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• In this lecture the topic of band structure 
shall be introduced i.e. to derive the energy 
levels of a periodic solid. Note that common 
semiconductors have periodic crystal structure 
that allows one to do certain things which will 
be explored hereon.
• To start take a simple example, in this case 
a chain of N atoms. 

• Let us first assume only one orbital at each 
atomic site.  Using these orbitals centered 
around each site as our basis set, excluding 
overlap, we get a diagonal Hamiltonian matrix 
of size NxN.
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If atoms are brought close together, 
overlap occurs; hence we’ll have non-
zero off diagonal elements in [H] like 
what we had for hydrogen molecule:

For our 1D solid:
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A Chain of Atoms
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• So, the basic equation we are trying 
to solve is:

where 

• But one problem still remains, 
periodicity is not preserved at the first 
and last rows of H.

• So with overlap:
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• The periodicity of solid causes the 
Hamiltonian to have rows that are 
identical to each other except with a 
shift. Importantly, this periodicity 
allows the eigenvalues and 
eigenvectors of H to be calculated 
analytically.
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• To maintain periodicity we assume 
periodic boundary conditions; hence:

• Each row: 

• The above equation can be 
solved analytically via 
(where       is any real number)

• Substituting in we get,

• But in this form      gives a continuous 
infinite number of values for E. What 
condition should be placed on     such that 
we have a finite number of eigenvalues like 
the original finite matrix?
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• To get a finite number of eigenvalues, 
we have to (1) limit the range of     and 
(2) discretize the allowed values of   .

• What limits the range of     ?

and              give us the same wave 
function and we only need:      
`````

• But in a finite range we can still have 
infinite eigen values. Now what? The 
answer is that eigen values must be 
discredited because for a periodic solid we 
have: 

This tells us:                 
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• What we have now is a discrete set of eigen values in a finite range which results in a finite 
number just as the size of [H] matrix which was finite. 

Restricting the energy 
eigen values to be discrete
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• Summarizing, we have:

which looks like….

Usually     is written as     =ka where ‘a’ is 
the spacing between lattice points

• How does the value of Ess affect E?
For Ess > 0  E has upward curvature in the 
region of 
and downward curvature for Ess < 0. N
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Curvature of the Band 
Structure
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• For which cases is Ess>0 and 
Ess<0? In general the sign of Ess
depends on the sign of the potential 
and on the symmetry of the 
overlapping wave functions.

• Example 1:

Consider two 1s Hydrogen wave 
functions:

With the interaction potential U<0 
(since U depends mostly on the 
nuclear forces).

• Example 1 contd:
So we have,

and  Ess<0

since                           and

Likewise, take 2 px hydrogen wave functions

Thus,
and  Ess>0

Since again U<0 and 
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• One last point, roughly in 
semiconductors one could say that the 
valance band is composed of ‘p’
orbitals and the conduction band of ‘s’
orbitals. Hence the well known 
curvature.

• What if we had two atoms at each lattice site? 
i.e.

• In this case the Schrödinger equation 
becomes:

• The primary difference is
which results in only even/odd rows 
to be the same.

Semiconductor Conductance(CB) and 
Valance (VB) Bands
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Two atoms per lattice site
31:32



• How do we handle the two atom unit cell 
Hamiltonian?
The previous relation

does not easily apply.

Ans: Collect elements        and 
into the form       .

• Reorganizing the Schrödinger equation we 
get:

• Where,

and, 
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• To solve this set of equations now apply 
the equality

and the ansatz

where a is:

Combined these equations give:

• Or in a simplified form:

where 

and the eigenvalues, for each      now 
come in pairs.
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• Next Lecture:

- Look at two dimensional structures.
- Particularly graphite, which has the      
structure

• Why are there two eigenvalues for 
each value of k?

Ans: The number of eigenvalues per
has a one to one ratio with the 

number of basis functions per unit cell. 
In this case we have two basis 
functions(two atoms with one orbitals 
each) per unit cell.
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