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General Picture• Recall: In order for current to flow, states must lie 
between the two electro-chemical potentials

• And, in a multi-level conductor with ‘n’ energy levels 
we need nXn matrices to describe the single level 
analogues 

e, ?1,2 , De(E), Uscf, N:
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• We will concentrate on how to write the 
Hamiltonian for various systems

• Start from simplest case and move up: 
Hydrogen atom (H) to Silicon atom (Si), to 
simple molecules (H2), to solids

• Often to get the Hamiltonian for a given 
system we must use numerical methods 
(e.g. finite difference method)

• For anything more complicated than the 
Hydrogen atom we cannot use analytic 
methods

• Many practical problems requiring 
numerical methods can be solved quickly 
on a PC

• So, where does Hamiltonian come from?  
Answer: The Schrödinger Equation

• This lecture: The Schrödinger Equation
• Next lecture: Finite Difference Method
• Subsequent lecture: examples

Next Few Lectures
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• The Schrödinger Equation:

• Original motivation for creating the Schrödinger 
Equation comes from discrete photon emission 
energy bands that were observed when 
Hydrogen-like atoms were heated.  These 
energy levels could not be explained using 
classical physics

• The photon emission bands did, however, 
follow a pattern: hv = E0(1/n2 – 1/m2).

such that each higher internal atomic energy 
level related to a ground state energy with the 
integer ratio En= Eo/n2

Discrete Energy Spectrum
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• First step was to 
use classical 
physics. Picture a 
single electron 
orbiting a nucleus of 
charge +Zq (this is 
the Hydrogen-like 
atom)

+Zq 

-q 

• Equate electrostatic and centripetal forces: 

Thus, 

• And electron energy is given as: 
E = Potential + Kinetic

• But this is wrong!
- Energy is not discrete (r is continuous)!
- The electron is under continual centripetal 
acceleration and so must radiate EM waves, 
eventually collapsing into the nucleus.
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• How do we get around this 
problem?

• de Broglie suggested that 
we endow the electron with 
wave like properties to get 
discrete energies.

• A wavelength ? would be 
associated to the electron.    
? = h /(mv) 

• Using this concept, 
circumference of a 
Hydrogen-like atom, must be 
an integer multiple of ? such 
that:  
• 2pr = n? = n(h / mv)

Electron wave 
harmonic orbital about 
a Hydrogen-like atom

+Zq 

• So, with a wave like 
character, only certain 
radii are allowed

• Surprisingly, for a 
Hydrogen-like atom this 
gives the correct energy 
levels, substituting back 
into the classical 
equations we get:
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•This heuristic insight was put on a solid 
basis by the  Schrödinger Equation:

• How does the Schrödinger Equation lead 
to discrete energy levels?

• Consider a vibrating string 
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• The general one-dimensional wave 
equation is:

where u = Aeikxe-i? t

and ? 2 = v2k2

• If we tie down the two ends…
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• … then the wave equation of the string 
becomes: u = A sin(kx) e-i? t, where:
• k = np/L, and ? = vk
hence certain discrete frequencies:

? = npv/L

• The quantum analogue of a 1 -dimensional 
vibrating string is the particle in a box (or 
infinite square well)

• The 1-dimensional Schrödinger Equation is:

x = 0 x = L

Harmonically oscillating string
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• In free space, solution to the 1 -dimensional 
Schrödinger Equation gives:

• In the infinite square well, boundary conditions 
are such that ? = 0 at x= 0 and x = L

• Thus, inside the infinite square well we get 

? (x,t)=sin(kx)e-iEt/ h, where k=(np)/L 
and

Just like the vibrating string!

Infinite Square Well with Discrete 
Energy Levels
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• To solve the Schrödinger Equation 
for the Hydrogen atom requires more 
algebra, but qualitatively the result is 
the same

• Therefore, 
as seen here, 
we get 
discrete 
energy levels

Solution to the Infinite 
Square Well
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• Why do we sometimes use a ring 
instead?  Answer: Mathematically it 
is a whole lot easier to manage (i.e. 
with solids)

• Makes use of periodic boundary 
conditions

• Often when boundary conditions don ’t really 
matter we use a ring

• The ring structure has eigenfunctions : 

? = sin(kx)e-iEt/h and

? = cos(kx) e-iEt/h

or otherwise formulated as …

? = Ae+ikxe-iEt/h and 

? = Ae-ikxe-iEt/h

In each case the corresponding Eigenvatues 

are: k=(2pn)/L, where n = 1,2,3…

• Carbon nanotubes are probably the only real 
example where the periodic boundary condition 
is real and not just a mathematical convenience.

The Ring

The Ring, another kind of 
box

40:14
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• What does ? really represent?

• It is believed that ? *? gives a probability 
distribution.

• Add the probability distribution of all 
electrons to get the electron density.

• So, for lots of levels, electron density is 
given by:

i
i

in ΨΨ= ∑ )( *

• Next: Method of finite 
differences

Meaning of ?


