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Hydrogen Atom• Last time, we discussed the 
Schrödinger Equation:

• We began with the simplest 
case, the Hydrogen atom.  It 
is the simplest because there 
are no electron-electron 
interactions

• Experimentally discrete 
energy levels are observed
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• Today: How to solve the Schrödinger
Equation numerically using the method 
of finite differences.

• Start with the 1-Dimensional 
Schrödinger equation:

• In essence we want to convert the 
Schrödinger Equation into a matrix 
equation.

• First create a lattice for the 1 -D problem.

• ? (x,t) therefore 
becomes a column 
vector telling the 
value of ? at 
different points 
at any given instant of time:
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• Similarly, the entire 1-D Schrödinger 
Equation becomes:

• How do we convert the Hamiltonian 
operator into a matrix?

• First try writing the matrix for U(x) and 
then the matrix for

The total Hamiltonian should be a sum of 
these two
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• Formulating Schrödinger’s Equation in 
the following form:

• The second term on the right side  
equation can be written down easily and it 
is               for any given point ‘n’ of the 
lattice. Note that      only depends on      
and this indicates that potential term U(x) 
appears on the diagonal of Hamiltonian 
only.
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• First try to write             …

• Then,

Which is the representation of a second 
derivative in the finite differences method
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• Thus:

• Now, how do we write the second 
derivative at a particular point?
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• Generalizing the numerical expression for the second derivative we get:

• Let so the Hamiltonian matrix now looks like…
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• What about the time derivative

?   i.e. How do we calculate 
{? (t)} given some initial 
state {? (0)}?

• Answer: Find the eigenvalues Ea and 
eigenvectors {a} of the matrix [H].  Such 
that, [H]{a}= Ea{a}

• Using the eigenvectors as a basis set, by 
substitution it can be shown that {? (t)} = 
{a}e(-iEat)/h satisfies the matrix form of the 
Schrödinger Equation

• And similarly, so does any linear 
combination of basis functions

• What is not clear, is what the coefficients 
Ca are.  This depends on the problem
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• What do we do when we get 
near a boundary?

• In the case of infinite -wall 
boundary conditions, such as the 
infinite square well, 
-t0 ? 0 + (2t0 + U1) ? 1- t0 ? 2
is replaced by  
(2t0 + U1) ? 1-2 ? 2
and
-t0 ? N-1 + (2t0 + UN) ? N - t0 ? N+1
by 
-t0 ? N-1 + (2t0 + UN) ? N

Meaning, ? 0 and ? N+1 are 
considered equal to zero

• For periodic boundary 
conditions, such as a particle on a 
ring, we let 
? 0 = ? N and ? N+1 = ? 1

• Unlike the infinite-wall scenario, periodic boundary 
conditions have a slightly different Hamiltonian matrix:
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• Sub-note: Most Hamiltonians are 
normally  Hermitian: 
• H  = (H*)T = H+

Boundary Conditions
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• For periodic boundary conditions 
eigenvalues come in degenerate pairs 

Degenerate Eigenvalues

• Whereas for BOX boundary conditions 
the eigenvalues are non degenerate

Non-Degenerate Eigenvalues

• This is because the eigenfunctions for 
the periodic case are: 
sin (ka= (a2p)/L) and cos (kax) 
with ka= (a2p)/L, a = 1,2,…

• This is because the eigenfunctions for the 
this case are: 
sin (kax) 
with ka= (ap)/L, a = 1,2,…

a

E

20 40 60

(e
V

)

a

E

20 40 60

(e
V

)

PERIODIC VS. BOX 
Boundary Conditions

42:36



01.29.2003

46:47

• Finally note that numerical analysis yields 
eigenvalues close to analytical result only 
for low energies.

• For example a 100 point lattice in the 
infinite square well yields the following…

• Where the analytical result is given by Ea
= (h2a2p2) / 2mL2

• This occurs because at very high 
energies the wave function oscillates very 
fast and the wide lattice spacing does not 
capture the whole story. 

High Energy Wave: Infinite Square 
Well
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