

A. J. Metcalf
Purdue University
12/9/2011

Dual-Comb Spectroscopy

Molecular Spectroscopy

- Measures absorption of atoms and molecules as function of wavelength
- Depends on energy level structure
- IR frequency cause molecule to absorb energy and vibrate "fingerprint region"
 - Unique to each molecule, allow identification
 - Range from 10 to 100THz

Frequency Combs in Molecular Spectroscopy

- Traditional Fourier transform spectroscopy
 - Broad band light source needed, long acquisition times
- Stabilized femtosecond lasers in the 9o's revolutionized spectroscopy
 - Broad Bandwidth, Fine Resolution, Discrete sampling
 - Ideal for identifying absorption signatures of atoms and molecules, detecting trace gases
- Direct-Comb spectroscopy
- Dual Comb Spectroscopy comparable to FT spectrometer with no moving parts, fast acquisition times

Frequency Comb

$$f_{n1} = f_{01} + nf_{rep1}$$

Basic Setup

I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent dual-comb spectroscopy at high signal-to-noise ratio," *Physical Review A* 82, 043817 (2010)

Heterodyne detection

- In order to have one-to-one mapping between RF and optical $\frac{\Delta v_{comb}}{f_r} < \left(\frac{f_r}{2\Delta f_r}\right)$
- FC1 $f_{n1} = f_{01} + nf_{rep1}$
- FC₂ $f_{n2} = f_{02} + n f_{rep2}$
- Minimum acquisition time required $\frac{1}{\Delta f_r}$
- Beat Signal

$$I(t) = \sum_{n} A_n \cos \left[\left(f_{01} - f_{o2} + n(\left(f_{rep1} - f_{rep2} \right) \right) t \right]$$

Stabilizing the comb

- Frequency comb by itself has no inherent accuracy
 - Free running combs will drift
 - Needs to be monitored against some pair of absolute references.
 - With no reference you must derive results from known absorption line.

(Usually several orders of Magnitude worse then with Stabilized combs)

Experimental Results

Sample: hydrogen cyanide (HCN) around 1539nm
Filter set bandwidth at 350GHz
Acquisition time 1ms

 $\frac{1}{\Delta f_r}$

I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent dual-comb spectroscopy at high signal-to-noise ratio," *Physical Review A* 82, 043817 (2010)

Cavity-enhanced dualcomb spectroscopy

- Used in non-intrusive trace-gas sensing
 - Traditionally done with narrow bandwidth lasers
 - Recently FC's have been coupled to highfinesse cavity's but were detected with CCD arrays
 - 15nm spectral span, 25 GHz 800 MHz resolution
 - $\alpha = 6.3(10^{-7})cm^{-1} to 8(10^{-10})cm^{-1}$
 - ms tens of seconds for acquisition time
- Limitation of CCD arrays
 - Finer resolution meant changing comb parameters = longer acquisition times
 - Large detector arrays not available in midinfrared molecular fingerprint region

- Dual Combs
 - 120nm spectral range, 5 GHz resolution
 - 42 us acquisition time
 - Sensitivity too low for trace gas detection
- Combining Dual-Comb with High Finesse cavity
 - Faster acquisition time (microseconds)
 - 20nm spectral span, 4.5GHz resolution

Time Resolved Applications

The inteferogram periodicity

$$\frac{1}{f_{rep1} - f_{rep2}} = \frac{1}{\Delta f_r}$$

- Real-time monitoring of dynamic events
- Sonogram
 - 19GHz Frequency resolution and 52ps time resolution

1st image shows lower pressure cell 2nd image shows high pressure cell

 At the lower pressure the decay is driven by Doppler rephrasing
 High pressure collisions accelerate the delay time

Frequency (THz)-190 THz -10 (e) Frequency (THz)-190 THz 1.5 Effective time (ns)

I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent dual-comb spectroscopy at high signal-to-noise ratio," *Physical Review A* **82**, 043817 (2010)

Advantages

- High Frequency Accuracy
 - 2-8 order of magnitude improvement in accuracy over state—of-the art FTS
 - High frequency resolution
 - At typical repetition rates can have 50-100MHz resolution
 - Traditional FTS hard to accomplish due to long travel distances in interferometer.
 - Acquisition rate very fast (only limited by Nyquist)
 - No moving parts

Limitations

 Combs do not currently cover all parts of the spectrum that can be covered by traditional FTS

Rely on highly stabilized combs

Questions?

