

Network for Computational Nanotechnology

- In determining bandstructure, we take advantage of the natural periodicity of a solid. This allows us to derive the eigenvalues and eigenfunctions analytically.
- Repeated unit cell

results in a periodic Hamiltonian

$$\begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \\ & & \ddots \end{bmatrix}$$

• Recall that all H_{nm} in $\begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \\ & \ddots \end{bmatrix}$

are sub-matrices. The size of $H_{\rm nm}$ is directly dependent on the number of basis functions within a unit cell. Given b basis functions $H_{\rm nm}$ is of size bxb.

As well, all basis functions

• As well, all basis functions
$$\Psi_{n_i} \quad n = \begin{pmatrix} 1, \cdots, N \end{pmatrix}$$

$$i = 1 \cdots b$$
 are grouped into $\{ \boldsymbol{f}_n \} = \left\{ \begin{array}{c} \Psi_{n_1} \\ \Psi_{n_2} \\ \vdots \\ \Psi_{n_b} \end{array} \right\}$

Multiple Basis Functions

• Finally, the Schrödinger Equation has the form

$$E\begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_N \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \\ & & \ddots \end{bmatrix} \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_N \end{bmatrix}$$

and $E\mathbf{f}_n = \sum_m H_{nm}\mathbf{f}_m$

As shown earlier, these equations may be solved via the ansatz

$$\{\boldsymbol{f}_n\} = \{\boldsymbol{f}_0\}e^{ikna}$$

Such that,

$$E\{\mathbf{f}_0\}e^{ikna} = \sum_{m} [H_{nm}]e^{ikma} \{\mathbf{f}_0\}$$

(

$$E\{\mathbf{f}_{0}\} = \sum_{m} [H_{nm}] e^{ik(ma-na)} \{\mathbf{f}_{0}\}$$

• Let us define the matrix

$$[h(k)] = \sum [H_{nm}] e^{ik(m-n)a}$$

where the eigenvalue problem is now defined by

$$E\{\mathbf{f}_0\} = [h(k)]\{\mathbf{f}_0\}$$

(Remember: $\{f_0\}$ is a column vector and [h(k)] is a matrix of size bxb where b is the number of basis functions per unit cell)

09.21

• Therefore N lattice points, N unit cells, and "b" basis functions will result in b•N eigenvalues

• It is relatively straight forward to go from 1-dimension to further dimensions. In the equation: $[h(k)] = \sum [H_{mm}] e^{ik(m-n)a}$ from the nth unit cell we sum over all"heighboring m cells

b•N eigenvalues

 \bullet To generalize, pick an origin and define the position of n and m by $\vec{d}_{\scriptscriptstyle n}$ and $\vec{d}_{\scriptscriptstyle m}$

Generalizing to Higher Dimensions

• Now, given \bar{d}_n and \bar{d}_m we claim that the ansatz $\{\mathbf{f}_n\} = \{\mathbf{f}_0\} e^{i\bar{k} \cdot \bar{d}_n}$

Satisfies the Schrödinger equation. After substituting the above instead of eigenfunction, Sch. Eq. becomes:

$$E\{\mathbf{f}_{0}\}=\left[h\left(\bar{k}\right)\right]\left\{\mathbf{f}_{0}\right\}$$

where $[h(\vec{k})] = \sum [H_{nm}] e^{i\vec{k} \cdot (\vec{d}_m - \vec{d}_n)}$

which applicable to any number of dimensions!

(Don't forget: the **periodic** nature of a lattice makes this all possible. Visually, one can stand at any nth unit cell, sum over all m neighbors including itself, and the result will be the same)

• We'll use this general procedure for Graphite:

Graphite is made up of carbon atoms bonded in a hexagonal 2D plane.

• But first, let's gain familiarity with two dimensions, and consider a simple rectangular lattice

Rectangular Lattice

• Assume **one** basis orbital per unit cell. So $[h(\bar{k})]$ and $[H_{nm}]$ become 1 \times 1.

Want to evaluate: $h(\vec{k}) = \sum_{n_m} H_{n_m} e^{i\vec{k} \cdot (\vec{d}_m - \vec{d}_n)}$ Evaluating Hnn results in E0 (self-energy) and evaluating Hnm results in a value that we

call t. So we have 5 terms in our summation:
$$h\left(\bar{k}^{\;}\right)=E_{_0}+\sum_{_{_0}}^4te^{_{_1}i\bar{k}\left(\bar{d}_{_m}-\bar{d}_{_n}\right)}$$

- Take $\vec{k} = k_y \hat{x} + k_y \hat{y}$ and set the origin as shown...
- Exponents of "e" for the four terms become:

$$\vec{k} \bullet (d_1 - \vec{d}_n) = \vec{k} \bullet \hat{x} \mathbf{a} = k_x \mathbf{a}$$

$$\vec{k} \bullet (d_2 - \vec{d}_n) = \vec{k} \bullet (-\hat{x}) \mathbf{a} = -k_x \mathbf{a}$$

$$\vec{k} \bullet (d_3 - \vec{d}_n) = \vec{k} \bullet \hat{y} b = k_y b$$

$$\bar{k} \bullet (d_3 - \bar{d}_n) = \bar{k} \bullet \hat{y}b = k_y b$$

$$\vec{k} \bullet (d_4 - \vec{d}_n) = \vec{k} \bullet (-\hat{y})b = -k_y b$$

• Thus, after adding all of them we get:

$$h(\vec{k}) = E_0 + 2t(\cos k_x a + \cos k_y b)$$

• In any lattice we can look beyond nearest neighbor interactions to nextnearest neighbor interactions. For example, in the rectangular lattice...

Next-nearest m neighbor
$$\vec{d}_m - \vec{d}_n$$

$$\left(\begin{array}{l} \dots \text{ here} \\ \vec{k} \left(\vec{d}_m - \vec{d}_n \right) = \left(k_x \hat{x} + k_y \hat{y} \right) \bullet \left(a \hat{x} + b \hat{y} \right) \right)$$

• Now let's move onto Graphite. First identify the basic unit cell

Graphite continued

• Next define two basis vectors, \vec{a}_1 and \vec{a}_2 such that the position of any cell in the lattice can be written as $\vec{R} = m\vec{a}_1 + n\vec{a}_2$ where m and n are integers

• In order to calculate $[h(\bar{k})]$ assume 1 basis function per carbon atom. This gives two basis functions per unit cell, $[h(\bar{k})]$ will be a 2x2 matrix

• Let t denote the overlap between 2 adjacent (nearest neighbor) carbon atoms. Denote n_1 and n_2 the atoms of the unit cell under consideration. Thus, H_{nn} is

• Overlap outside the unit cell will involve 4

nearest atoms, i.e...

Graphite continued

ī

• Therefore, a total of 4 more matrices must be added (with phase factor!), they are:

$$\begin{bmatrix} 0 & 0 \\ t & 0 \end{bmatrix} e^{i\bar{k} \bullet \bar{a}_1} + \begin{bmatrix} 0 & t \\ 0 & 0 \end{bmatrix} e^{i\bar{k} \bullet (-\bar{a}_2)} + \begin{bmatrix} 0 & t \\ 0 & 0 \end{bmatrix} e^{i\bar{k} \bullet (-\bar{a}_2)} + \begin{bmatrix} 0 & t \\ 0 & 0 \end{bmatrix} e^{i\bar{k} \bullet \bar{a}_2}$$

• The final matrix looks like:

$$[h(\vec{k})] = \begin{bmatrix} E_0 & t(e^{-i\vec{k} \cdot \vec{a}_1} + e^{-i\vec{k} \cdot \vec{a}_2} + 1) \\ t(e^{i\vec{k} \cdot \vec{a}_1} + e^{i\vec{k} \cdot \vec{a}_2} + 1) & E_0 \end{bmatrix}$$

• If we let $\vec{a} = a\hat{x} + b\hat{y}$ and $\vec{a}_2 = a\hat{x} - b\hat{y}$ then $[h(\vec{k})]$ simplifies to:

where
$$h_0 = t \Big(1 + e^{iig(k_x a + k_y big)} + e^{iig(k_x a - k_y big)}\Big)$$

• To find the eigenvalues of $[h(\bar{k})]$ first recall the identity: given a matrix in the form

$$\begin{bmatrix} a & b^* \\ b & a \end{bmatrix}$$

then its eigenvalues are a+/b/ and a-/b/

- \bullet Thus the eigenvalues of $[\hbar(\bar{k}\,)]$ are $E_0+/h_0/$ and E_0 $/\!\!h_0/$
- What is $/h_0/?$ Well, $h_0 = t(1 + 2e^{ik_x a}\cos k_y b)$

$$\therefore h_0 h_0^* = t^2 (1 + 4\cos k_x a \cos k_y b + 4\cos^2 k_y b)$$

 $=\left|h_0\right|^2$

so,

$$|h_0| = t\sqrt{1 + 4\cos k_x a \cos k_y b + 4\cos^2 k_y b}$$

• More formally we say,

$$E(\vec{k}) = E_0 \pm |h_0|$$

 Note, a plot of graphite energy reveals the exact symmetry of the two eigenvalues

• Next lecture: Semiconductor Band Structure