

Network for Computational Nanotechnology

· Last time we looked at the selfconsistent field method, altering the Schrödinger equation to include a selfconsistent potential U_{scf:}

$$E\Psi = \left[\frac{-\hbar^2}{2m}\nabla^2 + U_N + U_{\rm scf}\right]\Psi,$$
 where U_N is the potential due to the

nucleus.

• If the energy levels of the helium atom are calculated without taking into account electron electron interactions incorrect ionization energies are predicted.

• For example –54.4 eV for the first ionization with respect to the experimental value of -23.4 eV.

Helium Energy Levels

<u>1s</u>

• To get the correct ionization energies U sef is added. U_{scf} approximates electron-electron interactions.

Why the self-consistent field method?

- U_{scf} is formulated, in essence, from the idea that each electron feels a potential due to all other electrons around it. This, however, is not completely correct and we will look at this today.
- The Schrödinger equation for Helium looks like:

$$E\Psi(r_{1}, r_{2}) = \begin{bmatrix} -\frac{\hbar^{2}}{2m} \nabla_{1}^{2} - \frac{-\hbar^{2}}{2m} \nabla_{2}^{2} \\ +U_{N}(r_{1}) + U_{N}(r_{2}) \\ +\frac{q^{2}}{4 \operatorname{pe}_{0}} |\vec{r_{1}} - \vec{r_{2}}| \end{bmatrix} \Psi(r_{1}, r_{2})$$

where the last term represents coulomb interaction between two electrons.

 $egin{aligned} ullet & ext{If} & rac{q^2}{4 ext{pe}_0 \left| ec{r}_1 - ec{r}_2
ight|} & ext{is excluded and the} \end{aligned}$

overall nuclear potential is separable (i.e)

$$U(\vec{r}) = U_{y}(x) + U_{y}(y) + U_{z}(z)$$

then the equation is solvable.

- The electron-electron interaction term is inseparable.
- For example consider a 10 electron atom, for this a 30 dimension coordinate system exists (3 per electron) and the exact solution becomes prohibitive if not impossible.
- \bullet So this is why we implement the $\ensuremath{\text{U}_{\text{scf}}}$ approximation.

• Suppose we could solve the analytical problem. In the case of the Helium how would we represent it's energy levels, that of a two electron problem, and relate them to the one electron energy level diagram?

One Electron Energy Level

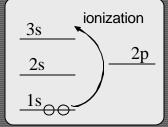
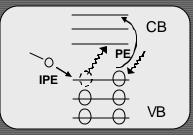


diagram: Helium

- One method, following the approach we have been using so far, is to view our one-electron energy levels as ionization and affinity energies.
- Recall, these energies are known from photoemission and inverse photoemission experiments.

Photoemission (PE) and Inverse Photoemission(IPE)



• So, ionization levels are found by knocking out an electron and affinity levels by adding an electron.

Affinity and Ionization Levels



Levels

- The one electron ionization levels, E_n , are given by: $E_n = E_G(N) E_n(N-1)$, where $E_G(N)$ is the ground state energy of the neutral N electron atom and
- $E_n(N-1)$ the nth level of the positively ionized (N-1) atom.
- \bullet Similarly the one electron affinity level, $\mathsf{E}_\mathsf{n},$ are given by:

 $E_n = E_n(N+1) - E_G(N)$ where $E_G(N)$ is the ground state energy of the neutral N-electron atom and $E_n(N+1)$ the nth level of the negatively

E_n(N+1) the nth level of the negatively ionized atom.

 \bullet So the basic question is: What should we use to calculate U $_{\rm scl}?$

• Intuitively, it follows that the selfconsistent field for ionization levels is

given by:

 $U_{scf} = U_{ee}(N) - U_{ee}(N-1)$, where U_{ee} is the electron-electron interaction energy.

• And for affinity levels: $U_{scf} = U_{ee}(N+1) - U_{ee}(N)$

• In general finding the electron electron interaction energy, U_{ee} is quite difficult.

Simple Capacitive Model

• One simple method treats the interaction energy as that stored in a capacitor.

• So, we take: $U_{ee}(N) = \underline{q^2 N^2}$

And to correct for "self-interaction":

 $\text{Let,} \quad U_{ee}(N) = \frac{q^2 N(N-1)}{2C}$

Uscf Using the Capacitive Model

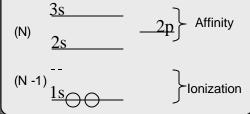
• For ionization levels, using the capacitive model, we get:

$$U_{scf} = \frac{q^2 N(N-1)}{2C} - \frac{q^2 (N-1)(N-2)}{2C}$$
$$= \frac{q^2}{C} (N-1)$$

• But for the affinity levels, N gets replaced by N+1:

$$U_{scf} = \frac{q^2}{C}N$$

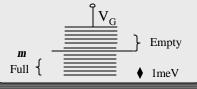
 Affinity Levels: Add an electron and potential is felt due to N existing electrons. Helium Levels



- Ionization Levels: Removed electron feels potential due to other N -1 electrons.
- So we must treat ionization and affinity levels differently. Note: This distinction is not so important for large systems which by nature have large capacitances.

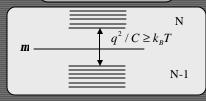
- Overall it is important to note that [U_{scf}] ionization and [U_{scf}] affinity differ by the single electron charging energy by q²/C.
- An important consequence of this property is the coulomb gap or coulomb blockade.
- This can occur even in conductors (which have levels that are very closely spaced).

Conductor with closely spaced levels



• If $q^2/C \ge k_B T$ then a conductor, which one might think would conduct well, will not necessarily do so.

Coulomb Gap



Large Conductors

For relatively large conductors we write: ∂U

$$U_{scf} = \frac{\partial U_{ee}}{\partial N},$$

(the change in Uee being so small that it can be written as a derivative with respect to N).

For a big conductor depending on r:

$$U_{scf}(\vec{r}) = \frac{\partial U_{ee}}{\partial [n(\vec{r})]},$$

where n (r) is the electron density.

However Uee remains the most difficult problem, approximations such as:

$$U_{ee} = \frac{1}{2} \int \int \frac{q^2}{4\mathbf{p}e} \frac{n(\vec{r})n(\vec{r}')}{|\vec{r} - \vec{r}'|} d\vec{r} d\vec{r}'$$

are usually used.

 \bullet This particular approximation gives rise to the ${\bf Hartree}~{\bf U}_{\rm scf}$ approximation:

$$U_{scf}(\vec{r}) = \frac{q^2}{4\mathbf{pe}} \int \frac{d\vec{r}' n(\vec{r}')}{|\vec{r} - \vec{r}'|} = U_H(\vec{r})$$

 \bullet The correct U $_{\rm scf}$ (r) is infact less than this classical approximation ($\rm U_H$ (r)). Why is this? Theoretically, there is two electron probability distribution g(r,r') such that :

$$U_{ee} = \frac{1}{2} \int \frac{q^2 g(\vec{r}, \vec{r}') d\vec{r} d\vec{r}'}{4 \mathbf{p} \mathbf{e} |\vec{r} - \vec{r}'|},$$

but g(r,r') is less than n(r)n(r'). Electrons try to avoid each other and their motion is not truly random.

Correlation Energy

- So, Uee will be somewhat less than then that given by classical electrostatics.
- Thus, a negative correlation energy term is often added to UH:
- Uscf = UH + UXC
- There are many theories as to what exactly what UXC(r) is, one common simple approximation gives:

exactly what UXC(r) is, one commor simple approximation gives:
$$U_{xc}(\vec{r}) = -C \frac{q^2}{4 pe_0} [n(\vec{r})]^{1/3}$$

• Where $C \approx 1$.This is often called the 'Local Density Approximation' (LDA).

- A physical justification for this approximation is the near exact experimental agreement with virtually all atoms. See F. Herman and Skillman, "Atomic Structure Calculations", p. 3-9, Prentice- Hall (1963).
- \bullet Of course this is harder to do with molecules and so alternate $U_{_{xc}}(\vec{r})$ approximations are needed. More on this later.
- •Next Lecture: The Energetics of Bonding.