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• Last time we looked at the self-
consistent field method, altering the 
Schrödinger equation to include a self-
consistent potential U scf:

where UN  is the potential due to the 
nucleus. 

• If the energy levels of the helium 
atom are calculated without taking into 
account electron-electron interactions 
incorrect ionization energies are 
predicted.

• For example –54.4 eV for the first ionization 
with respect to the experimental value of
–23.4 eV. 
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• To get the correct ionization energies U scf is 
added.  Uscf approximates electron-electron 
interactions. 
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• Uscf is formulated, in essence, from the 
idea that each electron feels a potential due 
to all other electrons around it. This, 
however, is not completely correct and we 
will look at this today. 

• The Schrödinger equation for Helium 
looks like :

where the last term represents coulomb 
interaction between two electrons.

• If                            is excluded and the

overall nuclear potential is separable (i.e)

then the equation is solvable.

• The electron-electron interaction term is 
inseparable.

• For example consider a 10 electron 
atom, for this a 30 dimension coordinate 
system exists (3 per electron) and the 
exact solution becomes prohibitive if not 
impossible.

• So this is why we implement the Uscf
approximation.
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Why the self-consistent 
field method?



• One method, following the approach we 
have been using so far, is to view our one -
electron energy levels as ionization and 
affinity energies.
• Recall, these energies are known from 
photoemission and inverse photoemission 
experiments.

• Suppose we could solve the analytical 
problem. In the case of the Helium how 
would we represent it’s energy levels, that 
of a two electron problem, and relate 
them to the one electron energy level 
diagram?

One Electron Energy Level 
diagram: Helium
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• The one electron ionization levels, En,
are given by:
En=EG(N) - En(N-1), where EG(N) is the 
ground state energy of the neutral N -
electron atom and  
En(N-1) the nth level of the positively 
ionized  (N-1) atom.

• Similarly the one electron affinity level, 
En, are given by:
En= En(N+1) - EG(N) where EG(N) is the 
ground state energy of the neutral N -
electron atom and 
En(N+1) the nth level of the negatively 
ionized atom.

• So the basic question is: What should 
we use to calculate U scf?

• So, ionization levels are found by 
knocking out an electron and affinity levels 
by adding an electron.

Affinity and Ionization Levels
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• So, we take: Uee(N)=

And to correct for “self-interaction”:

Let, 

• Intuitively, it follows that the self-
consistent field for ionization levels is 
given by:
Uscf= Uee(N) – Uee(N-1), where Uee is 
the electron-electron interaction 
energy.

• And for affinity levels:
Uscf= Uee(N+1) – Uee(N)

• In general finding the electron -
electron interaction energy, U ee is quite 
difficult. 

• One simple 
method treats the 
interaction energy 
as that stored in a 
capacitor.
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• Ionization Levels: Removed electron feels 
potential due to other N -1 electrons.

• So we must treat ionization and affinity 
levels differently. Note: This distinction is not 
so important for large systems which by 
nature have large capacitances. 

• For ionization levels, using the 
capacitive model, we get:

• But for the affinity levels, N gets 
replaced by N+1:

• Affinity Levels: Add an electron and 
potential is felt due to N existing 
electrons.

Helium Levels
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• Overall it is important to note that 
[Uscf] ionization and [U scf] affinity 
differ by the single electron charging 
energy by q2/C. 

• An important consequence of this 
property is the coulomb gap or 
coulomb blockade.

• This can occur even in conductors 
(which have levels that are very 
closely spaced).  

• If                          then a conductor, which one 
might think would conduct well, will not 
necessarily do so.

Conductor with closely spaced levels
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For relatively large conductors
we write:

(the change in Uee being so small that it 
can be written as a derivative with 
respect to N).

For a big conductor depending on r:

where n (r) is the electron density. 

However Uee remains the most 
difficult problem, approximations
such as:

are usually used.

• This particular approximation gives rise to 
the Hartree Uscf approximation:

• The correct U scf (r) is infact less than this 
classical approximation ( UH (r) ). Why is 
this?   Theoretically, there is  two electron 
probability distribution g(r,r’)
such that :

but g(r,r’) is less than n(r)n(r’).  Electrons try 
to avoid each other and their motion is not 
truly random.

,
N

U
U ee

scf ∂
∂

=

[ ] ,
)(

)(
rn

U
rU ee

scf vv
∂
∂

=

rdrd
rr
rnrnqU ee ′
′−
′

= ∫∫
vvvv

vv )()(
42

1 2

πε

)(
)(

4
)(

2

rU
rr
rnrdq

rU Hscf
vvv

vvv
∫ =

′−
′′

=
πε

,
4

),(
2
1 2

∫ ′−
′′

=
rr

rdrdrrgq
U ee vv

vvvv
πε

Large Conductors
33:00



• So, Uee will be somewhat less than 
then that given by classical 
electrostatics.

• Thus, a negative correlation energy 
term is often added to UH:

• Uscf = UH + UXC

• There are many theories as to what 
exactly what UXC(r) is, one common 
simple approximation gives:

• Where             .This is often called 
the ‘Local Density Approximation ’
(LDA).

• A physical justification for this 
approximation is the near exact 
experimental agreement with virtually all 
atoms. See F. Herman and Skillman, 
“Atomic Structure Calculations ”, p. 3-9, 
Prentice- Hall (1963).

• Of course this is harder to do with 
molecules and so alternate         

approximations are needed.  More on this 
later.

•Next Lecture: The Energetics of Bonding.
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