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• Summary of Equations:

and 

• Recall the concept of a Hilbert Space, a function 
space conceptually similar to a vector space. 
Basis functions in Hilbert space are like the unit 
vectors             in vector space.

• Proper use of basis functions facilitate matrix 
reduction and so are very useful computationally. 

• Computationally we often use a non -orthogonal 
basis set (for example recall H 2). Conceptually this 
can cause many problems The usual procedure is 
to transform the oblique sets to orthogonal sets. 
• From now on it will be assumed that we are 
working with orthogonal basis sets: 
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• Basis transformations are defined 
by the relation:

Where:

So to transform a vector to a new 
basis set we’ll have:

• In matrix notation, basis 
transformations are defined by: 

• To show this, we have:

But

Thus, we see that C can be used to transform 
matrix operators as well as vectors.
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• First, recall the definition of a unitary 
transformation:

- Vector length is preserved
- Proviso on unitary matrix: C +C= CC+ = I

• Consider the process of finding the eigenvalues 
and eigenvectors of a Hamiltonian matrix.

• In matlab, we invoke:
[V,D]= eig (H)

where D is a diagonal matrix with the 
eigenvalues on the diagonal and V is a square 
matrix with the eigenvectors as its columns. 

• One way to visualize this process 
is to consider [H]     [D]
as a basis transformation from the 
real space basis to the eigenvector 
basis. Formally this is expressed as: 

[D]= V+ [H] [V]

V=

1 2 n

Hamiltonian Matrix 
Transformation
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• How do we know it is D= V+HV and not D=VHV+?
• Look at the organization of old and new basis sets in V, H and D…

• Rules of matrix multiplication require that the columns of one matrix match 
the rows of next matrix.
• So by observation it must be D= V+HV

V = H = D =

new basis

old basis

old basis

old basis

new basis

new basis
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• As an example, we will calculate the 
electron density of the ‘electrons in a 
box’

• Remember, by the method of finite 
differences (using box boundary conditions).

+2t0 -t0
H =     -t0 +2t0

• We want to find the electron density 

Note: ‘occ. a’ refers to the sum over all 
occupied states. It is very important to not that 
here the states are either full or empty.
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• We can redefine n(x) by applying the 
Fermi function to all states. Where the Fermi 
function provides the “degree of occupation”
between 0 and 1 of a given state at a known 
electrochemical potential µ.

• So the electron density is:

• We can also re-write this as:

where
if

if

• Note:        forms a diagonal matrix 
called the density matrix.

Occupied and unoccupied levels at µ
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• Generalizing we write: 

Where n(x) is the diagonal of

• This relation can be seen to represent a 
unitary transformation from the eigenvector 
basis to realspace.  Note:              are 
given  by columns of V:

• In other words: 

• Summarizing,

- is in realspace 

- is in the eigenstate space

-The diagonal elements of     are 
equal to the electron density n(x).
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• So, in the eigenstate basis or 
“space” ? is a diagonal matrix with 
elements

• Now in general let us denote the 
density matrix for any space as ?, 
where ? is given by: 

• What is meant by                                    ?

More Generally, how is the ‘function’ of a 
matrix calculated? For a diagonal matrix it is 
simply the ‘function’ operated on all elements. 
How about matrices with off diagonal 
elements? 

• Example: Given [H] with off diagonal 
elements calculate (sin[H]). To do this we 
must first diagonalize [H], then operate sin () 
upon the diagonalized form of        , and then 
finally transform [H] back into its original 
space.  
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Example: continued.

(1) Diagonalize [H]

H1
H2

(2) Operate sin ()

sin(H1)
sin(H2)

(3) Transform back to original 
space

sin(H1)
V sin(H2)        V+

• Note: In matlab matrix functions and element 
by element functions are differentiated by 
addition of an ‘m’ for matrix functions. e.g. :
sin () : represents element by element operation  
sinm (): represents matrix operations.

• Finally we see the expression for ? in real 
space is:  

• Interestingly, ? is only diagonal in the 
eigenvector basis. Off diagonal elements of ? in 
alternate basis sets are used in some 
calculations, but more often than not only the 
diagonal elements of ? (which in any space 
provide electron density) are of interest.
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