

Network for Computational Nanotechnology

• F_T: Thermal Broadening Function

$$F_T = -\frac{df}{dE} = \frac{1}{4k_B T} \bullet \frac{1}{\cosh^2(E/2k_B T)}$$

- f_0 : Fermi Function $f_0 = 1/e^{E/k_BT} + 1$
- Small device with voltage applied, current flows when a level lies between μ_1 and μ_2

The expression that we've derived for current is only true if the bias is small.

•
$$I = \frac{2q}{\hbar} \frac{\mathbf{g}_1 \mathbf{g}_2}{\mathbf{g}_1 + \mathbf{g}_2} [f_1 - f_2]$$

$$= V \frac{2q^2}{\hbar} \frac{\mathbf{g}_1 \mathbf{g}_2}{\mathbf{g}_1 + \mathbf{g}_2} \left[\frac{-df_0}{dE} \right]_{E=\mathbf{e}_{-E_f}}$$
• Since,
$$f_0(E-\mathbf{m}_1) - f_0(E-\mathbf{m}_2) = (\mathbf{m}_1 - \mathbf{m}_2) \left[\frac{-df_0}{dE} \right]_{E=\mathbf{e}_{-E_f}}$$

Two thermal broadening functions at temperatures T_1 and T_2

- F_T is the thermal broadening with peak value $1/(4k_BT)$ $F_T = -\frac{df}{dE} = \frac{1}{4k_BT}$ $\frac{1}{\cosh^2(E/2k_BT)}$
- Area under curve is 1
- As temperature lowers, F_T becomes taller, at very low temperatures it tends to a delta function: $\lim_{T\to 0} F_T(E) = \boldsymbol{d}(E)$ G: Conductance
- $I = V \frac{2q^2}{\hbar} \frac{\mathbf{g}_1 \mathbf{g}_2}{\mathbf{g}_1 + \mathbf{g}_2} F_T(\mathbf{e} E_f)$ • Inserted into the current equation:

No Upper Limit?

• For $I = V \frac{2q^2}{\hbar} \frac{\mathbf{g}_1 \mathbf{g}_2}{\mathbf{g}_1 + \mathbf{g}_2} F_T (\mathbf{e} - E_f)$

take conductance to be:

$$G = \frac{2q^2}{\hbar} \frac{\mathbf{g}_1 \mathbf{g}_2}{\mathbf{g}_1 + \mathbf{g}_2} F_T(\mathbf{e} - E_f)$$

$$\therefore I = VG$$

Conductance as a function of gate voltage $\mathbf{e} = E_f \stackrel{|}{=} \widetilde{e} - \mathbf{a} q V_g$ • a is a fractional compensation component, 0< a <1, since an applied V_G component does not actually lower the channel energy levels by $(qV_G)eV$ (i.e. 1V will not lower the levels by 1eV)

• Conductance depends on how many levels we have between $\mu 1$ and $\mu 2$

Maximum conductance for 1 level:

$$G_{\text{max}} = \frac{2q^2}{\hbar} \frac{\boldsymbol{g}_1 \boldsymbol{g}_2}{\boldsymbol{g}_1 + \boldsymbol{g}_2} \frac{1}{4k_B T}$$

$$\left(\frac{2q^2}{\hbar}\right)$$
 = siemens; $\frac{g_1g_2}{g_1+g_2}$ = Joules; $\frac{1}{4k_BT}$ = 1/Joules

- Peak conductance occurs when e
- Let $\stackrel{\widetilde{e}}{\text{be}}$ the original unbiased level energy, thus $e = \stackrel{\circ}{e} aqV_G$
- It appears that G can increase indefinitely with respect to the ratio: $\underline{g_1g_2}$ $\overline{\boldsymbol{g}}_1 + \overline{\boldsymbol{g}}_2 = \overline{4 k_B T}$
- This is not true because of broadening which we have ignored so far.

Broadening of a level

Source _____ Drain μ_1 _____ Broadening μ_2 g_2/\hbar

When we couple to a contact we broaden the energy level in the channel.

 I also dispersioned and a

• Level loses discreteness and a broadened continuous density of states D(E) results.

$$D(E) = \frac{g/2p}{(E-e)^2 + (g/2)^2}, g = g_1 + g_2$$

 Density of states tells you the availability of states, not whether they are occupied or not.

Example of a Lorentzian Curve

D(E) is a LorentzianLorentzian characteristics:

peak value of 2/p?; which depends on ?; 1 level has an area of 1 for 1 electron

•
$$\int_{-\infty}^{\infty} D(E) dE = 1$$

- If ? is small, Lorentzian approaches delta function
- Fourier transforming D(E) we obtain: $e^{(-iet)/h} e^{-|t|/2t}$ where $t = \frac{\hbar}{g}$ can be viewed as the life time of the particle.
- Broadening in energy
 Fourier Transform

Life time in Time Domain

Current Expression including Broadening

• Current through a density of states is:

$$I = \int_{-\infty}^{\infty} dE \cdot D(E) \frac{2q}{\hbar} \frac{\mathbf{g}_1 \mathbf{g}_2}{\mathbf{g}_1 + \mathbf{g}_2} [f_1(E) - f_2(E)]$$
 and for low bias:

$$I = V \frac{2q^2}{\hbar} \frac{\mathbf{g}_1 \mathbf{g}_2}{\mathbf{g}_1 + \mathbf{g}_2} \int_{-\infty}^{\infty} dE \cdot D(E) F_T [E - E_f]$$

Note: By symmetry $F_T(E-E_F) = F_T(E_F-E)$

• At low temperature broadening of D(E) is much greater than F_T, F_T approaches a delta function: $F_T(E_f E) = d(E_f - E)$

$$\therefore I = V \frac{2q^2}{\hbar} \frac{\mathbf{g}_1 \mathbf{g}_2}{\mathbf{g}_1 + \mathbf{g}_2} \int_{-\infty}^{\infty} dE \cdot D(E) F_T(E_F - E)$$

$$=V\frac{2q^2}{\hbar}\frac{\boldsymbol{g}_1\boldsymbol{g}_2}{\boldsymbol{g}_1+\boldsymbol{g}_2}D(E_f)$$

· Conductance depends on density of states at the Fermi energy so...

$$G_{\text{max}} = \frac{2 q^2}{\hbar} \frac{\mathbf{g}_1 \mathbf{g}_2}{\mathbf{g}_1 + \mathbf{g}_2} \cdot \frac{2}{\mathbf{p}\mathbf{g}}$$

Where, $\frac{2}{pg} = \frac{2}{p(g_1 + g_2)} = D(E_f)_{\text{max}}$

•
$$G_{\text{max}} = \frac{q^2}{p \hbar} \frac{4 g_1 g_2}{(g_1 + g_2)^2}$$

When will this quantity reach a maximum?

Answer: When
$$\frac{4 \, \mathbf{g}_{1} \, \mathbf{g}_{2}}{(\mathbf{g}_{1} + \mathbf{g}_{2})^{2}} = 1$$

$$\therefore G_{\text{max}} = \frac{q^2}{\mathbf{p}\hbar}$$

$$= \frac{2q^2}{\hbar} \cong 77.4 \,\text{mS} \cong \frac{1}{12.9 \,k\Omega}$$

Ohm's Law

- Levels in Parallel
- μ_1
 - ____

Levels in Series

- For short conductors consider placing levels in series and in parallel
- • Parallel: Conductance = $\frac{2q^2}{h}M$, where M is the number of levels in parallel
- Series: Not so simple as parallel, series combinations are not ballistic, and electron scattering occurs. L₀ is known as the mean free path (distance an electron travels before encountering an impurity).

Therefore, Series Conductance = $\frac{2q^2}{h} \left[\frac{L_0}{L + L_0} \right]$ where L is the total length of the conductor.

• Parallel Series Combination: $G = \frac{2q^2}{h} M \left[\frac{L_0}{L + L_0} \right]$

Note: for L>>L₀ we get $G = \frac{2q^2}{h} \left[\frac{width}{length} \right]$ ohms law dependence.