Japanese Journal of Applied Physics 50 (2011) 10PF05

REGULAR PAPER

DOI: 10.1143/JJAP.50.10PF05

Semi-Analytical Depletion Width Evaluated by Self-Consistent

Schrédinger-Poisson Pair Calculations

Che-Sheng Chung*

Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
Received January 29, 2011; accepted July 25, 2011; published online October 20, 2011

A self-consistent calculation establishes a bulk built-in potential by applying a DC bias to a gate/insulators/semiconductor (GIS) structure of a
metal—-oxide—semiconductor field-effect transistor (MOSFET). The width of a semi-analytical depletion layer near the interface of the GIS structure
of an n-type MOSFET (nMOSFET) can be extracted by self-consistent calculation. The grand canonical ensemble improves the quantitative
calculation for the theoretical evaluation of the self-consistent calculation. It is possible that a new approximation establishing the self-consistent
potential appropriately merges with a classical transport model at low temperatures because of minimizing quantum calculations in a momentum

space. © 2011 The Japan Society of Applied Physics

1. Introduction

In 1972, Dr. Frank Stern and his IBM colleagues announced
that they had triumphed over approaching a long range self-
consistent potential by a triangular potential approximation
theoretically.! Since a self-consistent Schrodinger—Poisson
pair calculation is promising for predicting quantum features
of a long range micron- or nano-tissue in modeling a metal—
oxide—semiconductor field-effect transistor (MOSFET) at
low temperatures, an off-current can be characterized
by a no-noise self-consistent potential of ab initio calcula-
tions.>™® However, until now, the self-consistent potential
has not been used in evaluating the low leakage current or
the off-current of a conventional drift-diffusion model.

By considering a theoretical derivation of eliminating
pinning effects at an interface of a gate/insulators/
semiconductor (GIS) structure and ignoring the non-
uniformity of a doped substrate, a no-noise self-consistent
calculation can produce charge centers near the interface of
the GIS structure.”’ By applying a DC gate bias to the GIS
structure at low temperatures (>77°K), Fig. 1 shows a built-
in surface potential formed at the bulk of an n-type
MOSFET (nMOSFET) near the flatband mode. The self-
consistent calculation establishes a built-in surface potential,
V(z), possessing a semi-analytical depletion layer width,
W(V), extracted by a semi-analytical approach combining
with the use of analytical derivations and of numerical
iterations.*'” Because the self-consistent calculation dy-
namically refreshes the depletion width with respect to the
iteration routine, which follows a numerical iteration of
recursive algorithms, the semi-analytical depletion width is
also called the dynamic depletion width in this work.'”
That is, dynamically extracting a depletion layer width is
a procedure of numerically stimulating a semi-analytical
approach. A semi-analytical approach assists in under-
standing the calculation of a semi-analytical depletion width
in detail.*!?

During the period time of relaxing the self-consistent
calculation, a problem was discovered in the calculations
of the carrier distributions. If a self-consistent calculation
based on a semi-classical approximation is valid, calculating
a carrier population counts on not only the number of
calculated carriers in a momentum space but also the
quantum transform transferring a quantum wave from a
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Fig. 1. (Color online) Built-in surface potential V(z) and semi-analytical
depletion width W(V) of a GIS structure near flatband mode.

momentum space to a real space. Usually, observing a
local carrier momentum in a momentum space is difficult.
Quantum evidence in a momentum space weakly appear or
do not appear on the data measured by electrical instruments
at low temperatures.'''?) The impacts of discrete distribution
functions generated by the calculations of mobile charges
can not apparently appear on the results of the self-consistent
calculations at low temperatures.

Secondly, a potential energy, which recursively feeds to a
Schrodinger’s equation, from the calculation of Poisson’s
equation complicatedly nests a recursive structure in
calculating the quantum wave of a carrier. In addition,
for having a fast and stable solution, simplified quantum
calculations of the self-consistent calculation are in use. In
considering a one-particle case in a mesoscopic system, a
new approximation minimizing quantum calculations in a
momentum space is a better interpretation than a conven-
tionally semi-classical approximation at low temperatures.
This paper proposes an example of numerically extracting
the width of semi-analytical depletion layer per built-in
potential by the self-consistent calculation based on the new
approximation.

To document the new approximation and to distinguish it
from a semi-classical approximation analytically, an r-space
of which a phrase is originally an abbreviation of a real
space replaces a real space. That is, the new approximation
defines subband energies in an r-space and a semi-classical
approximation has real space or momentum space subband
energies in a mesoscopic system. Since an approximation
is close to the classical theory in an r-space, most of the
quantum effects, e.g., the interactions of quantum carriers
and quantum Fourier transforms, are not valid in a self-
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consistent calculation except for simplified quantum calcu-
lations.'” On the contrary, if a semi-classical approximation
is valid in a real space, quantum calculations in a momentum
space are suitable for self-consistent calculations.’ 12
For simplicity, the quantum calculations of the new approx-
imation, for the first time, only involve the numbers of
momentum space quantum carriers, r-space quantum waves,
and the r-space subband energies.!” Obviously, the new
approximation proposed to fill a gap bridging the classical
and semi-classical theories is not treated as a semi-classical
approximation. According to the published lines of evidence
obtained by electrical instruments at low temperatures, the
proposed approximation resolves the ambiguous conflicts
from the semi-classical theory in a mesoscopic system.'""!?

2. Theoretical Calculations

A semi-analytical approach provides an understanding of
the self-consistent calculation based on a potential approx-
imation. Similarly to that observed for a semi-classical
approximation, Schrodinger’s equation and Poisson’s equa-
tion of the self-consistent calculation are also the main
equations of the proposed approximation. If assuming that
chemical solubility is at saturated, a Hamiltonian operator,
H, of a one-dimensional (1D) Schrodinger’s equation is
given by">!1?
P

Hé-ij(z) = |:2nliz + V(Z)] fij(Z) = E;;fij(Z), (1)
where V(z) = q/(z) denotes the potential energy and v,(z)
is the built-in surface potential. ¢;;(z) and p;; are the 1D
normalized wave function and the carrier momentum at the
ith subband of the jth valley, respectively. E; is the double
prime eigen energy. m, is the effective mass of carriers in the
z direction.'® For simplicity, a 1D Poisson’s equation for a
p-type semiconductor tissue is given by

dzws(Z) _ [pions(z) + Ph(Z) + Pe(Z)]
dz2 &g ’

(©))

where eg; is the dielectric constant of silicon. p;,,(z), oy(2),
and p,.(z) are the charge sheet densities of ions, of holes, and
of electrons induced, respectively.'®

pions(z) = _[eN];(Z) - eN;(Z)], (23)
Pn(2) = —epp(2), (2b)
Pe(2) = eny(2). (2¢)

The charge sheet densities lead to the calculation of the
electric field. By considering the conventional derivation of
Kingston’s equation to deal with charge sheet densities
associated with a 1D Poisson’s equation, the equivalent

electric field of a p-type semiconductor approximates'-'>
Hs T =B
Voo Voo Voo
-2 / Pions dws + / Ph dws + / Pe dlps
_ s0 s0 s0
Esi ’
3)

where Eg is the total electric field for bound states and &g
is the electric field at the bulk end. v, and v, are the
built-in surface potentials at the bulk and interface ends,
respectively. Because the electric field calculated is usually
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below 0.1 V/cm, the mobility impacting on the transport of
quantum carriers within a built-in potential is ignored for
bound states.'"'® That is, the self-consistent calculation
in this case does not involve some minor effects of the
proposed approximation.

3. Carrier Concentrations and Discrete Subbands

After considering the thermal impacts affecting carriers, we
assume that a free electron for bound states flies over the
Fermi surfaces at bulk. That is, the proposed approximation
only calculates the number of low temperature quantum
carriers in a momentum space. For simplicity, by consider-
ing the suggestion of Stern and Howard, the density of
electrons induced in a p-type semiconductor approximates"

gakpTm,
np = 7Th2

m n In[1 + eXp(an —uy)] .
x ; IZO: é“ij(Z){]nU +exp(ngp — 110l }Cij(z), 4)

where Cfi(z) is the complex conjugate of a quantum wave,
¢;j(z). m and n are the maximum numbers of valleys and
subbands, respectively. m, = /mgn. my is the effective
mass of electrons induced at the horizontal orientation of
the z-axis and m; is the effective mass of electrons induced
at the vertical orientation of the z-axis. g4 is the degenerate
factor of holes. kg is the Boltzmann constant and 7 is the
temperature. us = [E;} — V()1/ksT, np, = Erp/ksT, and
n. = E./kgT are the reduced carrier energy, the reduced
Fermi energy level of a p-type substrate, and the reduced
edge energy of a conduction band, respectively. % is the
reduced Planck constant.

On the basis of electron gas theories, as for the charge
sheet densities, the Fermi—Dirac distribution functions and
integrals represent the source functions of Poisson’s
equation in a p-type substrate. By considering the grand
canonical ensemble of minority charge density within a
unitary box of valence bands, the hole concentration of a
p-type semiconductor approximates®*!!

D0 @ F g, — 0y — gau]El@)
j=1 i=0

DI Cal e
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s

—

®)
where N, = (1/4)(2mykg T/nh2)3/ 2 is the effective density
of states in the valence band if a parabolic valence band is
valid. Moreover, u, = [E;; — V(2)1/ksT and n, = E\/kgT
are the reduced carrier energy and the reduced edge energy
of a valence band, respectively. F, is the Fermi-Dirac
integral representing a dispersion behavior of carriers at a
specific temperature and y is the subscript (e.g., —1/2 and
1/2) of the Fermi—Dirac integral. The charge concentrations
of carriers over an n-type semiconductor show the other set
of similar equations.

The quantum part of the self-consistent calculation adjusts
the double prime eigen energies and self-consistent potential
energies.!” On the basis of the grand canonical ensemble of
quantum statistical mechanics, the total double prime eigen
energy approximates>'¥
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Fig. 2. (Color online) Almost linear relationship of semi-analytical
depletion layer width (arbitrary unit or arb. unit) extracted vs built-in surface
potential (V) based on the new approximation in this work.
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A population of carriers sums up with the carriers of discrete
subbands, although the distribution of carrier concentration
is a continuous, smooth, and monotonic curve at tempera-
tures above 77°K.'L12)

4. Results

To eliminate propagation errors in a self-consistent calcula-
tion, recursive iterations are considered in the calculation of
a self-consistent potential.'”’ Several numerical algorithms
for converging recursive iterations enable the calculation
of the self-consistent potential by incorporating a set of
semiconductor process parameters and numerical conditions
while extracting a semi-analytical width automatically.'” As
shown in Fig. 2, the self-consistent calculation can generate
an almost linear curve of semi-analytical depletion width
with respect to built-in surface potential in a range from 0.14
to 0.44 1V to a p-type semiconductor.

A minimum semi-analytical depletion width based on the
approximation is valid if the first subband appears in the
first calculation. In this case, on the basis of one-particle
approximation, a minimum Debye length appears at about
3.2 x 107® arbitrary unit (arb. unit) while establishing a
built-in surface potential, 0.14 uV, by an external DC bias.

I discovered that the numerical algorithms of the self-
consistent calculation resulted in both the efficient coding of
a program and improvement of the convergent rate of the
self-consistent calculation.!” To shorten simulation times to
satisfy electrical applications, the proposed approximation
minimizes quantum calculations in a momentum space.

5. Discussion

The curve has several little ramps shown in Fig. 2. Although
a self-consistent potential energy adds on an eigen energy by
increasing the external DC bias to the GIS structure, a little
ramp appears on the curve in Fig. 2. Because the self-
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consistent calculation involves several numerical algorithms
leading to a stable calculation, a non linear error, which is a
combination of truncation errors, rounding errors, etc.,
introduced by an algorithm impacts the scale of an extracted
semi-analytical width.!” If a semi-analytical width at a
specific point is extracted by a different algorithm, the unit
of the extracted semi-analytical width is no longer on the
same scale. That is, if the neighboring points involve
different algorithms in extracting semi-analytical widths,
a little ramp also usually appears on the curve in Fig. 2.

6. Conclusions

Although the program from IBM enables the calculation
of an analytical depletion layer width, the self-consistent
calculation demonstrates the solution to the numerical
extraction of a semi-analytical depletion layer width in an
r-space.>'” Obviously, following a semi-analytical ap-
proach, the numerical Debye length can replace an analytical
Debye length if the unit of numerical Debye length is
determined.'*!'®)

The proposed approximation can support the self-
consistent calculation associated with a drift-diffusion
model for predicting the leakage current or off-current of
a degenerate semiconductor by appropriately adjusting the
fitting parameters of the self-consistent calculation.'®'?
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