

Network for Computational Nanotechnology

Retouch on Concepts

• Last time, we discussed the Schrödinger Equation:

$$i\hbar \frac{\partial \Psi}{\partial t} = \frac{-\hbar^2}{2m} \nabla^2 \Psi + U(r)\Psi$$

- We began with the simplest case, the Hydrogen atom. It is the simplest because there are no electron-electron interactions
- Experimentally discrete energy levels are observed

Hydrogen Atom

Discrete Energy Levels

- Today: How to solve the Schrödinger Equation numerically using the method of finite differences.
- Start with the 1-Dimensional Schrödinger equation:

$$i\hbar \frac{\partial ?}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} ? + U(r) ?$$

• In essence we want to convert the Schrödinger Equation into a matrix equation.

• First create a lattice for the 1-D problem.

- ? (x,t) therefore becomes a column vector telling the value of ? at ? $(x,t) \rightarrow$ different points at any given instant of time:
- $\begin{array}{c}
 ? (x_2) \\
 ? (x_3) \\
 \vdots \\
 ? (x_n) \\
 \vdots
 \end{array}$

 $\left[?\left(x_{N}\right)\right]$

 $?(x_1)^{-1}$

Method of Finite Differences Hamiltonian Matrix

• Similarly, the entire 1 -D Schrödinger Equation becomes:

$$i\hbar \frac{d}{dt} \begin{bmatrix} ? & 1 \\ \vdots & ? & n \end{bmatrix} = \begin{bmatrix} H \end{bmatrix} \begin{bmatrix} ? & 1 \\ \vdots & ? & n \end{bmatrix}$$

- How do we convert the Hamiltonian operator into a matrix?
- First try writing the matrix for U(x) and then the matrix for $\frac{-\hbar^2}{2m} \frac{d^2}{dx^2}$

The total Hamiltonian should be a sum of these two

• Formulating Schrödinger's Equation in the following form:

$$\left[i\hbar \frac{d?}{dt}\right]_{x=x_n} = \left[\frac{-h^2}{2m} \frac{d^2}{\partial x^2}?\right]_{x=x_n} + \left[U(x)?(x,t)\right]_{x=x_n}$$

• The second term on the right side equation can be written down easily and it is $U(x_n) \times \Psi_n$ for any given point 'n' of the lattice. Note that ? "only depends on ? " and this indicates that potential term U(x) appears on the diagonal of Hamiltonian only.

Method of Finite Differences Hamiltonian Matrix

• Thus:

$$i\hbar \frac{d}{dt} \begin{bmatrix} ?_1 \\ \vdots \\ ?_n \end{bmatrix} = \begin{bmatrix} U(x_1) & & \\ & \ddots & \\ & & U(x_n) \end{bmatrix} \begin{bmatrix} ?_1 \\ \vdots \\ ?_n \end{bmatrix}$$

• Now, how do we write the second derivative at a particular point?

Points in the Lattice Space

• First try to write $\left[\frac{d?}{dx}\right]$..

$$\left[\frac{d?}{dx}\right]_{n+1/2} = \frac{?_{n+1} - ?_n}{a}$$

$$\left[\frac{d?}{dx}\right]_{n-1/2} = \frac{?_{n}-?_{n-1}}{a}$$

• Then,
$$\left[\frac{d^{2}?}{dx^{2}}\right]_{n} = \frac{\left[\frac{d?}{dx}\right]_{n+1/2} - \left[\frac{d?}{dx}\right]_{n-1/2}}{a}$$

$$= \frac{?_{n+1} - 2?_{n} + ?_{n-1}}{a^{2}}$$

Which is the representation of a second derivative in the finite differences method • Generalizing the numerical expression for the second derivative we get:

$$i\hbar \frac{d}{dt}?_{n} = \frac{-\hbar^{2}}{2ma^{2}} [2?_{n} - ?_{n-1} - ?_{n+1}] + U(x_{n})?_{n}$$

• Let $t_0 = \hbar^2 / 2ma$ so the Hamiltonian matrix $i\hbar \frac{\partial}{\partial t} \{?\} = [H] \{?\}$ now looks like...

$$i\hbar \frac{d}{dt} \begin{bmatrix} ?_1 \\ ?_2 \\ \vdots \\ ?_n \\ \vdots \\ ?_N \end{bmatrix} = \begin{bmatrix} 2t_0 + U(x_1) & -t_0 & 0 & 0 & 0 & 0 \\ -t_0 & 2t_0 + U(x_2) & -t_0 & 0 & 0 & 0 \\ 0 & -t_0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & \ddots & \ddots & -t_0 \\ 0 & 0 & 0 & 0 & -t_0 & 2t_0 + U(x_N) \end{bmatrix} \begin{bmatrix} ?_1 \\ ?_2 \\ \vdots \\ ?_n \\ \vdots \\ ?_N \end{bmatrix}$$

What about the time derivative

$$i\hbar \frac{d}{dt}$$
? i.e. How do we calculate {? (t)} given some initial state {? (0)}?

- Answer: Find the eigenvalues Ea and eigenvectors $\{a\}$ of the matrix [H]. Such that, $[H]\{a\}=E_a\{a\}$
- Using the eigenvectors as a basis set, by substitution it can be shown that {? (t)} = {a}e^{(-iEat)/h} satisfies the matrix form of the Schrödinger Equation

• And similarly, so does any linear combination of basis functions

$$\{\Psi(t)\} = \sum_{a} C_a e^{-iE_a t/\hbar} \{a\}$$

• What is not clear, is what the coefficients C_a are. This depends on the problem

But first step is to find the eigen value \mathbf{E}_a And the eigen vector $\{\,\}_a$

- What do we do when we get near a boundary?
- In the case of infinite -wall boundary conditions, such as the infinite square well,

 -t₀ ? ₀ + (2t₀ + U₁) ? ₁- t₀ ? ₂
 is replaced by

 $(2t_0 + U_1) ?_{1}-2 ?_{2}$ and

 $-t_0$? $_{N-1}$ + $(2t_0 + U_N)$? $_{N}$ - t_0 ? $_{N+1}$ by $-t_0$? $_{N-1}$ + $(2t_0 + U_N)$? $_{N}$

Meaning, ? ₀ and ? _{N+1} are considered equal to zero

• For periodic boundary conditions, such as a particle on a ring, we let ? 0 = ? N and ? N+1 = ? 1

• Unlike the infinite -wall scenario, periodic boundary conditions have a slightly different Hamiltonian matrix:

$$[H] = \begin{bmatrix} 2t_0 + U(x_1) & -t_0 & \cdots & \cdots & -t_0 \\ -t_0 & 2t_0 + U(x_2) & \cdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ -t_0 & \cdots & \cdots & -t_0 & 2t_0 + U(x_N) \end{bmatrix}$$

- Sub-note: Most Hamiltonians are normally Hermitian:
- $\mathbf{A}^{\bullet}\mathbf{H} = (\mathbf{H}^{\star})^{\mathsf{T}} = \mathbf{H}^{\mathsf{T}}$

42:36

• For periodic boundary conditions eigenvalues come in degenerate pairs

Whereas for BOX boundary conditions the eigenvalues are non degenerate

Degenerate Eigenvalues

Non-Degenerate Eigenvalues

• This is because the eigenfunctions for the periodic case are: $\sin (k_a = (a2p)/L) \text{ and } \cos (k_a x) \\ \text{with } k_a = (a2p)/L, \ a = 1,2,...$

• This is because the eigenfunctions for the this case are: $\sin (k_a x)$

with $k_a = (ap)/L$, a = 1,2,...

• Finally note that numerical analysis yields

eigenvalues close to analytical result only

for low energies.

Where the analytical result is given by E_a

 $= (h^2a^2p^2) / 2mL^2$

For example a 100 point lattice in the infinite square well yields the following...

 This occurrence energies the fast and the

• This occurs because at very high energies the wave function oscillates very fast and the wide lattice spacing does not capture the whole story.

High Energy Wave: Infinite Square Well

