of the subthreshold

region and operates just above threshold voltage. The valence band profile in the

top-right shows that the bottom insulator, as well as, the bottom Si layer and the

central SiGe layers are almost electrostatically isolated from the top insulator and

the top Si layer. We observe that the applied bias drops across these two regions only.

The hole density profile in the bottom-right plot of Fig. 7.10 is different from what

observed in Fig. 7.9. Now we see that the hole density profile is splitted between the

top Si layer and the central SiGe layer. The electrostatic band bending has created
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Fig. 7.10. VG varied from -0.5 to -0.9V. Left: The device is at thresh-
old. Top: The gate potential drops in top insulator, top Si layer and
the SiGe layer. Bottom: Induced holes are shared between to Si layer
and central SiGe layer

an additional quantum well near the surface where the holes now move. It can also

be seen that, at the end of the gate bias range all incremental carrier density with

gate bias accumulates near the top surface, which offers the lowest energy well for

holes.

Finally, in Fig. 7.11, the same plots are shown at high gate bias range, VG =

-1.0 to -1.5V. The left plot shows that the device is well into threshold. The valence

band profile profile shows that nearly all the incremental bias in the top gate now

drops across the top gate insulator. Most of the hole concentration in the valence

band is now located in the top Si layer and with increasing gate bias, the hole are

added to this layer.

The hole density profiles for the HOI structure, paresented in Figs. 7.9–7.11,

are integrated along the thickness direction, Z, and the hole density vs. gate bias
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Fig. 7.11. Top gate bias, VG, varied from -1.0 to -1.5V. Left: The
device is in above threshold. Top: The potential drops only in top
insulator. Bottom: Holes occupy only the top Si layer

is presented in Fig. 7.12 (left). In the same plot, hole density for an equivalent

Strained-Silicon-On-Insulator (SSOI) structure is also shown. The SSOI structure is

similar to the HOI except the central SiGe region is replaced by strained Si. In the

left plot, two devices behave similarly above threshold voltage, however, the inset

shows that the SSOI has slightly higher threshold voltage. This happens because the

small bandgap SiGe region is not present in the SSOI device, therefore, the subbands

form at higher hole energy. The C-V plot for these two device also show interesting

behavior. At low gate bias, capacitance for SSOI is smaller than the HOI structure

since the higher VT SSOI has pushed it in deep subthreshold. However, around or

just above VT , the SSOI structue shows higher capacitance. This happens because,

for SSOI all charges are added to the surface channel, while for HOI the charge is

added to both central and surface channel. As a result, the equivalent oxide thickness
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Fig. 7.12. Left: Q-V compared, HOI vs. SSOI. Right: C-V com-
pared, HOI vs. SSOI.

for HOI become larger. Finally, at high VG, when in both devices, charge is only

added at the surface channel, the capacitance for two devices converge. Finally, we

observe that the inversion capacitance for both SSOI and HOI are smaller than the

gate insulator capacitance, COX , due to increase of oxide thickness with quantum

confinement.

7.3.3 Summary and Conclusion

In this section we have demonstrated application of self-consistent tight-binding

approach for HOI device structures. For the given device structure, we found that

in subthreshold and around threshold the hole density profile remains close to the

central SiGe channel. At high gate bias, however, the device behaves like a SSOI

structure and the central SiGe channel becomes irrelevent. Simulation of devices

with varying thicknesses of three different regions can find an optimized structure.
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8. SUMMARY AND FUTURE WORK

8.1 Summary

This work has provided an improved understanding of the operation and the scal-

ing characteristics of novel channel material nanoscale CMOS devices. The necessity

of incorporating an accurate treatment of the full bandstructure of the channel ma-

terial is highlighted. It has been observed that at the ballistic limit, the carrier

density-of-states play a crucial role in determining performance of novel-channel ma-

terial MOSFETs. Ballistic performances of low density-of-states material MOSFETs

degrades drastically when gate insulator capacitance increases in a deeply scaled de-

vice. As a result, some of the density-of-states effects, which are not observed at

1-2nm EOT, may play crucial role when EOT is scaled down to 0.5nm. Ballistic

performance comparison reveals that the germanium CMOS devices are the most

promising candidates for highly-scaled novel channel material CMOS technology.

However, when the role of parasitic series resistances in the source and drain become

the limiting factor, high mobility materials such as III-V material MOSFETs show

promise to outperform Si or Ge MOSFETs.

8.2 Future Work

A list of possible future works, directly related to this research, is presented

below:

• Explanation of experimental mobility behavior: Recently, a great deal

of experimental results has been published in IEDM, TED and EDL on the

strained mobility behavior in deeply scaled planar and SOI CMOS devices.

Such mobility data incorporates both bandstructure effects (i.e. effective mass)
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and effects of carrier scattering. The top-of-the-barrier model in chapter 4 and

the tight-binding approach in chapters 5–7 correctly incorporates the band-

structure effects displayed in the mobility data; however, completely ignores

the scattering. A very useful study of the carrier transport in nanoscale devices

can be performed by identifying a few key experiments from the published liter-

ature, and then using the theoretical approaches of this thesis to separate how

much effect is due to bandstructure and how much effect is due to scattering.

• Alternative wafer orientations: In this thesis, only UTB devices with (100)

wafer orientations have been treated. However, the top-down approach to fab-

ricate UTB devices and FinFETs can result in an arbitrary orientation for

the thickness direction. For a complete study of the orientation effects, it is

necessary to generalize the approach and discretize the tight-binding Hamil-

tonian for wafer orientations other than (100); then calculate the associated

bandstructures and device performances. A careful bookkeeping of the bond

orientations between different layers along thickness is crucial for treating a

general orientation.

• Tight-binding Hamiltonian in mode-space: A full 2-D description of the

nanoscale MOSFET using tight-binding approach is prohibitive, computation-

ally. However, if this 2-D Hamiltonian can be expanded in terms of a few cou-

pled modes along confinement, a reduced Hamiltonian can be obtained which

is suitable for the NEGF quantum transport treatment. Such technique can

prove enormously useful for a better understanding of the quantum transport

in nanoscale CMOS.

• Application to HEMTs and QWFETs: The self-consistent tight-binding

approaches presented in this thesis can be readily applied to III-V devices,

such as high-electron-mobility transistors (HEMT) and quantum-well field-

effect-transistors (QWFETs)—provided that the tight-binding parameters for

the materials are available. Such treatment can be very useful and relevant,
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since it is widely believed that compared to Si MOSFETs, these devices operate

closer to their ballistic limits due to the exceptionally high carrier mobilities

in III-V.

• Zone unfolding method to treat SRS and alloy: Recently, zone-unfolding

method has been developed within the context of tight-binding approach [64].

A direct consequence of this is, surface-roughness-scattering (SRS) and ran-

dom alloy fluctuations can now be treated withing the tight-binding approach.

Inclusion of these effects will make tight-binding a more complete approach for

predictive simulation of nanoscale CMOS devices.
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Städele. Full-band approaches to the electronic properties of nanometer-scale
MOS structures. Solid-State Electronics, 48(4):575–580, April 2004.

[72] A. Rahman, M. S. Lundstrom, and A. W. Ghosh. Generalized effective-mass
approach for n-type metal-oxide-semiconductor field-effect transistors on arbi-
trarily oriented wafers. Journal of Applied Physics, 97(5):xx–xx, 2005.

[73] A. Rahman, A. Ghosh, and M. Lundstrom. Assessment of Ge n-MOSFETs
by quantum simulation. IEDM Technical Digest., pages 19.4.1–19.4.4, Dec.
2003.

[74] A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom. Theory of ballistic
nanotransistors. IEEE Transactions on Electron Devices, 50(9):1853–1864,
2003.

[75] A. Rahman, G. Klimeck, T. B. Boykin, and M. Lundstrom. Bandstructure
effects in ballistic nanoscale MOSFETs. IEDM Technical Digest., pages 139–
142, Dec. 2004.

[76] Anisur Rahman, Gerhard Klimeck, and Mark Lundstrom. Novel channel ma-
terials for ballistic nanoscale MOSFETs-bandstructure effects. To appear in
Technical Digest of IEDM 2005, 2005.

[77] Frank Stern and W. E. Howard. Properties of semiconductor surface inversion
layers in electric quantum limit. Physical Review, 163(1):816–835, 1967.

[78] Frank Stern. Self-consistent results for n-type Si inversion layers. Physical
Review B, 5(12):4891–4899, 1972.

[79] M. Lundstrom and Z. B. Ren. Essential physics of carrier transport in nanoscale
MOSFETs. IEEE Transactions on Electron Devices, 49(1):133–141, 2002.



128

[80] S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge Univ. Press,
Cambridge, U.K., 1997.

[81] A. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel, and R. Venugopal.
Two-dimensional quantum mechanical modeling of nanotransistors. Journal
of Applied Physics, 91(4):2343–2354, 2002.

[82] J. Knoch, B. Lengeler, and J. Appenzeller. Quantum simulations of an ul-
trashort channel single-gated n-MOSFET on SOI. IEEE Transactions on
Electron Devices, 49(7):1212–1218, 2002.

[83] J. Guo and M. S. Lundstrom. A computational study of thin-body, double-
gate, Schottky barrier MOSFETs. IEEE Transactions on Electron Devices,
49(11):1897–1902, 2002.

[84] A. Svizhenko and M. P. Anantram. Role of scattering in nanotransistors. IEEE
Transactions on Electron Devices, 50(6):1459–1466, 2003.

[85] P. Damle, A. Ghosh, and S. Datta. Molecular Nanoelectronics. American
Scientific, Stevenson Ranch, CA, 2003. pp. 115-135.

[86] J. Wang and M. Lundstrom. Ballistic transport in high electron mobility
transistors. IEEE Transactions on Electron Devices, 50(7):1604–1609, 2003.

[87] Available at www.nanohub.purdue.edu.

[88] T. Ando, A. B. Fowler, and F. Stern. Electronic-properties of two-dimensional
systems. Reviews of Modern Physics, 54(2):437–672, 1982.

[89] G. Dresselhaus, A. F. Kip, and C. Kittel. Cyclotron resonance of electrons and
holes in silicon and germanium crystals. Physical Review, 98(2):368–384, 1955.

[90] R. N. Dexter, B. Lax, A. F. Kip, and G. Dresselhaus. Effective masses of
electrons in silicon. Physical Review, 96(1):222–223, 1954.

[91] Robert F. Pierret. Advanced Semiconductor Fundamentals, 2nd ed. Prentice
Hall, 2002.

[92] S. M. Sze. Physics of Semiconductor Devices, 2nd ed. John Willey & Sons,
1981.

[93] J. M. Luttinger and W. Kohn. Motion of electrons and holes in perturbed
periodic fields. Physical Review, 97(4):869–883, 1955.

[94] R. N. Dexter, H. J. Zeiger, and B. Lax. Cyclotron resonance experiments in
silicon and germanium. Physical Review, 104(3):637–644, 1956.

[95] J. C. Hensel, H. Hasegawa, and M. Nakayama. Cyclotron resonance in
uniaxially stressed silicon. 2. nature of covalent bond. Physical Review,
138(1A):A225–xxx, 1965.

[96] M. V. Fischetti and S. E. Laux. Band structure, deformation potentals, and
carrier mobility in strained Si, Ge, and SiGe alloys. Journal of Applied Physics,
80(4):2234–2252, 1996.



129

[97] M. M. Rieger and P. Vogl. Electronic-band parameters in strained si1−Xgex

alloys on si1−Y gey substrates. Physical Review B, 48(19):14276–14287, 1993.

[98] P. M. Solomon and S. E. Laux. The ballistic FET: Design, capacitance and
speed limit. IEDM Tech. Digest, pages 95–98, Dec. 2001.

[99] G. Timp et al. The ballistic nano-transistor. IEDM Tech. Digest, pages 55–58,
Dec. 1999.

[100] C. W. Leitz, M. T. Currie, M. L. Lee, Z.-Y. Cheng, D. A. Antoniadis,
and E. A.Fitzgerald. Hole mobility enhancements in strained Si/Si1−yGey

p-type metal-oxide-semiconductor field-effect transistors grown on relaxed
Si1−xGex(x < y) virtual substrates. Applied Physics Letters, 79(25):4246–
4248, Dec. 2001.

[101] Z. Y. Cheng, M. T. Currie, C. W. Leitz, G. Taraschi, E. A. Fitzgerald,
J. L.Hoyt, and D. A.Antoniadas. Electron mobility enhancement in strained-
Si n-MOSFETs fabricated on SiGe-on-insulator (SGOI) substrates. IEEE
Electron Device Letters, 22(7):321–323, July 2001.

[102] K. Rim, J. L. Hoyt, and J. F. Gibbons. Fabrication and analysis of deep sub-
micron strained-Si n-MOSFETs. IEEE Trans. Electron Devices, 47(7):1406–
1415, July 2000.

[103] K. Rim, J. L. Hoyt, and J. F.Gibbons. Transconductance enhancement in deep
submicron strained Si n-MOSFETs. IEDM Tech. Dig., pages 707–710, 1998.

[104] Y.-C. Yeo, V. Subramanian, J. Kedzierski, P. Xuan, T.-J. King, J. Bokor, ,
and H. Chenming. Design and fabrication of 50-nm thin-body p-MOSFETs
with a SiGe heterostructure channel. IEEE Transactions on Electron Devices,
49(2):279–286, Feb. 2002.

[105] K. Natori. Ballistic metal-oxide-semiconductor field effect transistor. J. Appl.
Phys., 76(xx):4879–4890, 1994.

[106] K. Natori. Scaling limit of the MOS transistora ballistic MOSFET. IEICE
Trans. Electron., E84-C(xxx):1029–1036, 2001.

[107] S. Datta, F. Assad, and M. S. Lundstrom. The Si MOSFET from a trans-
mission viewpoint. Superlatt. Microstruct., 23(xx):771–780, 1998.

[108] Y. Naveh and K. K. Likharev. Modeling of 10-nm-scale ballistic MOSFETs.
IEEE Electron Device Lett., 21(5):242–244, May 2000.

[109] Z. Ren. Nanoscale MOSFETs: Physics, simulation, and design. Ph.D. dis-
sertation, Dec. 2001.

[110] M. S. Lundstrom. Elementary scattering theory of the MOSFET. IEEE
Electron Device Lett., 18(8):361–363, Aug. 1997.

[111] Jung-Hoon Rhew, Zhibin Ren, and Mark S. Lundstrom. A numerical study
of ballistic transport in a nanoscale MOSFET. Solid-State Electronics,
46(11):1899–1906, 2002.



130

[112] R. Venugopal, Zhibin Ren, and M. S. Lundstrom. Simulating quantum trans-
port in nanoscale MOSFETs: ballistic hole transport, subband engineering
and boundary conditions. IEEE Transactions on Nanotechnology, 2(3):135–
143, Sept. 2003.

[113] S. Luryi. Quantum capacitance devices. Appl. Phys. Lett., 52(xx):501–503,
Feb. 1988.

[114] A. Lochtefeld and D. A. Antoniadis. ”on experimental determination of carrier
velocity in deeply scaled NMOS: How close to the thermal limit?”. IEEE
Electron Device Lett.,, 22(2):95–97,, Feb. 2001.

[115] Jing Wang. Xxx. Ph.D. dissertation, Aug. 2005.

[116] Per-Olov Löwdin. On the non-orthogonality problem connected with the use
of atomic wave functions in the theory of molecules and crystals. The Journal
of Chemical Physics, 18(3):365–375, March 1950.

[117] D. J. Chadi and M. L. Cohen. Tight-binding calculations of the valence bands
of diamond and zincblende crystals. Physica Status Solidi B, 68(1):405–419,
1975.

[118] Steven L. Richardson, Marvin L. Cohen, Steven G. Louie, and James R. Che-
likowsky. Electron charge densities at conduction-band edges of semiconduc-
tors. Phys. Rev. B, 33(2):1177–1182, 1986.

[119] Gerhard Klimeck, R. Chris Bowen, Timothy B. Boykin, Carlos Salazar-Lazaro,
Thomas A. Cwik, and Adrian Stoica. Si tight-binding parameters from genetic
algorithm fitting. Superlattices and Microstructures, 27(2/3):77–88, Feb. 2000.

[120] Timothy B. Boykin. Generalized eigenproblem method for surface and interface
states: The complex bands of gaas and alas. Phys. Rev. B, 54(11):8107–8115,
1996.

[121] Timothy B. Boykin, Gerhard Klimeck, R. Chris Bowen, and Fabiano Oyafuso.
Diagonal parameter shifts due to nearest-neighbor displacements in empirical
tight-binding theory. Phys. Rev. B, 66:125207, 2002.

[122] G. Dresselhaus. Spin-orbit coupling effects in zinc blende structures. Phys.
Rev., 100(2):580–586, 1955.

[123] Walter A. Harrison. Elementary Electronic Structure. World Scientific Pub-
lishing Company, revised edition edition.
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APPENDIX A

SOLVING GENERALIZED EFFECTIVE MASS

EQUATION

A.1 Separable Potential

Here the steps to solve (2.14) in page 21:

[

− h̄2

2m11

∂2

∂x2
− i

h̄2ky

m12

∂

∂x
+
h̄2k2

y

2m22

+

{

− h̄2

2m33

∂2

∂z2
− ih̄2

(

ky

m23

− i
1

m31

∂

∂x

)

∂

∂z
+W (x, z)

}]

×Ψky
(x, z) = EΨky

(x, z) ,

for the separable potential given in (2.35)

W (x, z) = U(z) + V (x),

in page 25 are presented.

A.1.1 Quantum Confinement Problem

In the special case of separable potential, the part of (2.14) that deals with

quantum confinement is

[Hz + U(z)] ζi

(

−i ∂
∂x
, ky : z

)

= εi

(

−i ∂
∂x
, ky

)

ζi

(

−i ∂
∂x
, ky : z

)

(A.1)

where Hz is given in (2.16)

Hz = − h̄2

2m33

∂2

∂z2
− ih̄2

(

ky

m23
− i

1

m31

∂

∂x

)

∂

∂z
.

Substituting the canonical transformation of (2.17) (page 21)

ζ

(

−i ∂
∂x
, ky : z

)

= UCφi (z) ,
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where,

UC = e
−i

(

m33

m23

ky − i
m33

m31

∂

∂x

)

z
,

in (A.1) and left multiplying by U †C we find

[

H̄z + U(z)
]

φi(z) = εi

(

−i ∂
∂x
, ky

)

φi(z), (A.2)

where,
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= e
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.

(A.3)

We now use the identity given in (2.18) (page 22),

e−BAeB = A+ [A,B] +
1

2
[[A,B] , B] + · · ·

where,

A =

{
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∂
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)

z.

The second term in the RHS of identity (2.18) can be evaluated as,

[A,B] =
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. (A.4)

Similarly, the third term in the RHS of the identity can be evaluated as,

[[A,B] , B] =



ih̄2

(
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1
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)
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= −i2h̄2m33

(

ky

m23
− i

1

m31

∂

∂x

)2 [
∂

∂x
, z

]

= h̄2m33

(

ky

m23

− i
1

m31

∂

∂x

)2

. (A.5)

To evaluate the commutators the following relationships are useful,

[

∂

∂z
, z

]

= 1;

[

∂2

∂z2
, z

]

= 2
∂

∂z
;

[

∂

∂z
, c

]

= 0. (A.6)

Since the commutator [[A,B], B] is indepent of z, all the higher orde terms in (2.18)

is zero, and we have

H̄z = e−BAeB

= A + [A,B] +
1

2
[[A,B] , B]

= − h̄2

2m33

∂2

∂z2
− ε

(

−i ∂
∂x
, ky

)

(A.7)

where

ε

(
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, ky

)

=
h̄2
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ky − i
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32
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m33
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∂
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. (A.8)

Since, H̄z is sum of z dependent and z independent parts, the eigenvalue of (A.2)

can also be separated as

εi

(

−i ∂
∂x
, ky

)

= εi − ε

(

−i ∂
∂x
, ky

)

, (A.9)

and, we can rewrite (A.2) as

[

H̄z + U(z)
]

φi(z) =

[

εi − ε

(

−i ∂
∂x
, ky

)]

φi(z). (A.10)

here, the eigenvalues εi and the eigenfunctions φi(z) are found by solving the Z parts

of the potential only, i.e.,

[

− h̄2

2m33

∂2

∂z2
+ U(z)

]

φi(z) = εiφi(z). (A.11)
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Finally, using

H̄z = e
i

(

m33

m23
ky−i
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∂
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)

z
Hze
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∂
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z
,

in (A.10) we find

[Hz + U(z)] e
−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
φi(z) =

{

εi − ε

(

−i ∂
∂x
, ky

)}

e
−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
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(A.12)

A.1.2 The Transport Problem

We now return to the original 2D effective mass equation (2.22) in page 23, which

is
[

− h̄2

2m11

∂2

∂x2
− i

h̄2ky

m12

∂
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+
h̄2k2
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)

= EΨ
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.(A.13)

Since the eigenfunctions of (A.12), e
−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
φi(z), forms a complete set, at

a given x, we expand the wavefunction in (A.13) as

Ψ
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)
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m

e
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m23
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m33
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∂
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)

z
φm (x, z)χm (x, ky) . (A.14)

Substituting (A.14) in (A.13), then left multiplying by φ∗n(z)e
i

(

m33

m23
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m31

∂
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)

z
and

integrating along Z, we find
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+
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m

Vnm(x)χm(x, ky) = Eχm(x, ky). (A.15)

where we have made use of (A.12) and the orthogonality condition for φi(z)

∫

φ∗n(z)φm(z)dz = δn,m.

Additionally, in (A.15), we have defined the matrix elements for V (x) as

Vnm(x) =
∫ [

e
m33

m31

∂
∂x

z
V (x)e

−m33

m31

∂
∂x

z
]

φ∗n(z)φm(z)dz (A.16)
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which can be evaluated as

Vnm(x) =
∫ [

e
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∂
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z
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∂
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z
]
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=
∫

{
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V
(
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z
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φ∗n(z)φm(z)dz (A.17)

From (A.17) it can be seen that at a given x, say x = xc, in order to evaluate

Vnm(x = xc), inside the integration the potential should be samped along the line:

x = xc +
m33

m31
z,

which is also along the principal axis of the constant energy CB ellipsoid at fixed ky.

Although in (A.17), Vnm(x) is writen in a compact form, its physical significance

can be understood from the Taylor series expansion

Vnm(x) =
∫

{

V (x) +
(

m33

m31
z
)

∂V (x)
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+

1

2
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z
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+ · · ·
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[

∂
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, V (x)

]

∫

zφ∗n(z)φm(z)dz + · · ·

= V (x)δnm +
m33

m31

∂V (x)

∂x
µnm + · · · (A.18)

The first term in (A.18) Vnn(x) = V (x) respresents the on-sie potential and the

second term, which depends on the electric field, represents Zener tunneling between

subbands. this term and all higher order terms represent coupling between differet

subbands.

A.2 General Potential

In this section we will show the steps to solve (2.14) in page 21 without assuming

the potential to be separable.
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A.2.1 Quantum Confinement Problem

From (2.14), the qunatum confinement problem at a given x is

[Hz + U (x, z)] ζi

(

−i ∂
∂x
, ky : x, z

)

= εi
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−i ∂
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, ky : x

)
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)

,

(A.19)

where the Hamitonian is

Hz = − h̄2
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We now write
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Substituting (IV) in (III) and left multiplying by e
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m31

∂
∂x

)

z
we find

[

H̄z +
{

e
m33

m31

∂
∂x

z
U(x, z)e

−m33

m31

∂
∂x

z
}]

φi(x, z) = e
m33

m31

∂
∂x

z
εi

(

−i ∂
∂x
, ky : x

)

e
−m33

m31

∂
∂x

z
φi(x, z).

(A.22)

In Sec. A.1.1 it has already been shown that

H̄z = − h̄2

2m33

∂2

∂z2
+ εi

(

−i ∂
∂x
, ky

)

(A.23)

εi

(

−i ∂
∂x
, ky

)

= − h̄2

2m33

(

m33

m23
ky − i

m33

m31

∂

∂x

)2

(A.24)

Using the identity in (2.18), the potential term in A.22 can be reduced as follows,

e
m33

m31

∂
∂x

z
U(x, z)e

−m33

m31

∂
∂x

z
= U(x, z) +

[

U(x, z),−m33

m31

∂

∂x
z

]

+ · · ·

= U(x, z) − m33

m31

[

U(x, z),
∂

∂x

]

z + · · ·

= U(x, z) +
m33

m31

z
∂U(x, z)

∂x
+
(

m33

m31

z
)2 ∂2U(x, z)

∂x2
+ · · ·

= U
(

x+
m33

m31

z, z
)

. (A.25)

For a given x, say x = xc, (A.25) shows that the relevant potential in (A.22) must

be taken along the line

x = xc +
m33

m31

z,
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which is also along the principal axis of the constant energy ellipse at ky = 0.

Substituting H̄z and the potential term in (A.22) and after minor manipulation, we

find

[

− h̄2

2m33

∂2

∂z2
+ U

(

x +
m33

m31
z, z

)

]

φi(x, z)

= e
m33

m31

∂
∂x

z

{

εi

(

−i ∂
∂x
, ky : x

)

− εi

(

−i ∂
∂x
, ky

)}

e
−m33

m31

∂
∂x

z
φi(x, z). (A.26)

Clearly, for a fixed value of x, the eigenvalues of (A.26) are εi
(

x + m33

m31

z
)

, and

therefore, (A.26) can be written as

[

− h̄2

2m33

∂2

∂z2
+ U

(

x+
m33

m31
z, z

)

]

φi(x, z) = εi

(

x+
m33

m31
z
)

φi(x, z), (A.27)

which must be solved at each x to obtain modes φi(x, z). Additionally, since

εi

(

x +
m33

m31

z
)

= e
m33

m31

∂
∂x

z
εi(x)e

−m33

m31

∂
∂x

z
, (A.28)

from (A.26) and (A.27) we can write

εi

(

−i ∂
∂x
, ky : x

)

= εi (x) + εi

(

−i ∂
∂x
, ky

)

(A.29)

This very important relationship shows that the total energy is the sum of the

confinement energy and the in-plane kinetic energy and in (2.21) this is expressed as

ε

(

−i ∂
∂x
, ky

)

=
h̄2

2

(

−m33

m2
31

∂2

∂x2
+
m33

m2
32

k2
y − 2i

m33

m31m23
ky

∂

∂x

)

.

Finally, using the inverse canonical transformation

H̄z = e
i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
Hze

−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
.

in (A.22) we find (2.20) in page 22, which is

[Hz +W (x, z)] e
−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
φi (x, z)

=

{

εi (x) − ε

(

−i ∂
∂x
, ky

)}

e
−i

(

m33

m23
ky−i

m33

m31

∂
∂x

)

z
φi (x, z) , (A.30)
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APPENDIX B

THE TOP OF THE BARRIER BALLISTIC MODEL

B.1 Treating Floating Boundary Condition

Figure 4.6 on page 56 shows how the states at the top of the barrier are occupied

for a simple E
(

~k
)

relationship. As mentioned in Sec. 4.3, the energy reference is

the top of the barrier at zero terminal bias. We express the source Fermi level, EF1,

drain Fermi level, EF2, and potential at the top of the barrier for first subband, Uscf ,

with respect to this reference. The positive k-states are then occupied according to

the source Fermi level according to,

N1 =
1

A

∑

kx>0,ky

f (E − EF1)

=
∫

kx>0

∫

ky

2
d2k

(2π)2
f (E − EF1)

=
∫ +∞

−∞
dEf (E − EF1)

∫

S(E)

dS

2π2

1
∣

∣

∣

~∇E(k)
∣

∣

∣

,

where S(E) is a constant energy surface in k-space, dS is an elemental area on

this surface, and dE/
∣

∣

∣

~∇E(k)
∣

∣

∣ is the distance between the surfaces S(E + dE) and

S(E) [134]. Defining the density-of-states as

D (E − Uscf) =
∫

S(E−Uscf)
]
dS

2π2

1
∣

∣

∣

~∇E(k)
∣

∣

∣

,

we finally have

N1 =
1

2

∫ +∞

−∞
D (E − Uscf) f (E − EF1) dE. (B.1)

The last expression is valid for general bandstructure in 1, 2 or 3D. The density-of-

states function is either analytically expressed or is numerically tabulated. For a 2D

electron gas with isotropic and parabolic E
(

~k
)

relationship, we have,

D (E − Uscf) = g2Dθ (E − Uscf) ,
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where g2D = 2m∗/πh̄2 is the 2D density-of-states, when spin degeneracy and a valley

degeneracy of two for the unprimed subband in silicon are considered. In this case

the integral for N1 can be analytically evaluated as

N1 =
N2D

2
log

(

1 + e(EF1−Uscf)/kBT
)

=
N2D

2
=0 (ηF1) , (B.2)

where N2D = kBTg2D is the effective 2D density-of-states, =0 is the Fermi Dirac

integral of order 0, and ηF1 = (EF1 − Uscf) /kBT . A similar expression exists for N2

with ηF1 replaced by ηF2 = ηF1 − qVDS/kBT .

In addition to the carrier density, we can also evaluate current for the positive k

population from

I1 =
q

A

∑

kx>0,ky

υxf (E − EF1)

=
∫

kx>0

∫

ky

d2k

2π2
qυxf (E − EF1)

=
∫ +∞

−∞
dEf (E − EF1)

q

2

∫

S(E)

dS

2π2
|υx|

1
∣

∣

∣

~∇E(k)
∣

∣

∣

=
∫ +∞

−∞
dEf (E − EF1)

q

2
ῡx (E − Uscf)D (E − Uscf) , (B.3)

where ῡx(E) is the average value of |υx| over the constant energy surface, S(E),

expressed as

ῡx (E − Uscf) =

∫

S(E−Uscf)

dS

2π2
|υx|

1
∣

∣

∣

~∇E(k)
∣

∣

∣

∫

S(E−Uscf)

dS

2π2

1
∣

∣

∣

~∇E(k)
∣

∣

∣

.

Now defining the current-density-of-states as,

J (E − Uscf) =
q

2
ῡx (E − Uscf)D (E − Uscf) , (B.4)

we have

I1 =
∫ +∞

−∞
J (E − Uscf) f (E − EF1) dE. (B.5)
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In general, this expression can be evaluated for either numerically tabulated or ana-

lytically calculated bandstructures. For the 2D electron density considered here, we

can analytically evaluate ῡx(E) to obtain

J (E − Uscf) =
1

2
q





2

π

√

2 (E − Uscf)

m∗



D (E − Uscf) , (B.6)

where the factor 2/π appears because of averaging υx over all possible ky values at

energy E−Uscf . With this expression for J(E−Uscf), we can analytically integrate

(B.5) to find

I1 =
1

2
qN2D

√

2kBT

πm∗
=1/2 (ηF1) . (B.7)

Similar expression can be obtained for negative going carriers, with ηF1 replaced by

ηF2.

When the drain bias, VDS, is large, only the +kx states are occupied, and we can

evaluate the maximum velocity at the top of the barrier as

〈υ(0)〉max = υinj ≡
I1
N1

=

√

2kBT

πm∗
=1/2 (ηF1)

=0 (ηF1)
. (B.8)

The presence of the Fermi-Dirac integrals in this expression explains why the satu-

ration injection velocities in Figs. 4.5b (page 55) and 4.10b (page 65) are gate bias

dependent. Below threshold voltage, the ratio of the Fermi-Dirac integrals is one

and the injection velocity becomes constant. The injection velocity at the highest

gate bias determines the maximum on-current that a transistor can deliver.

Finally, we will discuss the treatment of the floating boundary condition in the

analytical model. In Fig. B.1a, we see that at low gate and high drain bias the

barrier height is large, i.e. Uscf >> ECS, and inside the source, both positive and

negative going states are at equilibrium with the source Fermi level. The charge

neutrality condition demands

NSD =
∫ +∞

−∞
D (E − ECS) f (E − EF1) dE. (B.9)

where NSD is the doping density in the source extension.
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When high gate bias is applied, we can see in Fig. B.1b that the barrier height

becomes small, and there are three distinct groups of carriers: i) carriers with energy

lower than the barrier height and are reflected by the barrier ii) carriers with energy

higher than the barrier and having positive velocity and iii) carriers having energy

above barrier and going in the negative direction. Population groups i) and ii) are

at equilibrium with EF1 and group iii) is in equilibrium with EF2. Because the sum

of the three populations in Fig B.1b is smaller than equilibrium carrier density in

source, to maintain charge neutrality we have to increase (EF1 − ECS). Physically,

EF1 is fixed and ECS floats down. Equivalently, as shown in Fig. B.1c, we can keep

ECS fixed and float EF1 up. In our analytical model we have treated the floating

boundary condition by fixing ECS and floating up EF1 to E ′F1. Therefore, the charge

neutrality condition in the source is

NSD =
∫ Uscf

−∞
D (E − ECS) f (E − E ′F1) dE

+
1

2

∫ ∞

Uscf

D (E − ECS) {f (E − E ′F1) + f (E − E ′F1 + qVDS)} dE.

(B.10)

Equation (B.10) is solved self-consistently with eqs. (4.3–4.14), i.e., for each E ′F1,

barrier height is computed to distinguish three carrier populations and charge neu-

trality in the source is ensured.

B.2 Treating Arbitrary Bandstructure

In an ultra thin body MOSFET, the energy along the channel thickness direction

becomes quantized and sub-bands are formed. The E (kx, ky) relationship for carriers

in a sub-band is on a two dimensional (kx, ky)-space. To generalize the analytical

model for arbitrary bandstructure, we first calculate the ”group velocity” for the

states on this 2D k-space using

~υ (kx, ky) = υxk̂x + υyk̂y =
1

h̄
~∇~kE, (B.11)
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and group them in source injected population or drain injected population according

to the sign of the velocity component along the transport direction. Assuming the

carrier transport direction (the direction from the source to the drain) makes an

angle θ with the kx direction, we define an unit vector, n̂, along this direction and

write it as

n̂ = cos θk̂x + sin θk̂y, (B.12)

where, k̂x and k̂y are the unit vectors.

For a spherical, parabolic E
(

~k
)

relationship, group velocity, ~υ, is radial. How-

ever, when the bandstructure is warped, as for the heavy hole band, or is not isotropic

(e.g. Germanium with [100] quantized), the velocity field in the 2-D k-space does

not show radial symmetry.

For an arbitrary 2D E
(

~k
)

relationship, the equilibrium carrier density, N0 , can

be numerically calculated from

N0 =
∑ ∑

{kx,ky}
2gv

∆kx∆ky

(2π)2
f (Ei (kx, ky) − EF ) , (B.13)

where the factor 2 is for spin degeneracy, gv is the valley degeneracy, ∆kx, ∆ky

are the grid spacing in k-space and EF is the equilibrium Fermi level. The sum is

performed over the entire k-space.

Now, when the drain bias is applied, two distinct carrier populations at the top of

the barrier exist. The states in the k-space which have positive velocity component

in the transport direction, n̂, are at equilibrium with the source Fermi level, µ1, and

the corresponding carrier concentration can be calculated from

N1 =
∑ ∑

{kx,ky}|~υ·n̂>0

2gv
∆kx∆ky

(2π)2
f (Ei (kx, ky) + Uscf − µ1) , (B.14)

This expression can be simplified, using the fact

∑ ∑

{kx,ky}
= 0, (B.15)
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implying, for each state in k-space with a certain positive velocity component along

n̂, there is a state with exactly equal negative velocity. Therefore, we find

∑ ∑

{kx,ky}|~υ·n̂>0

=
1

2

∑ ∑

{kx,ky}
. (B.16)

This simplifies (B.14), which can now be expressed as

N1 =
1

2

∑ ∑

{kx,ky}
2gv

∆kx∆ky

(2π)2
f (Ei (kx, ky) + Uscf − µ1) . (B.17)

where the sum is over the whole k-space. Similarly, the expression for the drain

injected carrier population, N2, can be obtained by replacing µ1 by µ2 = µ1 − qVDS.

One can now solve for the self-consistent potential, Uscf , from (4.10–4.14), using

the numerically evaluated carrier concentration in (B.14) and (B.15). After calcu-

lating Uscf , the ballistic current can also be calculated. The ballistic current carried

by the source injected population can be expressed as

I1 =
∑ ∑

{kx,ky}|~υ·n̂>0

2gv
∆kx∆ky

(2π)2
(~υ · n̂) f (Ei (kx, ky) + Uscf − µ1) ,

where the sum is only over the states having positive ”group velocity” component

in the transport direction. However, from (15), it follows

∑ ∑

{kx,ky}|~υ·n̂>0

(~υ · n̂) =
1

2

∑ ∑

{kx,ky}
|~υ · n̂| , (B.18)

and therefore, the expression for I1 is simplified to

I1 =
1

2

∑ ∑

{kx,ky}
2gv

∆kx∆ky

(2π)2
|~υ · n̂| f (Ei (kx, ky) + Uscf − µ1) , (B.19)

where the sum is now over the entire k-space. Similar expression for the current

carried by the drain injected population, I2, can be obtained by replacing µ1 by

µ1 − qVDS. Finally, the net current is

I = I1 − I1. (B.20)
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Fig. B.1. Treating floating boundary condition. (a) Under low VG

charge neutrality in source extension is maintained by only EF1, (b)
when VG is increased barrier lowers and charge neutrality is not main-
tainted, (c) raising EF1 to E ′F1 restores charge neutrality in source
entension.
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APPENDIX C

THE TIGHT-BINDING HAMILTONIAN WITH STRAIN

C.1 Derivation of Tight-binding Hamiltonian for Bulk Materials

To derive the tight-binding Hamiltonian, the following conditions are assumed:

1. atom-like orbitals–localized basis functions have atomic orbitals symmetry,

2. tightly bound–overlap of two orbitals on different atomic sites is zero,

3. orthogonality–overlap of two different orbials located on same atomic site is

zero,

4. nearest neighbor interaction–nonzero matrix elements for Hamiltonian possible

only between orbitals located on nearest neighboring sites. Nearest neighbors

of a cation are four anions and vice versa, therefore, matrix elements between

cations and anions are only possibility.

5. two center integrals–nonzero matrix element for Hamiltonian possible only when

the potential is on one of the two atoms on which orbitals are located.

A set of such localized atomlike orbitals:
∣

∣

∣nb~Ri

〉

is assigned at each atomic points.

Here b is the atom type, cation or anion, b ∈ {a, c}, ~Ri is the lattice point coordinate

with respect to some origin ( ~Rji = ~Ri − ~Rj relative position of i point with respect

to j), and n is the orbital type, n ∈ {s, px, py, pz, dxy, dyz, dzx, dx−y2 , d3z2−r2 , s∗}. The

atomic orbitals,
∣

∣

∣nb~Ri

〉

, are the eigenfunctions of the atomic Hamiltonian,

[

− h̄2

2m
∇2 + Ui,b

]

∣

∣

∣nb~Ri

〉

= εn,b

∣

∣

∣nb~Ri

〉

, (C.1)
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where, Ui,b is the spherically symmetric nuclear potential of b type atom at i-th lattice

point. The basis set for Hamiltonian consists of the Bloch sums of the localized

orbitals, performed as

∣

∣

∣nb~k
〉

=
1√
N

∑

~Ri

ei~k•(~Ri+~νb)
∣

∣

∣nb~Ri

〉

. (C.2)

There are two atoms, anion and cation, associated with each lattice point of FCC

lattice, the position of atom b relative to the lattice point is defined as,

~νb =
[

aL

4

aL

4

aL

4

]

δb,c.

The anion atoms occupy the lattice positions, therefore, ~νa = 0, and cations are one

quarter of body diagonal displaced from the lattice points,

~νc =
[

aL

4

aL

4

aL

4

]

.

We now assume the variational wavefunction as,

∣

∣

∣

~kλ
〉

=
∑

n,b

∣

∣

∣nb~k
〉 〈

nb~k
∣

∣

∣

∣

∣

∣nb~k
〉

=
∑

n,b

cn,b,λ

∣

∣

∣nb~k
〉

, (C.3)

which is the linear combination of Bloch sums. In (C.3), λ is the band index and

cn,b,λ’s are the unknown expansion coefficients. The crystal Hamiltonian is the sum

of kinetic and potential energy operators,

H = − h̄2

2m
∇2 +

∑

i,b

Ui,b

= − h̄2

2m
∇2 +

∑

i

[Ui,a + Ui,c] . (C.4)

The potential term is the sum of spherically symmetric nuclear potentials at all

atomic locations.
[

H − ε
(

~kλ
)] ∣

∣

∣

~kλ
〉

= 0. (C.5)

Substituting the variational wavefunction (C.3) in the Schrödinger equation (C.5),

we have
[

H − ε
(

~kλ
)]

∑

n,b

cn,b,λ

∣

∣

∣nb~k
〉

=
∑

n,b

cn,b,λ

[

H − ε
(

~kλ
)] ∣

∣

∣nb~k
〉

. (C.6)



148

Now after left-multiplying by
〈

md~k
∣

∣

∣, (C.6) can be expressed as,

∑

n,b

cn,b,λ

〈

md~k
∣

∣

∣

[

H − ε
(

~kλ
)] ∣

∣

∣nb~k
〉

=
∑

n

cn,a,λ

[〈

md~k
∣

∣

∣H
∣

∣

∣na~k
〉

− ε
(

~kλ
) 〈

md~k
∣

∣

∣na~k
〉]

+
∑

n

cn,c,λ

[〈

md~k
∣

∣

∣H
∣

∣

∣nc~k
〉

− ε
(

~kλ
) 〈

md~k
∣

∣

∣nc~k
〉]

.

(C.7)

Orthogonality of atomic orbitals becomes useful to evaluate terms in (C.7), such as

〈

md~k
∣

∣

∣na~k
〉

=
1

N

∑

i,j

ei~k·(~Ri+~νa)−i~k·(~Rj+~νd)
〈

md~Rj

∣

∣

∣na~Ri

〉

= e−i~k·~νd
∑

i

ei~k·~Rij

〈

md~Rj

∣

∣

∣na~Ri

〉

= e−i~k·~νd
∑

i

ei~k·~Rijδm,nδd,aδi,j

= δm,nδd,a (C.8)

where, δij follows from the tight-binding assumption. Similarly, it follows

〈

md~k
∣

∣

∣nc~k
〉

= δm,nδd,c. (C.9)

In order to calculate
〈

md~k
∣

∣

∣H
∣

∣

∣na~k
〉

, interaction between orbitals sitting on anion

atoms, i.e. d = a, is considered first,

〈

ma~k
∣

∣

∣H
∣

∣

∣na~k
〉

=
1

N

∑

i,j

ei~k·(~Ri+~νa)−i~k·(~Rj+~νa)
〈

ma~Rj

∣

∣

∣H
∣

∣

∣na~Ri

〉

=
∑

i

ei~k·~Rji

〈

ma~Rj

∣

∣

∣H
∣

∣

∣na~Ri

〉

=
∑

i

ei~k·~Rji

〈

ma~Rj

∣

∣

∣

[

− h̄2

2m
∇2 +

∑

l

[Ul,a + Ul,c]

]

∣

∣

∣na~Ri

〉

=
∑

i

ei~k·~Rji

〈

ma~Rj

∣

∣

∣

[

− h̄2

2m
∇2 + Ui,a

]

∣

∣

∣na~Ri

〉

(C.10)

+
∑

i

ei~k·~Rji

〈

ma~Rj

∣

∣

∣

∑

l 6=i

Ul,a

∣

∣

∣na~Ri

〉

+
∑

i

ei~k·~Rji

〈

ma~Rj

∣

∣

∣

∑

l

Ul,c

∣

∣

∣na~Ri

〉

Using atomic Schrödinger equation (C.1) and the orthogonality condition of (C.8),

the first term in RHS of (C.10) reduces as follows:

∑

i

ei~k·~Rji

〈

ma~Rj

∣

∣

∣

[

− h̄2

2m
∇2 + Ui,a

]

∣

∣

∣na~Ri

〉

=
∑

i

ei~k·~Rjiεn,a

〈

ma~Rj

∣

∣

∣na~Ri

〉
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= εn,a

∑

i

ei~k·~Rjiδi,jδm,n

= εn,aδm,n. (C.11)

The second term in RHS of (C.10) reduces to zero since, if i 6= j then two orbitals

are no longer nearest neighbor (recall, nearest neighbors of anion are cations), and

if i = j then it become a three center integral since l 6= i, which are also assumed to

be zero. As a result,

∑

i

ei~k·~Rji

〈

ma~Rj

∣

∣

∣

∑

l 6=i

Ul,a

∣

∣

∣na~Ri

〉

= 0. (C.12)

Finally, the third term of (C.10) also reduces to zero, since the nearest neighbor

condition satisfied only if i = j. However, the potential now is located on a cation

atom, which makes it three center integral,

∑

i

ei~k·~Rij

〈

ma~Rj

∣

∣

∣

∑

l

Ul,c

∣

∣

∣na~Ri

〉

= 0 (C.13)

Substituting (C.11–C.13) into (C.10), it follows

〈

ma~k
∣

∣

∣H
∣

∣

∣na~k
〉

= εn,aδm,n. (C.14)

Similarly, the Hamiltonian matrix elements between two cationic orbitals becomes,

〈

mc~k
∣

∣

∣H
∣

∣

∣nc~k
〉

= εn,cδm,n. (C.15)

Now the matrix elements between orbitals sitting on cation and anion atoms, respec-

tively, are calculated

〈

mc~k
∣

∣

∣H
∣

∣

∣na~k
〉

=
1

N

∑

i,j

ei~k·(~Ri+~νa)−i~k·(~Rj+~νc)
〈

mc~Rj

∣

∣

∣H
∣

∣

∣na~Ri

〉

= e−i~k·~νc
∑

i

ei~k·~Rji

〈

mc~Rj

∣

∣

∣

[

− h̄2

2m
∇2 +

∑

l

[Ul,a + Ul,c]

]

∣

∣

∣na~Ri

〉

= e−i~k·~νc
∑

i

ei~k·~Rji

〈

mc~Rj

∣

∣

∣

[

− h̄2

2m
∇2 +

1

2
(Ui,a + Uj,c)

]

∣

∣

∣na~Ri

〉

+e−i~k·~νc
∑

i

ei~k·~Rji

〈

mc~Rj

∣

∣

∣

1

2
(Ui,a + Uj,c)

∣

∣

∣na~Ri

〉

+e−i~k·~νc
∑

i

ei~k·~Rji

〈

mc~Rj

∣

∣

∣

∑

l 6=i

Ul,a

∣

∣

∣na~Ri

〉

+e−i~k·~νc
∑

i

ei~k·~Rji

〈

mc~Rj

∣

∣

∣

∑

l 6=j

Ul,c

∣

∣

∣na~Ri

〉

. (C.16)
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Using (C.1) and the orthogonality condition of (C.8), the first term in the RHS of

(C.16) reduces to zero,

e−i~k·~νc
∑

i

ei~k·~Rji

〈

mc~Rj

∣

∣

∣

[

− h̄2

2m
∇2 +

1

2
(Ui,a + Uj,c)

]

∣

∣

∣na~Ri

〉

=
1

2
e−i~k·~νc

∑

i

ei~k·~Rji

〈

mc~Rj

∣

∣

∣

[{

− h̄2

2m
∇2 + Ui,a

}

+

{

− h̄2

2m
∇2 + Uj,c

}]

∣

∣

∣na~Ri

〉

= 0. (C.17)

Additionally, both the third and fourth terms in RHS of (C.16) are zero since they

are not two center integrals. For these two terms, the potential is not on either of

the atoms on which orbitals are located, therefore,

e−i~k·~νc
∑

i

ei~k·~Rji

〈

mc~Rj

∣

∣

∣

∑

l 6=i

Ul,a

∣

∣

∣na~Ri

〉

= 0, (C.18)

e−i~k·~νc
∑

i

ei~k·~Rji

〈

mc~Rj

∣

∣

∣

∑

l 6=j

Ul,c

∣

∣

∣na~Ri

〉

= 0. (C.19)

The second term in RHS of (C.16), however, clearly fulfils two center integral re-

quirment, therefore, definding,

Uac
ij =

1

2
(Ui,a + Uj,c) ,

and treating nearest neighbor interaction, only four terms survives,

e−i~k·~νc
∑

i

ei~k·~Rji

〈

mc~Rj

∣

∣

∣Uac
ij

∣

∣

∣na~Ri

〉

= ei~k·(~Rji−~νc)
〈

mc~Rj

∣

∣

∣Uac
ij

∣

∣

∣na~Ri

〉

δ~Rji,0

+ ei~k·(~Rji−~νc)
〈

mc~Rj

∣

∣

∣Uac
ij

∣

∣

∣na~Ri

〉

δ~Rji,[aL
2

0
aL
2

]

+ ei~k·(~Rji−~νc)
〈

mc~Rj

∣

∣

∣Uac
ij

∣

∣

∣na~Ri

〉

δ~Rji,[0 aL
2

aL
2

]

+ ei~k·(~Rji−~νc)
〈

mc~Rj

∣

∣

∣Uac
ij

∣

∣

∣na~Ri

〉

δ~Rji,[aL
2

aL
2

0].

(C.20)

The four terms in (C.20) correspond to anions at following lattice points,

~Rji = [0 0 0] ;

~Rji =
[

aL

2
0
aL

2

]

;

~Rji =
[

0
aL

2

aL

2

]

;

~Rji =
[

aL

2

aL

2
0
]

.
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and are the nearest-neighbors of the cation associated to j-th lattice point. The

relative position of these four anions relative to the cation are,

~x0 =
(

+
ax

4
,+

ay

4
,+

az

4

)

(C.21)

~x1 =
(

+
ax

4
,−ay

4
,−az

4

)

~x2 =
(

−ax

4
,+

ay

4
,−az

4

)

~x3 =
(

−ax

4
,−ay

4
,+

az

4

)

Equation (C.20) can now be expressed as,

〈

mc~k
∣

∣

∣H
∣

∣

∣na~k
〉

= e−i~k·~x0

〈

mc~Rj

∣

∣

∣Uac
i,j

∣

∣

∣na~Ri

〉

δ~Rji,0

+ e−i~k·~x1

〈

mc~Rj

∣

∣

∣Uac
i,j

∣

∣

∣na~Ri

〉

δ~Rji,[0 aL
2

aL
2

]

+ e−i~k·~x2

〈

mc~Rj

∣

∣

∣Uac
i,j

∣

∣

∣na~Ri

〉

δ~Rji,[aL
2

0
aL
2

]

+ e−i~k·~x3

〈

mc~Rj

∣

∣

∣Uac
i,j

∣

∣

∣na~Ri

〉

δ~Rji,[aL
2

aL
2

0]. (C.22)

Similarly, it follows

〈

ma~k
∣

∣

∣H
∣

∣

∣ma~k
〉

= ei~k·~x0

〈

ma~Rj

∣

∣

∣Uac
i,j

∣

∣

∣nc~Ri

〉

δ~Rji,0

+ ei~k·~x1

〈

ma~Rj

∣

∣

∣Uac
i,j

∣

∣

∣nc~Ri

〉

δ~Rji,[0−aL
2
−aL

2
]

+ ei~k·~x2

〈

ma~Rj

∣

∣

∣Uac
i,j

∣

∣

∣nc~Ri

〉

δ~Rji,[−aL
2

0−aL
2

]

+ ei~k·~x3

〈

ma~Rj

∣

∣

∣Uac
i,j

∣

∣

∣nc~Ri

〉

δ~Rji,[−aL
2
−aL

2
0]. (C.23)

Now, due to crystal symmetry, the four matrix elements in RHS of (C.22) or (C.23)

are equal in magnitude, but may differ in signs due to the relative position of neigh-

boring cations with respect to the anion. They can therefore, be combined and

written as,

Hac
mn

(

~k
)

=
〈

ma~k
∣

∣

∣H
∣

∣

∣nc~k
〉

= gi

(

~k
)

V ac
mn, (C.24)

where,

V ac
mn =

〈

ma~Ri

∣

∣

∣Ui,a

∣

∣

∣nc~Ri

〉

, (C.25)
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are the overlap energies, and gi

(

~k
)

takes one of the followin expressions,

4g0 = ei~k•~x0 + ei~k•~x1 + ei~k•~x2 + ei~k•~x3 (C.26)

4g1 = ei~k•~x0 + ei~k•~x1 − ei~k•~x2 − ei~k•~x3 (C.27)

4g2 = ei~k•~x0 − ei~k•~x1 + ei~k•~x2 − ei~k•~x3 (C.28)

4g3 = ei~k•~x0 − ei~k•~x1 − ei~k•~x2 + ei~k•~x3 (C.29)

The Hamiltonian in (C.7) can now be expressed in the Bloch sum basis of (C.2) as,

H =







[Haa] [Hac]

[Hca] [Hcc]





 . (C.30)

Since spin-orbit interaction, which couples orbitals on same atomic site, has not been

treated so far, the diagonal blocs of (C.30) are diagonal matrices with the on-site

energies of the orbials on the diagonals.

[Haa] =

































































Ea
s

Ea
p

Ea
p

Ea
p

Ea
s∗

Ea
d

Ea
d

Ea
d

Ea
d

Ea
d

































































. (C.31)

[Hcc] has a similar structure, except the diagonal elements are on-site energies of

cationic orbitals, which are different from those of anion in III-V semiconductors,

but are same for elemental semiconductors such as silicon or germanium. The off-

diagonal bloc, [Hac], is however a dense 10 × 10 matrix, written in terms of 5 × 5

blocs

[Hac] =







[

Hac
sp3s∗−sp3s∗

] [

Hac
sp3s∗−d5

]

[

Hac
d5−sp3s∗

] [

Hac
d5−d5

]





 . (C.32)



153

where

[

Hac
sp3s∗−sp3s∗

]

=





























V ac
s,sg0 V ac

s,xg1 V ac
s,yg2 V ac

s,zg3 V ac
s,s∗g0

V ac
x,sg1 V ac

x,xg0 V ac
x,yg3 V ac

x,zg2 V ac
x,s∗g1

V ac
y,sg2 V ac

y,xg3 V ac
y,yg0 V ac

y,zg1 V ac
y,s∗g2

V ac
z,sg3 V ac

z,xg2 V ac
z,yg1 V ac

z,zg0 V ac
z,s∗g3

V ac
s∗,sg0 V ac

s∗,xg1 V ac
s∗,yg2 V ac

s∗,zg3 V ac
s∗,s∗g0





























, (C.33)

[

Hac
sp3s∗−d5

]

=





























V ac
s,xyg0 V ac

s,yzg3 V ac
s,zxg1 V ac

s,x2−y2g2 V ac
s,3z2−r2g0

V ac
x,xyg1 V ac

x,yzg2 V ac
x,zxg0 V ac

x,x2−y2g3 V ac
x,3z2−r2g1

V ac
y,xyg2 V ac

y,yzg1 V ac
y,zxg3 V ac

y,x2−y2g0 V ac
y,3z2−r2g2

V ac
z,xyg3 V ac

z,yzg0 V ac
z,zxg2 V ac

z,x2−y2g1 V ac
z,3z2−r2g3

V ac
s∗,xyg0 V ac

s∗,yzg3 V ac
s∗,zxg1 V ac

s∗,x2−y2g2 V ac
s∗,3z2−r2g0





























, (C.34)

[

Hac
d5−sp3s∗

]

=





























V ac
xy,sg0 V ac

xy,xg1 V ac
xy,yg2 V ac

xy,zg3 V ac
xy,s∗g0

V ac
yz,sg3 V ac

yz,xg2 V ac
yz,yg1 V ac

yz,zg0 V ac
yz,s∗g3

V ac
zx,sg1 V ac

zx,xg0 V ac
zx,yg3 V ac

zx,zg2 V ac
zx,s∗g1

V ac
x2−y2,sg2 V ac

x2−y2,xg3 V ac
x2−y2,yg0 V ac

x2−y2,zg1 V ac
x2−y2,s∗g2

V ac
3z2−r2,sg0 V ac

3z2−r2,xg1 V ac
3z2−r2,yg2 V ac

3z2−r2,zg3 V ac
3z2−r2,s∗g0





























,

(C.35)

and

[

Hac
d5−d5

]

=





























V ac
xy,xyg0 V ac

xy,yzg3 V ac
xy,zxg1 V ac

xy,x2−y2g2 V ac
xy,3z2−r2g0

V ac
yz,xyg3 V ac

yz,yzg0 V ac
yz,zxg2 V ac

yz,x2−y2g1 V ac
yz,3z2−r2g3

V ac
zx,xyg1 V ac

zx,yzg2 V ac
zx,zxg0 V ac

zx,x2−y2g3 V ac
zx,3z2−r2g1

V ac
x2−y2,xyg2 V ac

x2−y2,yzg1 V ac
x2−y2,zxg3 V ac

x2−y2,x2−y2g0 V ac
x2−y2,3z2−r2g2

V ac
3z2−r2,xyg0 V ac

3z2−r2,yzg3 V ac
3z2−r2,zxg1 V ac

3z2−r2,x2−y2g2 V ac
3z2−r2,3z2−r2g0





























.

(C.36)

The for i ∈ {0, 1, 2, 3}, the gi factors with each terms obtained from a similar Hamil-

tonian in [135]. Finally, since tight-binding Hamiltonian, H, in (C.30) must be

Harmitian, it follows

[Hca] = [Hac] .
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C.2 Overlap Mtrix Elements from Slater-Koster Two-Center-Integrals

In this section, the overlap matrix elements, V ac
i,j , are expressed in terms of the

Slater-Koster two-center energy integrals [60]. Notice that, in [60], many of the ma-

trix elements shown here, are absent. Those expressions are obtained by exploiting

the symmetry of the orbitals with respect to the directional cosines l, m, and n.

The overlap matrix elements between anion and cation possess additional symmetry

when applied to elemental semiconductors such as Si or Ge. In this special case,

both anionic and cationic sites are occupied by the same atom and switching the

order of the orbitals in the overlap matrix element does not change their magnitude,
∣

∣

∣V ac
i,j

∣

∣

∣ =
∣

∣

∣V ac
j,i

∣

∣

∣. Their signs, however, may change depending on the parity of the

directional cosines, l, m, and n.

〈sa| with all cation orbitals

V ac
s,s = Vssσ.

V ac
s,x = lVsapcσ.

V ac
s,y = mVsapcσ.

V ac
s,z = nVsapcσ.

V ac
s,xy =

√
3lmVsadcσ.

V ac
s,yz =

√
3mnVsadcσ.

V ac
s,zx =

√
3nlVsadcσ.

V ac
s,x2−y2 =

1

2

√
3
(

l2 −m2
)

Vsadcσ.

V ac
s,3z2−r2 =

[

n2 − 1

2

(

l2 +m2
)

]

Vsadcσ.

V ac
s,s∗ = Vsas∗cσ.

〈pxa
| with all cation orbitals

V ac
x,s = −lVscpaσ.

V ac
x,x = l2Vppσ +

(

1 − l2
)

Vppπ.
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V ac
x,y = lm (Vppσ − Vppπ) .

V ac
x,z = nl (Vppσ − Vppπ) .

V ac
x,xy =

√
3l2mVpadcσ +m

(

1 − 2l2
)

Vpadcπ.

V ac
x,yz = lmn

(√
3Vpadcσ − 2Vpadcπ

)

.

V ac
x,zx =

√
3nl2Vpadcσ + n

(

1 − 2l2
)

Vpadcπ.

V ac
x,x2−y2 =

1

2

√
3l
(

l2 −m2
)

Vpadcσ + l
[

1 −
(

l2 −m2
)]

Vpadcπ.

V ac
x,3z2−r2 = l

[

n2 − 1

2

(

l2 +m2
)

]

Vpadcσ −
√

3ln2Vpadcπ.

V ac
x,s∗ = −lVs∗cpaσ.

〈pya
| with all cation orbitals 〈pya

| with all cation orbitals

V ac
y,s = −mVscpaσ.

V ac
y,x = ml (Vppσ − Vppπ) .

V ac
y,y = m2Vppσ +

(

1 −m2
)

Vppπ.

V ac
y,z = mn (Vppσ − Vppπ) .

V ac
y,xy =

√
3lm2Vpadcσ + l

(

1 − 2m2
)

Vpadcπ.

V ac
y,yz =

√
3nm2Vpadcσ + n

(

1 − 2m2
)

Vpadcπ.

V ac
y,zx = lmn

(√
3Vpadcσ − 2Vpadcπ

)

.

V ac
y,x2−y2 =

1

2

√
3m

(

l2 −m2
)

Vpadcσ −m
[

1 +
(

l2 −m2
)]

Vpadcπ.

V ac
y,3z2−r2 = m

[

n2 − 1

2

(

l2 +m2
)

]

Vpadcσ −
√

3mn2Vpadcπ.

V ac
y,s∗ = −mVs∗cpaσ.

〈pza
| with all cation orbitals

V ac
z,s = −nVscpaσ.

V ac
z,x = nl (Vppσ − Vppπ) .
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V ac
z,y = nm (Vppσ − Vppπ) .

V ac
z,z = n2Vppσ +

(

1 − n2
)

Vppπ.

V ac
z,xy = lmn

(√
3Vpadcσ − 2Vpadcπ

)

.

V ac
z,yz =

√
3mn2Vpadcσ +m

(

1 − 2n2
)

Vpadcπ.

V ac
z,zx =

√
3ln2Vpadcσ + l

(

1 − 2n2
)

Vpadcπ.

V ac
z,x2−y2 =

1

2

√
3n
(

l2 −m2
)

Vpadcσ − n
(

l2 −m2
)

Vpadcπ.

V ac
z,3z2−r2 = n

[

n2 − 1

2

(

l2 +m2
)

]

Vpadcσ +
√

3n
(

l2 +m2
)

Vpadcπ.

V ac
z,s∗ = −nVs∗cpaσ.

〈dxya
| with all cation orbitals

V ac
xy,s =

√
3lmVscdaσ.

V ac
xy,x = −

√
3l2mVpcdaσ −m

(

1 − 2l2
)

Vpcdaπ.

V ac
xy,y = −

√
3lm2Vpcdaσ − l

(

1 − 2m2
)

Vpcdaπ.

V ac
xy,z = −lmn

(√
3Vpcdaσ − 2Vpcdaπ

)

.

V ac
xy,xy = 3l2m2Vddσ +

(

l2 +m2 − 4l2m2
)

Vddπ +
(

n2 + l2m2
)

Vddδ.

V ac
xy,yz = 3lm2nVddσ + nl

(

1 − 4m2
)

Vddπ + nl
(

m2 − 1
)

Vddδ.

V ac
xy,zx = 3l2mnVddσ +mn

(

1 − 4l2
)

Vddπ +mn
(

l2 − 1
)

Vddδ.

V ac
xy,x2−y2 =

3

2
lm

(

l2 −m2
)

Vddσ + 2lm
(

m2 − l2
)

Vddπ +
1

2
lm

(

l2 −m2
)

Vddδ.

V ac
xy,3z2−r2 =

√
3lm

[

n2 − 1

2

(

l2 +m2
)

]

Vddσ − 2
√

3lmn2Vddπ +
1

2

√
3lm

(

1 + n2
)

Vddδ.

V ac
xy,s∗ =

√
3lmVs∗cdaσ.

〈d(yz)a

∣

∣

∣ with all cation orbitals

V ac
yz,s =

√
3mnVscdaσ.

V ac
yz,x = −lmn

(√
3Vpcdaσ − 2Vpcdaπ

)

.
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V ac
yz,y = −

√
3nm2Vpcdaσ − n

(

1 − 2m2
)

Vpcdaπ.

V ac
yz,z = −

√
3mn2Vpcdaσ −m

(

1 − 2n2
)

Vpcdaπ.

V ac
yz,xy = 3lm2nVddσ + nl

(

1 − 4m2
)

Vddπ + nl
(

m2 − 1
)

Vddδ.

V ac
yz,yz = 3m2n2Vddσ +

(

m2 + n2 − 4m2n2
)

Vddπ +
(

l2 +m2n2
)

Vddδ.

V ac
yz,zx = 3lmn2Vddσ + lm

(

1 − 4n2
)

Vddπ + lm
(

n2 − 1
)

Vddδ.

V ac
yz,x2−y2 =

3

2
mn

(

l2 −m2
)

Vddσ −mn
[

1 + 2
(

l2 −m2
)]

Vddπ

+mn
[

1 +
1

2

(

l2 −m2
)

]

Vddδ.

V ac
yz,3z2−r2 =

√
3mn

[

n2 − 1

2

(

l2 +m2
)

]

Vddσ −
√

3mn
(

l2 +m2 − n2
)

Vddπ

−1

2

√
3mn

(

l2 +m2
)

Vddδ.

V ac
yz,s∗ =

√
3mnVs∗cdaσ.

〈d(zx)a

∣

∣

∣ with all cation orbitals

V ac
zx,s =

√
3nlVscdaσ.

V ac
zx,x = −

√
3l2nVpcdaσ − n

(

1 − 2l2
)

Vpcdaπ.

V ac
zx,y = −lmn

(√
3Vpcdaσ − 2Vpcdaπ

)

.

V ac
zx,z = −

√
3ln2Vpcdaσ − l

(

1 − 2n2
)

Vpcdaπ.

V(zx)a,(xy)c
= 3l2mnVddσ +mn

(

1 − 4l2
)

Vddπ +mn
(

l2 − 1
)

Vddδ.

V ac
zx,yz = 3lmn2Vddσ + lm

(

1 − 4n2
)

Vddπ + lm
(

n2 − 1
)

Vddδ.

V ac
zx,zx = 3l2n2Vddσ +

(

l2 + n2 − 4l2n2
)

Vddπ +
(

m2 + l2n2
)

Vddδ.

V ac
zx,x2−y2 =

3

2
nl
(

l2 −m2
)

Vddσ + nl
[

1 − 2
(

l2 −m2
)]

Vddπ

−nl
[

1 − 1

2

(

l2 −m2
)

]

Vddδ.

V ac
zx,3z2−r2 =

√
3nl

[

n2 − 1

2

(

l2 +m2
)

]

Vddσ +
√

3nl
(

l2 +m2 − n2
)

Vddπ

−1

2

√
3nl

(

l2 +m2
)

Vddδ.

V ac
zx,s∗ =

√
3nlVs∗cdaσ.
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〈d(x2−y2)a

∣

∣

∣ with all cation orbitals

V ac
x2−y2,s =

1

2

√
3
(

l2 −m2
)

Vscdaσ.

V ac
x2−y2,x = −1

2

√
3l
(

l2 −m2
)

Vpcdaσ − l
[

1 −
(

l2 −m2
)]

Vpcdaπ.

V ac
x2−y2,y = −1

2

√
3m

(

l2 −m2
)

Vpcdaσ +m
[

1 +
(

l2 −m2
)]

Vpcdaπ.

V ac
x2−y2,z = −1

2

√
3n
(

l2 −m2
)

Vpcdaσ + n
(

l2 −m2
)

Vpcdaπ.

V ac
x2−y2,xy =

3

2
lm

(

l2 −m2
)

Vddσ + 2lm
(

m2 − l2
)

Vddπ +
1

2
lm

(

l2 −m2
)

Vddδ.

V ac
x2−y2,yz =

3

2
mn

(

l2 −m2
)

Vddσ −mn
[

1 + 2
(

l2 −m2
)]

Vddπ

+mn
[

1 +
1

2

(

l2 −m2
)

]

Vddδ.

V ac
x2−y2,zx =

3

2
nl
(

l2 −m2
)

Vddσ + nl
[

1 − 2
(

l2 −m2
)]

Vddπ

−nl
[

1 − 1

2

(

l2 −m2
)

]

Vddδ.

V ac
x2−y2,x2−y2 =

3

4

(

l2 −m2
)2
Vddσ +

[

l2 +m2 −
(

l2 −m2
)2
]

Vddπ

+
[

n2 +
1

4

(

l2 −m2
)2
]

Vddδ.

V ac
x2−y2,3z2−r2 =

1

2

√
3
(

l2 −m2
)

[

n2 − 1

2

(

l2 +m2
)

]

Vddσ +
√

3n2
(

m2 − l2
)

Vddπ

+
1

4

√
3
(

1 + n2
) (

l2 −m2
)

Vddδ.

V ac
x2−y2,s∗ =

1

2

√
3
(

l2 −m2
)

Vs∗cdaσ.

〈d3z2−r2| with all cation orbitals

V ac
3z2−r2,s =

[

n2 − 1

2

(

l2 +m2
)

]

Vscdaσ.

V ac
3z2−r2,x = −l

[

n2 − 1

2

(

l2 +m2
)

]

Vpcdaσ +
√

3ln2Vpcdaπ.

V ac
3z2−r2,y = −m

[

n2 − 1

2

(

l2 +m2
)

]

Vpcdaσ +
√

3mn2Vpcdaπ.

V ac
3z2−r2,z = −n

[

n2 − 1

2

(

l2 +m2
)

]

Vpcdaσ −
√

3
(

l2 +m2
)

Vpcdaπ.

V ac
3z2−r2,xy =

√
3lm

[

n2 − 1

2

(

l2 +m2
)

]

Vddσ − 2
√

3lmn2Vddπ

+
1

2

√
3lm

(

1 + n2
)

Vddδ.
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V ac
3z2−r2,yz =

√
3mn

[

n2 − 1

2

(

l2 +m2
)

]

Vddσ +
√

3mn
(

l2 +m2 − n2
)

Vddπ

−1

2

√
3mn

(

l2 +m2
)

Vddδ.

V ac
3z2−r2,zx =

√
3nl

[

n2 − 1

2

(

l2 +m2
)

]

Vddσ +
√

3nl
(

l2 +m2 − n2
)

Vddπ

−1

2

√
3nl

(

l2 +m2
)

Vddδ.

V ac
3z2−r2,x2−y2 =

1

2

√
3
(

l2 −m2
)

[

n2 − 1

2

(

l2 +m2
)

]

Vddσ +
√

3n2
(

m2 − l2
)

Vddπ

+
1

4

√
3
(

1 + n2
) (

l2 −m2
)

Vddδ.

V ac
3z2−r2,3z2−r2 =

[

n2 − 1

2

(

l2 +m2
)

]2

Vddσ + 3n2
(

l2 +m2
)

Vddπ

+
3

4

(

l2 +m2
)2
Vddδ.

V ac
3z2−r2,s∗ =

1

2

√
3
(

l2 −m2
)

Vs∗cdaσ.

〈s∗a| with all cation orbitals

V ac
s∗,s = Vs∗ascσ.

V ac
s∗,x = lVs∗apcσ.

V ac
s∗,y = mVs∗apcσ.

V ac
s∗,z = nVs∗apcσ.

V ac
s∗,xy =

√
3lmVs∗adcσ.

V ac
s∗,yz =

√
3mnVs∗adcσ.

V ac
s∗,zx =

√
3nlVs∗adcσ.

V ac
s∗,x2−y2 =

1

2

√
3
(

l2 −m2
)

Vs∗adcσ.

V ac
s∗,3z2−r2 =

[

n2 − 1

2

(

l2 +m2
)

]

Vs∗adcσ.

V ac
s∗,s∗ = Vs∗as∗cσ.

Using these overlap matrix elements, the overlap energy bloc becomes

[Hac] =
[

Ū1, Ū2

]

, (C.37)
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where

Ū1 =

































































V ac
s,sg0 V ac

s,xg1 V ac
s,yg2 V ac

s,zg3 V ac
s,s∗g0

V ac
x,sg1 V ac

x,xg0 V ac
x,yg3 V ac

x,zg2 V ac
x,s∗g1

V ac
y,sg2 V ac

y,xg3 V ac
y,yg0 V ac

y,zg1 V ac
y,s∗g2

V ac
z,sg3 V ac

z,xg2 V ac
z,yg1 V ac

z,zg0 V ac
z,s∗g3

V ac
s∗,sg0 V ac

s∗,xg1 V ac
s∗,yg2 V ac

s∗,zg3 V ac
s∗,s∗g0

V ac
xy,sg0 V ac

xy,xg1 V ac
xy,yg2 V ac

xy,zg3 V ac
xy,s∗g0

V ac
yz,sg3 V ac

yz,xg2 V ac
yz,yg1 V ac

yz,zg0 V ac
yz,s∗g3

V ac
zx,sg1 V ac

zx,xg0 V ac
zx,yg3 V ac

zx,zg2 V ac
zx,s∗g1

V ac
x2−y2,sg2 V ac

x2−y2,xg3 V ac
x2−y2,yg0 V ac

x2−y2,zg1 V ac
x2−y2,s∗g2

V ac
3z2−r2,sg0 V ac

3z2−r2,xg1 V ac
3z2−r2,yg2 V ac

3z2−r2,zg3 V ac
3z2−r2,s∗g0

































































(C.38)

and,

Ū1 =

































































V ac
s,xyg0 V ac

s,yzg3 V ac
s,zxg1 V ac

s,x2−y2g2 V ac
s,3z2−r2g0

V ac
x,xyg1 V ac

x,yzg2 V ac
x,zxg0 V ac

x,x2−y2g3 V ac
x,3z2−r2g1

V ac
y,xyg2 V ac

y,yzg1 V ac
y,zxg3 V ac

y,x2−y2g0 V ac
y,3z2−r2g2

V ac
z,xyg3 V ac

z,yzg0 V ac
z,zxg2 V ac

z,x2−y2g1 V ac
z,3z2−r2g3

V ac
s∗,xyg0 V ac

s∗,yzg3 V ac
s∗,zxg1 V ac

s∗,x2−y2g2 V ac
s∗,3z2−r2g0

V ac
xy,xyg0 V ac

xy,yzg3 V ac
xy,zxg1 V ac

xy,x2−y2g2 V ac
xy,3z2−r2g0

V ac
yz,xyg3 V ac

yz,yzg0 V ac
yz,zxg2 V ac

yz,x2−y2g1 V ac
yz,3z2−r2g3

V ac
zx,xyg1 V ac

zx,yzg2 V ac
zx,zxg0 V ac

zx,x2−y2g3 V ac
zx,3z2−r2g1

V ac
x2−y2,xyg2 V ac

x2−y2,yzg1 V ac
x2−y2,zxg3 V ac

x2−y2,x2−y2g0 V ac
x2−y2,3z2−r2g2

V ac
3z2−r2,xyg0 V ac

3z2−r2,yzg3 V ac
3z2−r2,zxg1 V ac

3z2−r2,x2−y2g2 V ac
3z2−r2,3z2−r2g0

































































.

(C.39)

C.3 Treating Spin-orbit Coupling in Tight-binding Formalism

In Sec. C.1, tight-binding Hamiltonian has been derived without treating the

spin-orbit (SO) coupling. In this section, spin-orbit Hamiltonian matrix elements is

be calculated in sp3d5s∗ atomic orbital basis. In practice, the spin-orbit interaction
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of d type orbitals are usually ignored for semiconductors, since they don’t have any

effect on the bandstructure near the band gap, and therefore, are not important.

Spin-orbit interaction happens between orbitals located on the same atom, and not

between orbitals sitting on neighboring atoms. Therefore, SO coupling not only adds

off-diagonal elements to the otherwise diagonal same spin blocs, [Haa] and [Hcc], but

also adds matrix elements between opposit spin orbitals located on the same atom.

The tight-binding Hamiltonian, without SO coupling, can be written as,

HNo Spin =



























[Ha↑a↑] [Ha↑c↑]

[Hc↑a↑] [Hc↑c↑]













[Ha↓a↓] [Ha↓c↓]

[Ha↓a↓] [Ha↓c↓]







.





















(C.40)

wherer no matrix elements are present between the up and down spin orbitals. For

clarity, the blocs of (C.40) can be rearranged to the following form,

HNo Spin =



























[Ha↑a↑]

[Ha↓a↓]













[Ha↑c↑]

[Ha↓c↓]













[Hc↑a↑]

[Hc↓a↓]













[Hc↑c↑]

[Hc↓c↓]



























(C.41)

where the large diagonal blocs contain Hamiltonian blocs from same atom, but with

opposit spins. Since SO coupling present only between orbitals located on the same

atom, the SO Hamiltonian, HSO, has the following structure,

HSO =



























[HSO ↑↑] [HSO ↑↓]
[HSO ↓↑] [HSO ↓↓]













[HSO ↑↑] [HSO ↑↓]
[HSO ↓↑] [HSO ↓↓]



























(C.42)

The various blocs of (C.41) are now calculated. With the nuclear electric field ~E

and momentum operator ~p, spin-orbit Hamiltonian, HSO, is expressed as follows,

HSO =
qh̄

4m2c2
~σ ·

(

~E × ~p
)
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=
qh̄

4m2c2







(ExpyEypx) (Eypz − Ezpy) − i (Ezpx − Expz)

(Eypz − Ezpy) + i (Ezpx − Expz) − (Expy − Eypx)







=







SO ↑↑ SO ↑↓
SO ↓↑ SO ↓↓





 (C.43)

where px = −ih̄∂/∂x, py = −ih̄∂/∂y and pz = −ih̄∂/∂z. This HSO is then be

expressed in atomistic orbital basis.

〈px ↑|HSO |py ↑〉 =
[

〈px ↑| 0

]







SO ↑↑ SO ↑↓
SO ↓↑ SO ↓↓













|py ↑〉
0







=
qh̄

4m2c2
〈px ↑| (Expy − Eypx) |py ↑〉

= −i qh̄2

4m2c2
〈px ↑|

(

Ex
∂

∂y
− Ey

∂

∂x

)

|py ↑〉

= −iδ

〈py ↑|HSO |px ↑〉 directly follows from the Hermitian nature of HSO

〈py ↑|HSO |px ↑〉 = 〈px ↑|HSO |py ↑〉†

= iδ

In order to evaluate other SO matrix elements, the following information becomes

useful:

1. the electric field, E, and the p-orbitals are odd spatial functions along their

respective axes,

2. product of even number of odd functions is even function, odd number of odd

function is odd function, and any number of even function is a even function,

and finally,

3. derivative of an even function is an odd function and vice versa.

Only those matrix elements, where even functions along all spatial axes results,

produce nonzero values. Using these conditions other SO matrix elements can also

be evaulated where only the following SO matrix elements survive:

〈px ↓|HSO |py ↓〉 = iδ
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〈py ↓|HSO |px ↓〉 = −iδ

〈px ↑|HSO |pz ↓〉 = δ

〈pz ↓|HSO |px ↑〉 = δ

〈py ↑|HSO |pz ↓〉 = −iδ

〈pz ↓|HSO |py ↑〉 = iδ

〈pz ↑|HSO |px ↓〉 = −δ

〈px ↓|HSO |pz ↑〉 = −δ

〈pz ↑|HSO |py ↓〉 = iδ

〈py ↓|HSO |pz ↑〉 = −iδ.

Remaining matrix elements are zero by symmetry consideration. Now, from (C.42),

the spin-orbit Hamiltonian blocs between the sp3s∗ orbitals can be written as,

[HSO ↑↑]sp3s∗,sp3s∗ =





























0 0 0 0 0

0 0 −iδ 0 0

0 +iδ 0 0 0

0 0 0 0 0

0 0 0 0 0





























. (C.44)

[HSO ↓↓]sp3s∗,sp3s∗ =





























0 0 0 0 0

0 0 +iδ 0 0

0 −iδ 0 0 0

0 0 0 0 0

0 0 0 0 0





























. (C.45)

[HSO ↑↓]sp3s∗,sp3s∗ =





























0 0 0 0 0

0 0 0 +δ 0

0 0 0 −iδ 0

0 −δ +iδ 0 0

0 0 0 0 0





























. (C.46)
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[HSO ↓↑]sp3s∗,sp3s∗ =





























0 0 0 0 0

0 0 0 −δ 0

0 0 0 −iδ 0

0 +δ +iδ 0 0

0 0 0 0 0





























. (C.47)

The SO blocs in (C.42) now becomes,

[HSO ↑↑] =







[HSO ↑↑]sp3s∗,sp3s∗ [HSO ↑↑]sp3s∗,d5

[HSO ↑↑]d5,sp3s∗ [HSO ↑↑]d5,d5





 , (C.48)

[HSO ↑↓] =







[HSO ↑↓]sp3s∗,sp3s∗ [HSO ↑↓]sp3s∗,d5

[HSO ↑↓]d5,sp3s∗ [HSO ↑↓]d5,d5





 , (C.49)

[HSO ↓↑] =







[HSO ↓↑]sp3s∗,sp3s∗ [HSO ↓↑]sp3s∗,d5

[HSO ↓↑]d5,sp3s∗ [HSO ↓↑]d5,d5





 , (C.50)

[HSO ↓↓] =







[HSO ↓↓]sp3s∗,sp3s∗ [HSO ↓↓]sp3s∗,d5

[HSO ↓↓]d5,sp3s∗ [HSO ↓↓]d5,d5





 , (C.51)

where, except sp3s∗ − sp3s∗ blocs, all other blocs are 5 × 5 zero matrices. Finally,

the Hamiltonian with SO coupling are the sum of (C.41) and (C.42),

HTotal = HNoSpin +HSO. (C.52)

C.4 Application to Finite Dimensional Structures: UTB MOSFETs

In Sec. C.1, bulk tight-binding Hamiltonian was derived under the assumption

of infinite lattice periodicity along all three orthogonal spatial axes. However, real

devices are finite dimensional where along one or more directions infinite periodicity

is absent. The wave vector, k, does not have any physical significance along these

finite dimensional directions. In order to apply tight-binding approach in nanostruc-

tures, in this section we will describe how to discretize the bulk Hamiltonian in one

or more special directions.
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To illustrate the technique of discretization of tight-binding Hamiltonian, we

consider an ultra-thin-body device with the thickness along [001] direction, which is

the Z-axis of the device coordinate system. Other two axes are are X, transport adn

Y width directions, which are along [100] and [010] crystallographic orientations,

respectively. Compared to thickness, along both X and Y the device is long enough

so that infinite periodicity along these axes are assumed. We will show next how to

write the tight-binding Hamiltonian for this finite dimensional system where along

Z we need to represent the device atomistically, however, along X and Y plane wave

states remains a good assumption.

We first recall that the four terms in each of the expressions in (C.26–C.29)

represent the interaction between an anion with its four neighboring cations. Thus,

ei~k•~x0 represents the interaction between an anion and a cation where the cation

is located ~x0 with respect to the anion. Similarly, the other three terms represent

similar interactions of the anion with cations located at ~x1, ~x2, and ~x3, respectively.

This bond orientation dependence of the terms become clear if we write (C.32) (or

equivalently (C.37)) in the following form,

[Hac] = XV e
i~k·~x0 +XUe

i~k·~x1 + YUe
i~k·~x2 + YV e

i~k·~x3. (C.53)

In (C.53), XV is obtaine by replacing g0, g1, g2 and g3 by +1, and therefore,

XV =

































































+• +• +• +• +• +• +• +• +• +•
+• +• +• +• +• +• +• +• +• +•
+• +• +• +• +• +• +• +• +• +•
+• +• +• +• +• +• +• +• +• +•
+• +• +• +• +• +• +• +• +• +•
+• +• +• +• +• +• +• +• +• +•
+• +• +• +• +• +• +• +• +• +•
+• +• +• +• +• +• +• +• +• +•
+• +• +• +• +• +• +• +• +• +•
+• +• +• +• +• +• +• +• +• +•

































































. (C.54)
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Each • in (C.54) represents the corresponding V ac
ij in (C.37). Similarly, XU is ob-

tained by replacing g0 and g1 by +1, and g2 and g3 by -1 in (C.37). Thus we get,

XU =

































































+• +• −• −• +• +• −• +• −• +•
+• +• −• −• +• +• −• +• −• +•
−• −• +• +• −• −• +• −• +• −•
−• −• +• +• −• −• +• −• +• −•
+• +• −• −• +• +• −• +• −• +•
+• +• −• −• +• +• −• +• −• +•
−• −• +• +• −• −• +• −• +• −•
+• +• −• −• +• +• −• +• −• +•
−• −• +• +• −• −• +• −• +• −•
+• +• −• −• +• +• −• +• −• +•

































































. (C.55)

The third matrix, YU is obtained by replacing g0 and g2 by +1, and g1 and g3 by -1

in (C.37). Thus we get,

YU =

































































+• −• +• −• +• +• −• −• +• +•
−• +• −• +• −• −• +• +• −• −•
+• −• +• −• +• +• −• −• +• +•
−• +• −• +• −• −• +• +• −• −•
+• −• +• −• +• +• −• −• +• +•
+• −• +• −• +• +• −• −• +• +•
−• +• −• +• −• −• +• +• −• −•
−• +• −• +• −• −• +• +• −• −•
+• −• +• −• +• +• −• −• +• +•
+• −• +• −• +• +• −• −• +• +•

































































. (C.56)
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Finally, the fourth matrix, YV , is obtained by replacing g0 and g3 by +1, and g1 and

g2 by -1 in (C.37). Therefore,

YV =

































































+• −• −• +• +• +• +• −• −• +•
−• +• +• −• −• −• −• +• +• −•
−• +• +• −• −• −• −• +• +• −•
+• −• −• +• +• +• +• −• −• +•
+• −• −• +• +• +• +• −• −• +•
+• −• −• +• +• +• +• −• −• +•
+• −• −• +• +• +• +• −• −• +•
−• +• +• −• −• −• −• +• +• −•
−• +• +• −• −• −• −• +• +• −•
+• −• −• +• +• +• +• −• −• +•

































































. (C.57)

Now for a thin film, where the thickness is along [001](≡ Z), the translation sym-

metry is broken along Z. In order to treat this, we express (C.53) as,

[Hac] = XV e
i~k·~x0 +XUe

i~k·~x1 + YUe
i~k·~x2 + YV e

i~k·~x3

= XV e
ikxax/4eikyay/4eikzaz/4 +XUe

ikxax/4e−ikyay/4e−ikzaz/4

+YUe
−ikxax/4eikyay/4e−ikzaz/4 + YV e

−ikxax/4e−ikyay/4eikzaz/4

=
[

XV e
ikxax/4eikyay/4 + YV e

−ikxax/4e−ikyay/4
]

eikzaz/4

+
[

XUe
ikxax/4e−ikyay/4 + YUe

−ikxax/4eikyay/4
]

e−ikzaz/4

= [Vac] e
ikzaz/4 + [Uac] e

−ikzaz/4. (C.58)

For unstrained material, ax = ay = az = aL, but for strained material they can be

different. In (C.58), we have defined

[Vac] = XV e
ikxax/4eikyay/4 + YV e

−ikxax/4e−ikyay/4, (C.59)

[Uac] = XUe
ikxax/4e−ikyay/4 + YUe

−ikxax/4eikyay/4, (C.60)

both of which are function of in-plane wavevector kx and ky. In thin-bodies with

thickness along Z, kz does not have any physical significance, and after an inverse
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Fourier transformation along Z, as shown in [124], the expontial term in kz drops out

in (C.58). As a result, [Vac] becomes the coupling matrix of an anion layer with the

neighboring cation layer along [001] or +Z, while, [Uac] becomes the coupling of an

anion layer with the neighboring cation layer along [001̄] or −Z direction. Knowing

the coupling matrices between successive atomic layers, it is straightforward to write

the thin-film Hamiltonian discretized along [001] orientation as

HTF (kx, ky) =





























[Haa] [Vac]

[Vac]
† [Hcc] [Uac]

†

[Uac] [Haa] [Vac]
. . .

. . .
. . .

. . .

. . .
. . .

. . .





























. (C.61)

The tridiagonal nature of the thin-film Hamiltonian implies that each atomic layer,

cation or anion, is connected with two neighboring atomic layer of opposit type, one

above and one below. Size of each bloc is Nb × Nb where Nb is the size of atomic

orbital basis set. Number of diagonal blocs in (C.61) is same as number of atomic

layers, Nz, along body thickness. The layers are arranged a− c− a− c− a− · · · in

this order. As a result, for each {kx, ky} pair, size of the Hamiltonian in (C.61) is

(NbNz)×(NbNz). Abrupt termination of Hamiltonian at the first and last elements or

the diagonal blocs cause dangling bonds and the associated surface states. Removal

of these states is discussed in Sec. C.5. Finally, since the first bloc diagonal element

in (C.61) (equivalently the bottom surface of the thin body) is assumed to be an

anionic layer, if the body consists of odd number of layers along thickness, then the

last bloc diagonal element element is also anionic. However, if the body thickness

consists of even number of layers then the last layer (top surface of thin body) is a

cationic layer.
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C.5 Passivation of Surface States in Tight-Binding Approach

C.5.1 Anion Atoms at Top and Bottom Surface

The orientations of four bonds from an anion to its neighboring cations are along

[111], [1̄1̄1], [11̄1̄] and [1̄11̄] crystalographic orientations. These bonds are primarily

formed by sp3-hybridization (linear combination) of |s〉, |px〉, |py〉 and |pz〉 orbitals

on the anion atom as [123, 136, 137],

∣

∣

∣sp3
〉

[111]
=

1

2
(|s〉 + |px〉 + |py〉 + |pz〉)

∣

∣

∣sp3
〉

[1̄1̄1]
=

1

2
(|s〉 − |px〉 − |py〉 + |pz〉)

∣

∣

∣sp3
〉

[11̄1̄]
=

1

2
(|s〉 + |px〉 − |py〉 − |pz〉)

∣

∣

∣sp3
〉

[1̄11̄]
=

1

2
(|s〉 − |px〉 + |py〉 − |pz〉) , (C.62)

where, the first two bonds are above the (001) crystal plane and the last two are

below the (001) plane. These anion-to-cation bonds of (C.62) can be written in a

matrix notation as




















|sp3〉[111]
|sp3〉[1̄1̄1]

|sp3〉[11̄1̄]

|sp3〉[1̄11̄]





















=
1

2





















1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1









































|s 〉
|px〉
|py〉
|pz〉





















(C.63)

From (C.63), the unitary operator that transforms from atomic {spxpypz} to the

hybridized |sp3〉 basis can be extracted as

[V ]A→H =
1

2





















1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1





















(C.64)
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Now, the sp3 part of the tight-binding Hamiltonian’s diagonal bloc dealing with

onsite energy of anion is,

[H]Atom =





















Eaa
s

Eaa
p

Eaa
p

Eaa
p





















(C.65)

It is straightforward to transform this on-site energy bloc, which is in the atomic

orbital basis, to the hybridized bond-orbital basis,

[H]Hybrid = [V ]A→H [H]Atom [V ]†A→H

=





















a b b b

b a b b

b b a b

b b b a





















, (C.66)

where,

a =
1

4

(

Eaa
s + 3Eaa

p

)

and b =
1

4

(

Eaa
s − Eaa

p

)

.

Bottom Interface

For an ultra-thin-body of semiconductor with film growth direction along [001],

if the bottom layer is anion type, then the two dangling bonds are |sp3〉[11̄1̄] and

|sp3〉[1̄11̄], whose energies are the third and fourth diagonal elements of (C.66). In or-

der to remove surface states due to these dangling bonds, their energies are increases

by δsp3 , which is

[H]Hybrid = [V ]A→H [H]Atom [V ]†A→H

=





















a b b b

b a b b

b b a + δsp3 b

b b b a+ δsp3





















, (C.67)
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This Hamiltonian, although surface states are removed, is still in hybrid bond basis.

Therefore, using

[H]Atom = [V ]†A→H [H]Hybrid [V ]A→H ,

the corresponding bloc in atomic basis becomes

[H]Bottom
Atom =

























Eaa
s +

δsp3

2
0 0 −δsp3

2

0 Eaa
p +

δsp3

2
−δsp3

2
0

0 −δsp3

2
Ep +

δsp3

2
0

−δsp3

2
0 0 Eaa

p +
δsp3

2

























, (C.68)

Top Interface

When the top surface is also anion type, the two dangling bonds there are |sp3〉[111]
and |sp3〉[1̄1̄1]. They correspond to the first and second diagonal elements of (C.66),

which should be raised by δsp3 to remove the associated surface states. Following the

same treatment above, the new sp3 Hamiltonian bloc for this top surface become

[H]Top
Atom =

























Eaa
s +

δsp3

2
0 0 +

δsp3

2

0 Eaa
p +

δsp3

2
+
δsp3

2
0

0 +
δsp3

2
Eaa

p +
δsp3

2
0

+
δsp3

2
0 0 Eaa

p +
δsp3

2

























, (C.69)

C.5.2 Cation Atoms at Top and Bottom Surface

In Sec. C.5.1, the technique to remove surface states due to anionic dangling

bonds at top and bottom interfaces is described. The technique can be readily

extended for cationic dangling bonds at top and bottom interfaces. The orientations

of bonds from a cation atom to its four neighboring anions are along [1̄11], [11̄1̄], [1̄1̄1̄]

and [111̄] crystallographic orientations, respectively. These bonds are also formed by

hybridization (linear combination) of s, px, py and pz orbitals as
∣

∣

∣sp3
〉

[1̄11]
=

1

2
(|s〉 − |px〉 + |py〉 + |pz〉)



172

∣

∣

∣sp3
〉

[11̄1]
=

1

2
(|s〉 + |px〉 − |py〉 + |pz〉)

∣

∣

∣sp3
〉

[1̄1̄1̄]
=

1

2
(|s〉 − |px〉 − |py〉 − |pz〉)

∣

∣

∣sp3
〉

[111̄]
=

1

2
(|s〉 + |px〉 + |py〉 − |pz〉) (C.70)

Equations in (C.70) can be written in matrix notation as





















|sp3〉[1̄11]

|sp3〉[11̄1]

|sp3〉[1̄1̄1̄]

|sp3〉[111̄]





















=
1

2





















1 −1 1 1

1 1 −1 1

1 −1 −1 −1

1 1 1 −1









































|s 〉
|px〉
|py〉
|pz〉





















(C.71)

From (C.71), the unitary operator that transforms from atomic {spxpypz} to hy-

bridized |sp3〉 basis is

[V ]A→H =
1

2





















1 −1 1 1

1 1 −1 1

1 −1 −1 −1

1 1 1 −1





















(C.72)

Now, the sp3 part of the tight-binding Hamiltonian dealing with onsite energy is,

[H]Atom =





















Ecc
s

Ecc
p

Ecc
p

Ecc
p





















(C.73)

This on-site energy bloc in atomic orbital basis, can easily be transformed in the

hybridized bond-orbital basis as,

[H]Hybrid = [V ]A→H [H]Atom [V ]†A→H

=





















a b b b

b a b b

b b a b

b b b a





















, (C.74)
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where,

a =
1

4

(

Ecc
s + 3Ecc

p

)

andb =
1

4

(

Ecc
s − Ecc

p

)

.

Bottom Interface

For an ultra-thin-body of semiconductor with film growth direction along [001],

if the bottom layer is cation type, then the two dangling bonds are |sp3〉[1̄1̄1̄] and

|sp3〉[111̄], whose energies are the third and fourth diagonal elements of (C.74). In or-

der to remove surface states due to these dangling bonds, their energies are increases

by δsp3 , which is

[H]Hybrid = [V ]A→H [H]Atom [V ]†A→H

=





















a b b b

b a b b

b b a + δsp3 b

b b b a+ δsp3





















, (C.75)

This Hamiltonian, although surface states removed, is in hybrid bond basis, there-

fore, using

[H]Atom = [V ]†A→H [H]Hybrid [V ]A→H ,

the corresponding bloc in atomic basis becomes

[H]Bottom
Atom =

























Ecc
s +

δsp3

2
0 0 −δsp3

2

0 Ecc
p +

δsp3

2
−δsp3

2
0

0 −δsp3

2
Ecc

p +
δsp3

2
0

−δsp3

2
0 0 Ecc

p +
δsp3

2

























, (C.76)

Top Interface

Similarly, for the cation type top surface, the two dangling bonds are |sp3〉[1̄11] and

|sp3〉[11̄1], and therefore, the first and second diagonal elements of (C.74) should be
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raised by δsp3 to remove the associated surface states. Following the same treatment

above, the new sp3 Hamiltonian bloc for this top surface become

[H]Top
Atom =

























Ecc
s +

δsp3

2
0 0 +

δsp3

2

0 Ecc
p +

δsp3

2
+
δsp3

2
0

0 +
δsp3

2
Ecc

p +
δsp3

2
0

+
δsp3

2
0 0 Ecc

p +
δsp3

2

























, (C.77)
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