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Multiscale Materials Modeling
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Why multiscale materials modeling?
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Materials Selection in Mechanical Design (3rd edition)
by MF Ashby, Butterworth Heinemann, 2005

Difference in bonding alone can not explain the enormous
range In observed values for materials properties

e Atomic structure and microstructure (defects, interfaces, etc.)
play a key role



Ab initio and MD simulations

Hy = Ey

Wavefunction of electrons for a
give set of atomic positions
*Optical and electronic properties
eAtomic interactions

Chemical reactions

*H: Hamiltonian operator

V. Wavefunction of
electrons (in the field created
by the ions)

E: Total energy (atoms are
not moving)

F;=ma,

Motion of atoms
*Thermo-mechanical properties
*Mass and heat transport
*Chemistry

F: Total force on atom i
(surrounding atoms and external
fields)

*m;: Mass of atom i

*a;: Acceleration of atom i

Initial condition problem: you
get atomic positions,
velocities and forces

Eigenvalue problem: you get
WF and energy



Ab initio and MD simulations

Electrons coordinates

H(iod (e )= EQr (o))
lonic positions / R

Energy (eigenvalue) is a
function of ionic positions

If | have energy as a function of atomic positions | can calculate force

and perform MD:
lfi :_ﬁnE({rJ})

—

F.=ma

*This is called ab initio MD simulations (forces come from first principles)
sAccurate but computationally very intensive
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Quantum mechanics 101: electronic structure

1. The state of electrons is determined by their wave function

Y(p, 1)

2. Physical observables < linear operators

Position <«  Multiply by p

.~ he=
Momentum < P = TV

Linear:

O(a¥)=a0¥
O(¥,+¥,)=0¥, + 0¥,



Quantum mechanics 101: electronic structure

3. Average results of measurements is given by

(0)= | ¥ (p)O¥(p) F p = (¥|O¥)
Example:

(p)= | W () p¥(p) =] p¥(p) ¢ p

2 Probability density of electron
‘\P(p)‘ being in volume d3p around p



Quantum mechanics 101: electronic structure

4. Time evolution of vy Is given by Schrddinger equation:

/h%‘l’(p, f)= H¥(p, 1)

If Hamiltonian does depend on time: time-independent
Schrodinger equation

Hy(p)= Ey(p)

5. Pauli’s exclusion principle

*Two electrons maximum per orbital
*Electrons in one orbital must have different spin



The hydrogen atom :

H= | ‘P(p)t J‘P(p)f p-| ‘P(p){ J‘P(p) &p

WF

T y.\ s

\ Potential \ Potential
Potential



ADb Initio simulations
Hy = Ey
Hamiltonian operator of a group of electrons and ions is:

H=K, +K, +V+V.+V,

elec jons

Born-Oppenheimer approximation: take massive ions as
stationary and solve for the electrons

n,N

; hZW

Hego (Pl,Pz’---’Pn?{ri}):_z

Pi‘

+Z
‘ i<]j

i=1 2me ) i ‘pl

,\



The challenge:

Solve: HBOI,V = EW

Wavefunction lives in 3n-dimensional space

()

Silicon unit cell: 28-dimensional space!
GaAs unit cell: 64-dimensional space!




The challenge:

Let’'s say you have a TeraFLOP machine on your desk

106 floating point operations per second

Integral in 3D space (assume you discretize space in 10 bins)
103 operations

*Your integral comes back in 10 s=1 ms

Integral in 28-D space (Si unit cell)
1028 operations

*Your integral comes back in 10%? s (age of the earth is
~1.419 s)



Need an approximate solution
Solve: HBO';”: EW

2

V

Hgo (,01 P ) Z

n,N e n
Z 3
J

I‘ﬂ‘*ldm_ﬁ‘

Mean field approximation:

v({e.})= (e ) (0:)-4,(0,)

Wavefunction is a product of single-electron wave functions
(no correlations)



Need an approximate solution

Pug:— wl({p,})= 4.0 (0.)-4.(0,)

Into Schrodinger equation:

S

n,N Ze n
Z‘p r‘+2‘p ,0,‘ v ({o})=Ew({p})

Leads to the Hartree equation (Hartree, 1927):

n’ Ze* [ACY
Rl R

P~ pl

¢ (p)=E I¢j (p)



Hartree

B, |¢(p)| .
—— V- =E'¢.
{ Z|r_p| ;ej|p TP |40 =E ()

Now | need to find n 3-dimensional functions (instead of 1 3n
dimensional one) — Much better!

But... No free lunch
*The Hamiltonian depends on the orbitals | want to find
«Self-consistent field calculation
elterative solution

Total energy is the expectation value of the Hamiltonian:

‘2

& ze I (o) |05 (,)
2‘ —r‘ +§jd pld & ‘pi_pj‘

()= &t (p)| -

i=1 e




The problems with the Hartree theory

v({o.})= 40 ), 4(p,)

*No correlations
*Electrons are distinguishable (swapping two electrons
changes the function)

Symmetry of WF’s:
w(pl,pz,---,p,-,---,p,-,---,pn)= Cw(pl,pz,---,p,-,---,p,-,---,pn)

<( 1 Bosons
C =

-1 Fermions

\.



The problems with the Hartree theory
w(pl,pz ----- Pireees p,-,---,pn)=—w(pl,pz,---,p,- ----- Pireeos pn)

w(on0,)=0,(0)¢:(p,) Not possible

Wpwr)=—5 (B (0.)- 8. A(e2) Ok

General solution: Slater determinants

a(p)  0.(p) .. du(o)

1 (6(0,) 0,(p) .. &)
(o1 ION):W y Y

a(oy) (on) - du(op)




Hartree-Fock

a(p)  0.(p) .. du(p)

Plug: ‘P(,Ol’.--,PN)=ﬁ ¢1(|\/;|2) ¢2(|\'[/|)2) ¢N(p2)

d(on)  P(on) - duop)

Into Schrodinger equation:

. W
_ + =E ]
[; 5 .Z,:‘ —r‘ n;ﬂ. ,0,‘ v (io})=Ev({n})
{_vz 3z }5() Zezj\qﬁ(pw(p)ds Zezjcb(mqﬁ(p)qﬁ(p) e Eg (o)
Flri-p -p o7



Hartree-Fock vs. Hartree

Electron-electron interactions

Hartree _ I;inetic energy_ \
H>=anfd3p¢*(p) - —i 4e ¢'(P)+Zn:_[d3p.d3p. el (2 ) |#, ()
0 T eme Fle-n[ TG T apy

Electron ion-interactions

Hartree-Fock

C 3, 4* v C i2_ \ 33|ez¢i 2¢J' )
(H)=2 ] d’réi (o) o _;‘j_er_‘ h(p)+ 2] a0 ‘ (r;)‘_‘p-|(p )‘

*

—ijd3pd3p'ez¢i* (,0)¢j (p')¢i (pl)¢j (,0)\ Exchange energy (no

i<] |,0 —p | classical counterpart)




Hartree-Fock predictions

Predicted geometries vs. experiments

Table 3.19 SCF equilibrium bond lengths
(a.u.) of N; and CO

Table 3.18 SCF equilibrium bond lengths - " '
515 e 3 i

(a.u.) of Hy

 sT03G . | 346 6-31G* 2039 2108
£316 | 380 Near-HF-limit 2013 LORI*
&3 G P Experimeni 2074 2,132
Frperimen a1 *P.E Cade, K. D Sales, and A, C. Wahl, J.

O, Plyve, delz 1973 || a6
"W, M. Huo, J Chew. Phys. 43: 624 (1965),

Table 3.20 SCF equilibrium bond lengths (a.u.) of

the ten-electron series

Basis sct CH, NH, H,0 FH
ETO-30G 2047 1,052 1871 1.807
4310 2043 LE73 1,797 1,742
B 3105 2048 1897 1.791 1722
B-3Ge 2045 1.897 1782 1703
Mear-HF-limit 2idE 1500 1.7TE" 1,604
Experiment 2030 1002 LB 1735

*W. Meyer, J. Chem. Phys, 882 1007 (19730

*A. Rauk, L. C. Allen, and E. Clementi, J. Chem. Plys.
2 4153 (19,

"B, 1. Rosenberg, W. C. Ermber, and 1. Shavitt, J. Chem,
Phys. 65: 072 (1976),

“P.E.Cadeand W. J. Huo, J. Chem, Phys, 47: 614 [ 1967).

Modern Quantum Chemistry
Szabo and Ostlund



Density functional theory

Hohenberg and Kohn (1964)

*Ground state (GS) wave function ¥,(7,7,...1;,) 1s a functional of GS
electronic density 73,(7)

*Electronic density: n(r)= j &, d’r,...dr|\y r’rz’---’fnjz

*Ground state energy is also a functional of density:

E, = <\I’O [/70]‘/—4‘{'0 [/70]> = E|n, ]

\/ariational property: the electron density that minimizes the energy
functional is the ground state density

Eln,|< E[n]



Density functional theory

Elnl=Tlnl+ U, [n]+ Vo lnl+ E| 7]
e

Exchange and correlation functional

Kohn-Sham equations (1965):

Exchange and correlation potential

2
And the solution is: {—S—VZ +V,. (r)+v,(r)+v,, (I‘)}¢I =&
m

wit: (1) = 2|, (r)




Exchange and correlation functional

sLocal density approximation (LDA)

Exchange: can be calculated exactly for a non-interacting
homogeneous electron gas:

o o et 4 Lo

Correlation: no analytical solution. Alder and Ceperley (1980)
performed Quantum Monte Carlo simulations
Various fits: Perdew-Zunger (PZ), Perdew-Wang (PW)

*Generalized Gradient Approximation (GGA)

ESAn(r)]= | frece (n(r)\vn(r))

PBE: Perdew, Burke, Ernzerhof (1996)
BLYP: Becke’s exchange + Lee, Yang and Parr (1988)
B3LYP: mix 30% of exact exchange (HF) (hyper-GGA)



Numerical iIssues in DFT calculations

-Basis sets  4(r)=2¢;,(r)

Two main options:
*Plane waves: expand orbitals in plane waves up to a cutoff
frequency (given as the corresponding kinetic energy)
*The kinetic energy cutoff should be increased until
convergence Is achieved

sLocal basis sets: functions centered on atoms (LCAQO)
*Usually smaller number of basis functions needed
Common choice: double-zeta + polarization
eEach occupied valence state is described by two
functions and one function for the first unoccupied
angular orbital



Numerical iIssues in DFT calculations

*Pseudo-potentials

*Most physical phenomena depend on valence electrons more strongly

than on core electrons

*Replace core electrons with “pseudopotential” that leads to wave
function identical to original one for large r

Yosesto

FIG. 5. Schematic illustration of all-electron (solid lines) and
pseudoelectron (dashed lines) potentials and their correspond-
ing wave functions. The radius at which all-electron and pseu-
doelectron values maich is designated r,..

Payne et al.
Reviews of Modern Physics, Vol 64, No. 4, October 1892



Reciprocal space

(CIORUCEEAC)
b UJ [ kY. ,(#) e, (K]

BZ/BZ  n f(gn ( /()) _ 1

1+exp {[gF —&, (K] kT}

Replace integral over 15t BZ by a sum over k-points

eSpecial, high-symmetry points are used (Hl MONKHORST, JD PACK,
Phys Rev. B 1976 vol. 13 (12) pp. 5188-5192)

eFew k-points OK for insulators and semiconductors

eMetals are more challenging since there are states available
infinitesimally near the Fermi energy.



INsTITUTE OF PHYSICS PUBLISHING

Reciprocal space sampling

MonsLLme AND SIMULATEON 1N MATERIALS SCIENCE AND ENGINEERING

Muodelling Simul. Mater. Sci. Eng. 13 {2003) R1-R31

TOPICAL REVIEW

Designing meaningful density functional theory
calculations in materials science—a primer

Ann E Mattsson', Peter A Schultz', Michael P Desjarlais’,
Thomas R Mattsson’ and Kevin Leung’
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Figure 5. The computed equilibrium lattice constant, o, of Ta as a function of Fermi flling
temperature and & point sample. The ap computed as the point of 2ero stress is in red, and ap at
the minimum of the potentizl energy curve is in blue. Both these methods converge betier versus
the k sample with higher Fermi occupation temperatures. However, for both methods the lattice
constant drifts as the occupation temperuture increases, and the dritt is in opposite directions.
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Figure 4. The convergence of computed equilibrivm guantities for boe Ta as a function of the
k sample: {a) lattice constant; (B) total energy; (¢) bulk modulus; (&) shear moduli. The values
extracted using the computed stress tensorare given as solid red lines, and the values obtained using
fits to the potential energy surface are dashed hlue (the shear moduli in (o) were both obtained from
the stress calculation), While the tetal energy, lattice parameter and bulk modulus appear to
converge, if slowly, the computed shear moduli (&) are much more sensitive to the & sample, and
are still varying over a range of 5 GPa at a k prid of 407,



Demos and examples

Simple calculations using Quantum Espresso Tool in nanoHUB

About this tool
nlnput d_,_} out this too

Questions

Input Geometry ] Energy Expression ] Fhonons ] Eand StructurefDDS] Advanced Options ]

Fremade atomistic structure; |51 diamand

atomic Coardinates: |Fractional
otructure type: |cubic F {fcc)

Title af Bun; [Silican khand structure

Etomic Structure: 2_ , ,
Silicon diamond structure

Ge 0.0 0.0 0.0
Ge 0.25 0.25 0. 25

Lattice Parameter "a" (&): 5.66




Exchange and correlation functional

sLocal density approximation (LDA)

Exchange: can be calculated exactly for a non-interacting
homogeneous electron gas:

o o et 4 Lo

Correlation: no analytical solution. Alder and Ceperley (1980)
performed Quantum Monte Carlo simulations
Various fits: Perdew-Zunger (PZ), Perdew-Wang (PW)

*Generalized Gradient Approximation (GGA)

ESAn(r)]= | frece (n(r)\vn(r))

PBE: Perdew, Burke, Ernzerhof (1996)
BLYP: Becke’s exchange + Lee, Yang and Parr (1988)
B3LYP: mix 30% of exact exchange (HF) (hyper-GGA)



Density functional theory

Elnl=Tlnl+ U, [n]+ Vo lnl+ E| 7]
e

Exchange and correlation functional

Kohn-Sham equations (1965):

Exchange and correlation potential

2
And the solution is: {—S—VZ +V,. (r)+v,(r)+v,, (I‘)}¢I =&
m

wit: (1) = 2|, (r)




The “DFT bandstructure” problem

The Kohn-Sham eigenvalues do not represent the band
structure of the material

{—h—zvz +V, (r)+v, (r) +vxc(r)}¢i =&
2m

As In our examples, the K-S bandgap is significantly smaller
than the material’s bandgap



The “DFT bandstructure” problem: solution

Perform charge-state calculations where electrons are added
or removed for perfect and defective samples.

eek ending
PRL 96, 246401 (2006) PHYSICAL REVIEW LETTERS E?]Ll'ﬁél:;ﬂ&

Theory of Defect Levels and the “Band Gap Problem” in Silicon

Peter A. Schultz®

Multiscale Computational Materials Methods, Sandia National Laboratories, Albuguergue, New Mexico 87185-1110, USA
(Received 10 November 2005; published 19 June 2006)
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FIG. 3 (color). Computed LDA defect levels (solid blocks) are
compared against experimental defect levels (open), aligned
within the band gap. Agreement between LDA and expenment
15 good for all defects, in all parts of the band gap.



Contacts and dielectric charging

Conduction
Band

Valence

Trap
depth
Band

Insulator
SizN,

34 of defects



Ensemble of equilibrated structures

-400 A

410 - 72-atoms Cool

-420 1 § 576-atoms Cool\

-430 A

-440

N

450 | 72-atoms Heat

576-atoms

-460 - Heat

Potential Energy per SiO,
[ kcal/mol ]

_4?0 T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Temperature [ K]

MD anneal 100’s of liquid structures
*Slow rates to avoid artificially high defect densities
Distribution of native defects

*DFT relaxation of MD structures
*More accurate but more expensive

Compute electronic properties of defects

35
Anderson, Vedula, Schultz, Van Ginhoven, & Strachan, Phys. Rev. Lett. (2011)



Quantify structural properties & defects

Topological defects in amorphous structures
*Atoms with non-ideal coordination aSi;N,
sDistance criterion + Wannier function analysis

36

Vedula, Anderson, & Strachan, Phys. Rev. B (under review)



Quantify structural properties & defects

Topological defects in amorphous structures Defect Free  : Eygon
*Atoms with non-ideal coordination ’ e

-Distance criterion + Wannier function analysis B
nQin i |7 eV
6 -
: 4 - _
III-S]/V—S[ 226V
2
-
D J4,4 eV
6 :
NOV 4 D_D:Iﬁ,. R
2 .
0 :
6.8 eV

___4#

fergy (eV)

i
420246 81012 '
ans
Energy (eV) o 81012
]

Anderson, Vedula, Schultz, Van Ginhoven, & Strachan, Phys. Rev. Lett. (2011)



Electronic structure of energy levels

Rigorous calculation of trap depths

*For every defect perform several charge state calculations (-2, -1, 0, 1, 2)
*The formation energies represent the location of the energy level in the
band gap

1 Defect—free structures
2 _
; 3 _Lﬂ? _______
9
>4 ——charge -1/0
o0 o | Band Gap
o 3.5eV —charge 0/+1
w 6 -
—————————————— &—- -
7 e
8 I I I I I ]
0 10 20 30 40 50 60
DOS (arbitrary units)

38



Step 3: electronic structure of energy levels

Rigorous first principles calculation of trap depths

1 .
Trapping an electron Conduction
2 i
B = Conduction Band Edge _
>
L,
g ——1I-N defects va Trap
alence depth
%‘0 5 ——1V-N defects Band ept
c = |11-Si
“e - —\/-Si Insulator
___________________________________ Si;N,
7 Valence Band Edge
8 T T T
0 10 20 30 -
DOS (arbitrary units) Trapping a hole
2 -
B Conduction Band Edge _
>
L,
- —II-N defects
%” 5 —IV-N defects
e = —— IS
[1N)
6 —V-Si
7 ~7 7777 Valence Band Edge
8 T T T T 1
39 0 10 20 30 40
DOS (arbitrary units)




Atomic variability critical to describe experiments

Single trap level model
Simulation V=10V

) 10° . Simulation V=15V Simulation V=20V
Trap density: o ‘ ‘ 10°
3 T=360 K

4623 m 10" ] Lom¥ 10°® T=360 K
Capture c-s.: < ~

16'22 m2 E 10" 0% 1 10
Effective mass: & 107

0.5 i © T=800K 00K X

. . . 10-14 T—SOO K Z@
Barrier height (®g): - | | 10" . . ) | o

107 10° 10° 100 10 10 10 10 10-2 100 102 104

1.5eV Time (s) Current (A) Time (s)
Trap depth (®-):

l2-18¢eV Multiple trap levels model
Frenkel-Poole freq. — , , :

lel2 s-1 10 | 107 | 10°
Optical dielectricg 1 e | T=360 K

constant: 4 £ 10
=, 12 -12 ] )
8 10 10 10 12
-14 -14
_ 10 10 | 10™T=
S. Palit & A. Alam 5 - 410 T=300K |
10 10 10 0 2 4

Time (S)



Additional online resources @ nanoHUB.org

http://nanohub.org/resources/5495

me dens'W funt:tln'nal thenry tn' dEfECt INsSTITUTE OF PHYSICS PUBLISHING MOoDELLMNG AND SIMULATION [N MATERIALS SCIENCE AND ENGINEERING
- ags Modelling Stmul. Mater. Sei. Eng. 13 (2005) R1-R31 doa: L0 103RA0865-0393/13/1/R0OT
level in silicon: Does the “band gap ¢ *
TOPICAL REVIEW
problem” matter?
By Peter A. Schultz Designing meaningful density functional theory
Sandia National Laboratories, Albuguergue, NM calculations in materials science—a primer
Medeling the electrical effects of radiation damage in semiconductor Ann E Mattsson', Peter A Schultz', Michael P Desjarlais?,
devices requires a detailed description of the properties of point Thomas R Mattsson” and Kevin Leung’

defects generated during and subsequent to irradiation. Such modeling
requires physical parameters, such as ...

http://nanohub.org/topics/LearningModuleSiliconBandstructureDFT

Learning Module: Bonding and Band Structure in Silicon

by Ravi Pramod Kumar Vedula, Janam Jhaveri, Alejandro Strachan

Article Edit History

The main goal of this learning module is to help students learn about the correlation between atomic structure and
electronic properties, and help them develop a more intuitive understanding of the origin of electronic bands in a material
via hand-on exploration using online electronic structure calculations at nanoHUB.org.

The module consists of:
« Two introductory lecture slides available online as presentations

+ Overview lecture.pdf

+ Prelab lecture.pdf
« Hands-on lab involving Density Functional Theory (DFT) simulations via nanoHUB.org

+ Lab handout.pdf
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