

Network for Computational Nanotechnology

Retouch on Concepts

• Summary of Equations:

$$E\Phi = H_{op}\Phi$$
$$\Phi(\vec{r}) = \sum_{m} \mathbf{f}_{m} u_{m}(\vec{r})$$

$$\Phi(\vec{r}) = \sum_{i} \mathbf{f}'_{i} u'_{i}(\vec{r})$$

and

$$u_i' = \sum_m C_{mi} u_m(\vec{r})$$

$$\{\Phi\} = [C]\{\Phi'\}$$
$$[A'] = C^+AC$$

- Recall the concept of a Hilbert Space, a function space conceptually similar to a vector space. Basis functions in Hilbert space are like the unit vectors \hat{x} , \hat{y} , \hat{z} in vector space.
- Proper use of basis functions facilitate matrix reduction and so are very useful computationally.
- Computationally we often use a non-orthogonal basis set (for example recall H 2). Conceptually this can cause many problems The usual procedure is to transform the oblique sets to orthogonal sets.
- From now on it will be assumed that we are working with orthogonal basis sets:

$$\int d\vec{r} u_n^* u_m = \boldsymbol{d}_{mn}$$

Basis Transformations

04:08

• Basis transformations are defined by the relation:

$$u_i' = \sum_m C_{mi} u_m(\bar{r})$$

Where:

$$\Phi(\vec{r}) = \sum_{m} \mathbf{f}_{m} u_{m}(\vec{r}) = \sum_{i} \mathbf{f}_{i}' u_{i}'(\vec{r})$$

So to transform a vector to a new basis set we'll have:

$$\{\Phi\} = [C][\Phi']$$

• In matrix notation, basis transformations are defined by:

$$[A'] = [C]^+ A[C]$$

• To show this, we have:

$$A'_{ij} = \int d\vec{r} \, u_i^{\prime *}(\vec{r}) A_{op} u_j^{\prime}(\vec{r})$$

$$= \int d\vec{r} \sum_{m} C_{mi}^* u_m^*(\vec{r}) A_{op} \sum_{nj} U_n(\vec{r})$$

$$=\sum_{m}\sum_{n}C_{mi}^{*}A_{mn}C_{nj}$$

But $C_{mi}^* = (C^+)_{im}$

$$\therefore A'_{ij} = \sum_{m} \sum_{n} \left(C^{+} \right)_{im} A_{mn} C_{nj} = \left[C^{+} A C \right]_{ij}$$

Thus, we see that C can be used to transform matrix operators as well as vectors.

11:10

- First, recall the definition of a unitary transformation:
 - Vector length is preserved
 - Proviso on unitary matrix: C+C=CC+=I
- Consider the process of finding the eigenvalues and eigenvectors of a Hamiltonian matrix.
- In matlab, we invoke:

where D is a **diagonal** matrix with the eigenvalues on the diagonal and V is a square matrix with the eigenvectors as its columns.

• One way to visualize this process is to consider [H]→ [D] as a basis transformation from the real space basis to the eigenvector basis. Formally this is expressed as:

$$[D]=V^{+}[H][V]$$

$$V = \begin{bmatrix} 1 & 2 & n \\ & & & \\ & & & \end{bmatrix}$$

18:16

- How do we know it is D= V+HV and not D=VHV+?
- Look at the organization of old and new basis sets in V, H and D...

$$V = \begin{bmatrix} \frac{\text{new basis}}{\text{old basis}} \end{bmatrix} \quad H = \begin{bmatrix} \frac{\text{old basis}}{\text{old basis}} \end{bmatrix} \quad D$$

- Rules of matrix multiplication require that the columns of one matrix match the rows of next matrix.
- So by observation it must be D= V+HV

• As an example, we will calculate the electron density of the 'electrons in a box'

Electrons in a box

• Remember, by the method of finite differences (using box boundary conditions).

$$H = \begin{pmatrix} +2t_0 & -t_0 \\ -t_0 & +2t_0 \\ & \ddots & \ddots \end{pmatrix}$$

• We want to find the electron density

$$n(x) = \sum_{a \in a} |\mathbf{f}_a(x)|^2$$

Note: 'occ. a' refers to the sum over all **occupied** states. It is very important to not that here the states are either full or empty.

Electron Density

 \bullet We can redefine n(x) by applying the Fermi function to all states. Where the Fermi function provides the "degree of occupation" between 0 and 1 of a given state at a known electrochemical potential $\mu.$

Occupied and unoccupied levels at $\boldsymbol{\mu}$

• So the electron density is:

$$n(x) = \sum_{a} |\mathbf{f}_{a}(x)|^{2} f_{a}$$
$$= \sum_{a} \mathbf{f}_{a}(x) f_{a} \mathbf{f}_{a}^{*}(x)$$

• We can also re-write this as:

$$n(x) = \sum_{a} \sum_{b} \mathbf{f}_{a}(x) \mathbf{r}_{ab} \mathbf{f}_{b}^{*}(x)$$

where

$$r_{ab} = \begin{cases} f_a & \text{if } a = b \\ 0 & \text{if } a \neq b \end{cases}$$

• Note: Γ_{ab} forms a diagonal matrix called the density matrix.

• Generalizing we write:

$$\widetilde{r}(x,x') = \sum_{a} \sum_{b} f_a(x) r_{ab} f_b^*(x')$$

Where n(x) is the diagonal of $\widetilde{r}(x, x')$

 \bullet This relation can be seen to represent a unitary transformation from the eigenvector basis to ${\bf real}$ space. Note: $\Phi_a(x)$ are given by columns of V:

$$f_a(x) = x \left[\cdots \right] = V_{x,a}$$

• In other words:

$$\Phi_{\mathbf{a}}(x) = (V)_{\mathbf{a},x}$$

$$\Phi_{b}^{*}(x') = (V^{+})_{b,x'} = V_{x',b}^{*}$$

Summarizing,

$$\tilde{r} = VrV^{+}$$

$$r = V^+ \tilde{r} V$$

- \widetilde{r} is in real space
- r is in the eigenstate space

-The diagonal elements of $\widetilde{\boldsymbol{\varGamma}}$ are equal to the electron density n(x).

 So, in the eigenstate basis or "space"? is a diagonal matrix with elements

$$f_{\mathbf{a}} = \frac{1}{1 + e^{(E_{\mathbf{a}} - \mathbf{m})/k_{B}T}}$$
$$= f_{0}(E_{\mathbf{a}} - \mathbf{m})$$

• Now in general let us denote the density matrix for any space as ?, where ? is given by:

$$\boldsymbol{r} = f_0([H] - \boldsymbol{m}[I])$$

• What is meant by $f_0([H]-m[I])$?

More Generally, how is the 'function' of a matrix calculated? For a diagonal matrix it is simply the 'function' operated on all elements. How about matrices with off diagonal elements?

 \bullet Example: Given [H] with off diagonal elements calculate (sin[H]). To do this we must first diagonalize [H], then operate sin () upon the diagonalized form of [H], and then finally transform [H] back into its original space.

Example: continued.

(1) Diagonalize [H]

(2) Operate sin ()

$$\begin{array}{c}
sin(H_1) \\
sin(H_2) \\
\vdots
\end{array}$$

(3) Transform back to original space

sin(H₁)

V+

- Note: In matlab matrix functions and element by element functions are differentiated by addition of an 'm' for matrix functions. e.g. : sin () : represents element by element operation sinm (): represents matrix operations.
- Finally we see the expression for ? in real space is: $f_0(E_{\scriptscriptstyle 1}-{\it m})$

$$\widetilde{\mathbf{r}} = V$$

$$f_0(E_2 - \mathbf{m}) \cdot \cdot \cdot \cdot f_0(E_n - \mathbf{m})$$

• Interestingly, ? is only diagonal in the eigenvector basis. Off diagonal elements of ? in alternate basis sets are used in some calculations, but more often than not only the diagonal elements of ? (which in any space provide electron density) are of interest.