

Prof. Supriyo Datta ECE 659

Purdue University

Lecture 12: Basis Functions: As a Computational Tool Ref. Chapter 4.1

What is a Basis Function?

- Next three lectures, including this one, we will concentrate on the concept of basis functions
- Very important conceptually and numerically.
- In this lecture we will concentrate on the numerical aspect.

- Schrödinger Equation: $H_{o p} \Phi_{\alpha}=E_{\alpha} \Phi_{\alpha}$

Whereby $\mathrm{H}_{\text {op }}$ is converted into a matrix and Φ_{α} is a wavefunction represented spatially point by point

- Φ_{α} can be written as a linear combination of a set of basis functions: $\quad \Phi \alpha(\vec{r})=\sum_{m} \phi_{m} u_{m}(\vec{r})$
Where ϕ_{m} are coefficients and $u_{m}(\vec{r})$ are basis functions. So we can represent the wavefunction as a column vector with expansion coefficients as its elements: $\quad \Phi(\vec{r}) \rightarrow\left\{\begin{array}{lllll}\phi_{1} & \phi_{2} & \ldots & \ldots & \phi_{M}\end{array}\right\}^{T}$
- If we choose all $u_{m}(\stackrel{\rightharpoonup}{r})$ such that they closely resemble the desired wave function Φ_{α}, we can greatly reduce the size of Hamiltonian matrix [H] and hence the total computing time
- As an example, we will illustrate how to do this with the hydrogen molecule

H_{2} Potential Distribution

- Obtaining a solution to the H_{2} molecule using finite difference method can be very difficult. Spherical symmetry is lacking, therefore the resulting numerical lattice can be very large and not easily implemented computationally.

General Formulation

- For H_{2} we use two basis functions: and

$$
u_{L}(\vec{r}) \quad u_{R}(\stackrel{\rightharpoonup}{r})
$$

H_{2} Basis Functions

- Importantly, we can now represent the

Hamiltonian numerically with a 2×2 matrix rather than say a 1000×1000 matrix

- First, lets derive the general formulation. Supposing the basis functions of $\Phi(\vec{r})$ are already known:

$$
\Phi(\bar{r})=\sum_{m} \phi_{m} u_{m}(\stackrel{\rightharpoonup}{r})
$$

Then $E \Phi(\vec{r})=H_{o p} \Phi(\vec{r})$ becomes

$$
H_{o p} \sum_{m} \phi_{m} u_{m}(\stackrel{\rightharpoonup}{r})=E \sum_{m} \phi_{m} u_{m}(\stackrel{\rightharpoonup}{r})
$$

General Formulation

- Multiplying by $u_{n}^{*}(\bar{r})$ and integrating both sides over all r ,
$\int d \vec{r} u_{n}{ }^{*}(\stackrel{\rightharpoonup}{r})\left[H_{o p} \sum_{m} \phi_{m} u_{m}(\vec{r})\right]=\int d \vec{r} u_{n}{ }^{*}(\stackrel{\rightharpoonup}{r})\left[E \sum_{m} \phi_{m} u_{m}(\vec{r})\right]$
or $\quad \sum_{m} H_{n m} \phi_{m}=E \sum_{m} S_{n m} \phi_{m}$
where, $\int d \vec{r} u_{n}{ }^{*}(\stackrel{\rightharpoonup}{r}) H_{o p} u_{m}(\stackrel{\rightharpoonup}{r})=H_{n m} \quad$ and $\quad S_{n m}=\int d \stackrel{\rightharpoonup}{r} u_{n}{ }^{*}(\stackrel{\rightharpoonup}{r}) u_{m}(\stackrel{\rightharpoonup}{r})$
- Written as a matrix this becomes
$[\mathrm{H}]\{\Phi\}=\mathrm{E}[\mathrm{S}]\{\Phi\}$
Where [H] elements are given by $H_{n m}$, $[\mathrm{S}]$ elements by S_{nm}, and $\{\Phi\}$ elements by Φ_{m}
- In choosing the basis functions it is often convenient to make them orthogonal, such that $S_{n m}=\delta_{n m}$ that is, $[S]$ is the identity matrix

Back to H_{2}

- But, in numerical calculations it is often more convenient to use nonorthogonal basis sets. For example, in $\mathrm{H}_{2} \ldots$

Basis Function Overlap in H_{2}

- Now, how do we use the shown general formulation to solve H_{2} ?
- To begin with, excluding electron interaction, the H_{2} Schrödinger Equation is set as:

$$
\begin{aligned}
& H_{o p} \Phi=E \Phi, \text { where } \\
& H_{o p}=-\hbar^{2} / 2 m \nabla^{2}+U_{N}(\stackrel{\rightharpoonup}{r})+U_{N^{\prime}}(\stackrel{\rightharpoonup}{r})
\end{aligned}
$$

- And the H_{2} basis functions are given by... Left:

$$
\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+U_{N}(\vec{r})\right] u_{L}(\vec{r})=E_{0} u_{L}(\vec{r})
$$

$$
\begin{aligned}
& \text { Right: } \\
& {\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+U_{N^{\prime}}(\vec{r})\right] u_{R}(\vec{r})=E_{0} u_{R}(\vec{r})}
\end{aligned}
$$

Use these two basis functions to write:

$$
\Phi(\stackrel{\rightharpoonup}{r})=\phi_{L} u_{L}(\stackrel{\rightharpoonup}{r})+\phi_{R} u_{R}(\stackrel{\rightharpoonup}{r})
$$

So that the original Schrödinger equation reduces to a $2 x 2$ matrix;

$$
[H]\left\{\begin{array}{l}
\phi_{L} \\
\phi_{R}
\end{array}\right\}=E[S]\left\{\begin{array}{l}
\phi_{L} \\
\phi_{R}
\end{array}\right\}
$$

- First, let's write the S matrix, assuming $u_{L}(\vec{r})$
and $u_{R}(\vec{r})$ are normalized, so

$$
S=\left[\begin{array}{ll}
1 & s \\
s & 1
\end{array}\right]
$$

Where,

$$
\begin{aligned}
S & =\int d \stackrel{\rightharpoonup}{r} u_{L}^{*}(\stackrel{\rightharpoonup}{r}) u_{R}(\stackrel{\rightharpoonup}{r}) \\
& =\int d \stackrel{\rightharpoonup}{r} u_{R}^{*}(\stackrel{\rightharpoonup}{r}) u_{L}(\stackrel{\rightharpoonup}{r})
\end{aligned}
$$

H_{2} Hamiltonian

- Now the Hamiltonian Matrix:

$$
H=\left[\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right]
$$

where

$$
\begin{aligned}
H_{11} & =\int d \stackrel{\rightharpoonup}{r} u_{L}^{*} H_{o p} u_{L} \\
& =\int d \stackrel{\rightharpoonup}{r} u_{L}^{*}\left[E_{0} u_{L}+U_{N^{\prime}} u_{L}\right]
\end{aligned}
$$

let $a=\int d \vec{r} u_{L}^{*} U_{N^{\prime}} u_{L}$
So, $\mathrm{H}_{11}=\mathrm{E}_{0}+\mathrm{a}$ and

$$
\mathrm{H}_{22}=\mathrm{E}_{0}+\mathrm{a}
$$

- Similarly,

$$
\begin{aligned}
H_{21} & =\int d \vec{r} u_{R}^{*} H_{o p} u_{L} \\
& =\int d \vec{r} u_{R}^{*}\left[E_{0} u_{L}+U_{N_{N}} u_{L}\right] \\
\text { let } \quad s & =\int d \vec{r} u_{R}^{*} u_{L} \\
b & =\int d \vec{r} u_{R}^{*} U_{N_{N}} u_{L} \\
\therefore H_{21} & =H_{12}=E_{0} s+b \\
\text { thus, } \quad H & =\left[\begin{array}{cc}
E_{0}+a & E_{0} s+b \\
E_{0} s+b & E_{0}+a
\end{array}\right]
\end{aligned}
$$

Note: Here the integrals for H_{2} may be done analytically, but in practice it is usually done numerically. Evaluating such integrals numerically is usually the most time consuming part of the process

- To continue, let $A=E_{0}+a$ and $B=E_{0} s+b$

$$
\therefore\left[\begin{array}{ll}
1 & s \\
s & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\left\{\begin{array}{l}
\phi_{L} \\
\phi_{R}
\end{array}\right\}=E\left\{\begin{array}{l}
\phi_{L} \\
\phi_{R}
\end{array}\right\}
$$

Inverted, we have

$$
\frac{1}{1-s^{2}}\left[\begin{array}{cc}
1 & -s \\
-s & 1
\end{array}\right]\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\left\{\begin{array}{l}
\phi_{L} \\
\phi_{R}
\end{array}\right\}=E\left\{\begin{array}{l}
\phi_{L} \\
\phi_{R}
\end{array}\right\}
$$

Multiply through

$$
\frac{1}{1-s^{2}}\left[\begin{array}{cc}
A-s B & B-s A \\
B-s A & A-s B
\end{array}\right]\left\{\begin{array}{l}
\phi_{L} \\
\phi_{R}
\end{array}\right\}=E\left\{\begin{array}{l}
\phi_{L} \\
\phi_{R}
\end{array}\right\}
$$

- Eigenvalues and Eigenvectors...
$1^{\text {st }}$: Eigenvector $\binom{1}{1}$ eigenvalue

$$
\begin{aligned}
& \frac{(A-B s)+(B-A s)}{1-s^{2}}=\frac{(A+B)(1-s)}{1-s^{2}} \\
& =\frac{A+B}{1+s}=E_{0}+\frac{a+b}{1+s}
\end{aligned}
$$

$2^{\text {nd }}:$ Eigenvector
eigenvalue $\binom{1}{-1}$

$$
E_{0}+\frac{a-b}{1-s}
$$

H_{2} Summary

H_{2} Schrödinger Result

- When brought together, the two Hydrogen 1s levels split into bonding and anti-bonding levels. These results are remarkably close to those obtained earlier excluding Uee.
- Note: a and b are negative
- Why do we get such accurate results with only a 2×2 matrix?
Answer: The bonding level in Hydrogen is largely made up of 1 s wave functions.
- How do we know that we can ignore the upper basis levels (ie. $2 \mathrm{~s}, 2 \mathrm{p}_{\mathrm{x}}, 2 \mathrm{p}_{\mathrm{y}}$, $2 p_{\mathrm{z}}$, etc.)? As a general rule given,

$$
[S]^{-1}[H]=\left[\begin{array}{ll}
E_{1} & M \\
M & E_{2}
\end{array}\right]
$$

If the off-diagonal elements M are $\ll\left|E_{1}-E_{2}\right|$ then their effect is relatively small.

